cont Outline - Part 2 EE 411: Circuit Theory Sinusoidal Steady-State Analysis - II © Copyright by Margarida Jacome EE411: SL12 ! Series, Parallel, and !-to-Y Simplifications ! Source Transformations and Thévenin-Norton Equivalent Circuits ! Node-Voltage Method and Mesh-Current Methods ! Phasor Diagrams ! Mutual Inductance ! The Transformer ! The Ideal Transformer 1 contMargarida Jacome - UT Austin 2 EE411 Problem 1 Ig j3# -j3# Ig Problem 1 (cont) Ig Use the mesh-current method to find the phasor current Ig. 5# j3# -j3# Ig (5 + j2) Ia– 5Ig = j15 5# o 5"0 = 5 5"0o 5"0o j2# Ia o + 5"-90 – o o o 5"-90 = 5 (cos (-90 ) + j sin (-90 )) = -5j 5"0o 5"0 o Ig= ? – 5 Ia + 5 Ig= -j15 j2# Ia (Cramer’s Method) o + 5"-90 – != -5 5 (5 + j2) -5 -5 -j15 (5 + j2) j15 = 25 - 5(5+ j2) = - j10 2 equations: j3Ig + 5 (Ig– Ia) – j3 (Ig– 5) = 0 5 (Ia– Ig) – 5j + j2 (Ia– 5) = 0 Ng = 5 Ig– 5 Ia + j15 = 0 $ ! (5 + j2) Ia– 5Ig – 15j = 0 Margarida Jacome - UT Austin EE411 Ig =-j3 = 3 "-90o A 3 = -j75 + j15 (5 + j2) = -30 Ig = Ng / ! = -30/(- j10) Margarida Jacome - UT Austin EE411 4 Problem 2 200k# Problem 2 (cont) 200k# Find the steady state expression for vo(t) when vg(t) = 2.5 cos 107t V 1.25pF b a o 40k# 10k# – 10pF + – + -5V 10k# KCL on (b): 1.25pF $ 1/(j (107)(1.25%10-12)) = -j80k# 10 -Va 40 – + Va -j10 Vo -j80 + Va – Vo 200 + Va 40 =0 =0 (1) ' Va = - j0.5 Vo (2) Substituting (2) in (1): (26 + j20)(- j0.5) Vo – Vo = 50 $ -j13 Vo + 10 Vo – Vo = 50 Vo = 50 = 1.8 + j2.6 = 3.16"55.30o 9 – j13 Back to time domain: (& = 107 rad/s) Va – 2.5 104 + Va – Vo Va + 2%106 -j104 + Vo 50k# – + Va =0 4%104 -Va Vo = 0 – 4%104 -j8%104 6 Outline - Part 2 $ 20 Va – 50 + j20 Va + Va – Vo + 5 Va = 0 ' (26 + j20 ) Va – Vo = 50 + Margarida Jacome - UT Austin EE411 5 Problem 2 (cont) Va – 2.5 5V -5V KCL on (a): 10pF $ 1/(j (107)(10-11)) = -j10k# Margarida Jacome - UT Austin EE411 -j10k# + – Impedance of capacitors for & = 107 rad/s: 40k# – 2.5"0o + vo(t) 50k# – cont vg(t) Vg = 2.5"0 5V Vb = 0 (assuming that OPAMP in linear region) -j80k# ! Series, Parallel, and !-to-Y Simplifications ! Source Transformations and Thévenin-Norton Equivalent Circuits ! Node-Voltage Method and Mesh-Current Methods ! Phasor Diagrams ! Mutual Inductance ! The Transformer ! The Ideal Transformer vo(t) = 3.16 cos (107t + 55.30o)V Margarida Jacome - UT Austin EE411 7 contMargarida Jacome - UT Austin EE411 8 Phasor Diagram Problem 3 What is the relationship between Vs and VL (load voltage) graphically? Sketch in the complex plane showing the relationships of the phasor voltages and phasor currents. Assume I = I "0o. Sketch V . m j50# I 10# -j50# VL I VS VL = j50 I = (50 "90 ) I . VR = 10 I. Re L2 (5) Ib Ia VR1 (6) Vs VL I L2 VL VR1 Ia VL VL1 (5) Ib I ! I = Ia + Ib Margarida Jacome - UT Austin EE411 Ib ? Ia VR1 VL I ! VL1 leads I by 90o ! |VL1| = |I| &L1 ! VR1 is in phase with I 10 ! |VR1| = |I| R 1 Outline - Part 2 Vs = VL + VR1 + VL1 VL1 R2 VL ! Ia is in phase with VL ! Magnitude: |Ia| = |VL|/R2 Ib I? 9 cont R2 Ib (4) ! Ib lags behind VL by 90o ! |Ib| = |VL|/&L2 What is the relationship between Vs and VL (load voltage) graphically? L1 R1 I – VL Ib Problem 3 (cont) Ib Ia (3) VL + VR + VC Margarida Jacome - UT Austin EE411 Ia + VL Ia Ia VL1? VS = VL + VR + VC VC = -j50 I = (50 "-90o) I . + VL (2) Ia ? VL – o Vs + – R1 Vs + – VL + VR + VC – L1 I Im + V – + V – L R Vs +– s (1) VL1 ! Series, Parallel, and !-to-Y Simplifications ! Source Transformations and Thévenin-Norton Equivalent Circuits ! Node-Voltage Method and Mesh-Current Methods ! Phasor Diagrams ! Mutual Inductance ! The Transformer ! The Ideal Transformer ! VL1 leads I by 90o ! |VL1| = |I| &L1 ! VR1 is in phase with I ! |VR1| = |I| R1 Margarida Jacome - UT Austin EE411 11 contMargarida Jacome - UT Austin EE411 12 Time TimeDomain Domain Mutual Inductance Mutual Inductance ! The magnetic field considered in our study of inductors was restricted to a single circuit R1 # inductance (or self-inductance) is the parameter that relates voltage to a time-varying current in the same circuit vs(t) +– i1(t) #Use mesh currents, i.e., write the circuit equations in terms of the coil currents M L1 i2(t) L2 (1) Choose reference directions for each current (arbitrary directions, as before) R2 (2) Add voltages around each closed path. ! We now consider the situation in which two circuits are linked by a magnetic field # in this case, the voltage induced in the second circuit can be related to a time-varying current in the first circuit by as parameter known as mutual inductance Two magnetically coupled coils Because of the mutual inductance M, there will be two voltages across each coil: ! (Self-)Inductances: L1, L2 " A self induced voltage: L1(di1(t)/dt) ! Mutual Inductance: M " A mutually induced voltage: M(di2(t)/dt) M = k L1 L2 Polarity?? 0"k"1 Margarida Jacome - UT Austin EE411 13 Polarity of the Mutually Induced Voltage Depends on the way the coils are wound in relation to the reference direction of the currents. (A iA iC A C B " D (D core material Arbitrarily select one terminal of the second coil (e.g., terminal C) and assign a current into it. Use the right-hand rule to determine the magnetic field established by the current (iC). If the fluxes have the same direction, place a dot on the terminal where the test current iC enters. (Else, place the dot on the terminal where the current leaves). Margarida Jacome - UT Austin 15 EE411 perfect coupling Margarida Jacome - UT Austin EE411 14 Polarity of the Mutually Induced Voltage Depends on the way the coils are wound in relation to the reference direction of the currents. i induces ( (A iA iC A C !( induces v !t B Procedure: 1. Arbitrarily select one terminal of one coil (e.g., terminal A) and mark it with a dot. Assign a current into the dotted terminal. Use the right-hand rule to determine the magnetic field established by the current (iA). 2. coupling coefficient " D (D core material If the fluxes have the same direction, place a dot on the terminal where the test current iC enters. (Else, place the dot on the terminal where the current leaves). When Whenthe thereference referencedirection directionfor foraacurrent currententers entersthe thedotted dottedterminal terminalofofaacoil, coil, the thereference referencepolarity polarityofofthe thevoltage voltagethat thatititinduces inducesininthe theother othercoil coilisispositive positive atatits itsdotted dottedterminal. terminal. Margarida Jacome - UT Austin EE411 16 Time TimeDomain Domain Time TimeDomain Domain Dot Convention - Schematics Example 2 # A dot is placed on one terminal of each winding. These dots carry the polarity information. i1(t) M i1(t) M + + + + vL 2 _ vL 1 _ vL 2 _ L1 vL = L1 1 vL = L2 L2 R1 M i2(t) vL 1 _ Self induced voltages 2 i2(t) L1 L2 + + vs(t) +– i1(t) L1 Mutually induced voltages: di1(t) +M dt di2(t) di2(t) vL = L1 1 dt +M dt di1(t) vL = L2 2 dt –M di2(t) dt dt di2(t) –M di1(t) di1(t) dt -vs(t) + R1 i1(t) + L1 L2 i2(t) dt R2 i2(t) + L2 dt – M dt – M di2(t) dt di1(t) dt Margarida Jacome - UT Austin EE411 M (1) L1 i2 Leq =0 =0 18 L2 i2 L1 di1(t) dt L2 – + M (b) d(i2(t)) vab = L1 d (i1(t) – i2(t)) + M dt dt 19 vab = Leq – KVL: =0 di2 dt M i1 (2) di2(t) dt =0 + R2 i1 di1(t) di1(t) +M Give Leq (a) -vs(t) + R1 i1(t) + L1 dt Problem 4 M L1 dt Time TimeDomain Domain Example 3 i1(t) di2(t) +M Margarida Jacome - UT Austin EE411 17 Time TimeDomain Domain vs(t) +– di1(t) R2 dt When the reference direction for a current enters the dotted terminal of a coil, the reference Margarida Jacome - UT Austin polarity of the voltage that it induces in the otherEE411 coil is positive at its dotted terminal. R1 di2(t) R2 i2(t) + L2 i2(t) L2 di2 dt – L1 i2 – i 1 i2 L2 M d(i2 – i1) dt + (1) di (t) d(i2(t)) 0 = L1 d (i2(t) – i1(t)) – M – M d (i2(t) – i1(t)) + L2 2 Margarida Jacome - UT dt Austin dt dt dt EE411 (2) 20 Time TimeDomain Domain Time TimeDomain Domain Problem 4 (cont) Problem 4 (cont) d(i2(t)) vab = L1 d (i1(t) – i2(t)) + M dt dt d(i2(t)) 0 = L1 d (i2(t) – i1(t)) – M dt dt vab = L1 di (t) – M d (i2(t) – i1(t)) + L2 2 dt dt di1(t) dt 0 = (M – L1) + (M – L1) di1(t) dt di2(t) (1) dt di1(t) solving for di2(t) + (L1 + L2 – 2M) dt … dt (2) rewrite: vab = L1 di1(t) dt di1(t) 0 = (M – L1) di2(t) + (M – L1) dt dt + (L1 + L2 – 2M) di2(t) di1(t) dt dt vab (M – L1) 0 (L1 + L2 – 2M) = L1 (L1 + L2 – 2M) Margarida Jacome - UT Austin EE411 21 Time TimeDomain Domain dt = = = vab i1 (L1 + L2 – 2M) 2+ L1 2 L1 L2 – 2M L1 – M + 2M L1 – L1 (L1 + L2 – 2M) i1 2 L1 vab Leq (a) L2 i2 Leq vab = Leq di1(t) dt (L1 + L2 – 2M) Margarida Jacome - UT Austin EE411 23 di1(t) dt dt L1 i2 L1 i2 L1 i2 L2 + L2 – (2) vab L1 L2 – M 2 M (1) di2 M i1 i1 (b) vab = Leq – Give Leq M L1(L1 + L2 – 2M) – (M – L1)2 L1 L2 – M 2 Leq = Problem 5 (a) (L1 + L2 – 2M) 22 Time TimeDomain Domain Problem 4 (cont) di1(t) vab L1(L1 + L2 – 2M) – (M – L1)2 (M – L1) (M – L1) Margarida Jacome - UT Austin EE411 (L1 + L2 – 2M) = M (b) + di2 dt + i2 – i 1 M L2 d(i2 – i1) dt – KVL: d(i2(t)) vab = L1 d (i1(t) – i2(t)) – M dt dt (1) di (t) d(i2(t)) 0 = L1 d (i2(t) – i1(t)) + M + M d (i2(t) – i1(t)) + L2 2 Margarida Jacome - UT dt Austin dt dt dt EE411 (2) 24 Time TimeDomain Domain Time TimeDomain Domain Problem 5 (cont) d(i2(t)) vab = L1 d (i1(t) – i2(t)) – M dt dt d(i2(t)) 0 = L1 d (i2(t) – i1(t)) + M dt dt Problem 5 (cont) (1) di1(t) vab = L1 di (t) + M d (i2(t) – i1(t)) + L2 2 dt dt (2) di1(t) 0 = -(M + L1) di2(t) – (M + L1) dt dt (1) dt solving for + (L1 + L2 + 2M) di2(t) di1(t) … dt (2) dt rewrite: vab = L1 di1(t) dt 0 = -(M + L1) di2(t) – (M + L1) di1(t) dt dt + (L1 + L2 + 2M) di2(t) di1(t) dt dt vab -(M + L1) 0 (L1 + L2 + 2M) = = L1 Margarida Jacome - UT Austin EE411 (L1 + L2 + 2M) Margarida Jacome - UT Austin EE411 25 26 Time TimeDomain Domain Time TimeDomain Domain Problem 5 (cont) di1(t) dt = = = vab (L1 + L2 + 2M) L12 + L1 L2 + 2M L1 – M 2 – 2M L1 – L12 (L1 + L2 + 2M) L1 L2 + M 2 (L1 + L2 – 2M) 4H M L1(L1 + L2 + 2M) – (M + L1)2 L1 L2 – M 2 Leq = Problem 6 (a) (L1 + L2 + 2M) i1 i1 L1 vab Leq 5# L2 i2 ig(t) (b) ig vab for the configuration of Problem 4, sign was a minus. Margarida Jacome - UT Austin EE411 vab L1(L1 + L2 + 2M) – (M + L1)2 -(M + L1) -(M + L1) (L1 + L2 + 2M) vab = Leq di1(t) dt 4 di1(t) dt 8H Write the set of mesh-current equations that describe the circuit in terms of i1 and i2. 20# i1 16H i2 60# voltage drop caused by mutual inductance + 20 (i1(t) – i2(t)) + 8 d (ig(t) – i2(t)) + 5 (i (t) – i (t)) = 0 1 g dt 20 (i2(t) – i1(t)) + 60 i2(t) + 16 d (i2(t) – ig(t)) – 8 di1(t) = 0 dt dt 27 Margarida Jacome - UT Austin EE411 voltage drop caused by mutual inductance 28 Time TimeDomain Domain Problem 7 Give vx (t) in terms of i1(t). i1(t) + M ' v1(t) = L1 L2 v2(t) _ _ di1(t) = -L2 di1(t) di1(t) + M dt dt + L2 di1(t) + M – M d(-i1(t)) – M dt d(i1(t)) dt dt di1(t) – M d(i1(t)) dt di2(t) v2(t) = L2 _ ' vx(t) = L1 4H KCL: i1(t) = -i2(t) + v1(t) L1 vx(t) KVL: vx(t) = v1(t) – v2(t) i2(t) + Q1 dt ig(t) 8H 20# i1 16H ig 60# i2 dt d(i1(t)) dt dt di1(t) vx(t) = (L1 + L2 + 2M) 5# Write the set of mesh-current equations that describe the circuit in terms of i1 and i2. Margarida Jacome - UT Austin EE411 Margarida Jacome - UT Austin EE411 29 dt Time TimeDomain Domain Time TimeDomain Domain Power Calculation i1(t) + v1(t) _ L1 Energy Calculation i2(t) M L2 i1(t) di1(t) dt + + + v1(t) v2(t) i1(t) + M but : _ _ p = L1 di2(t) dt di2(t) dt p = L1 di1(t) dt i2(t) M v2(t) p = v1(t) i1(t) + v2(t) i2(t) = L1 i1(t) + L2 i1(t) + L2 i1(t) + di2(t) di1(t) dt dt i2(t) + M di1(t) dt i2(t) # i2(t) = d (i1(t)i2(t)) dt EE411 L1 di1(t) dt L2 i1(t) + L2 _ di2(t) dt i2(t) + M d (i1(t)i2(t)) dt t p dt’ = (1/2) L1 i12(t) + (1/2) L2 i22(t) + M i1(t)i2(t) 0 w(t) = (1/2) L1 i12(t) + (1/2) L2 i22(t) + M i1(t)i2(t) di2(t) i2(t) + M d (i1(t)i2(t)) Margarida Jacome - UT Austin dt dt 30 instantaneous energy stored in the two coils 31 Margarida Jacome - UT Austin EE411 32 Time TimeDomain Domain Energy Calculation (cont) i1(t) Mutual Inductance in the Frequency Domain i1(t) i2(t) M + + + v1(t) _ p = L1 L1 di1(t) dt L2 v1(t) = L1 di2(t) dt i2(t) – M d (i1(t)i2(t)) dt dt di2(t) v2(t) = L2 dt I1 w(t) = (1/2) L1 i12(t) + (1/2) L2 i22(t) – M i1(t)i2(t) j&M + M v1(t) = L1 + M dt d(i1(t)) _ I1 I2 j&L2 33 ig(t) 10# 2mH 10# 70"0o vg(t) = 70cos 5000t V. vg(t) +– + – frequency domain KVL: & = 5000 rad/s Ig L1 = 2mH $ j&L1 = j(5000)(2%10-3) = j10# L2 = 8mH $ j&L2 = j(5000)(8%10-3) M = 2mH $ j&M = j(5000)(2%10-3) = j40# = j10# 70"0o + – Margarida Jacome - UT Austin EE411 dt dt j&M j&L1 _ _ I2 j&L2 V2 _ V1 = j& L1 I1 – j& M I2 Margarida Jacome - UT V Austin 2= EE411 10# j10# IL j10# 30# j40# 35 j10# Ig j& L2 I2 – j& M I1 34 & = 5000 rad/s IL j40# j10# 30# 8mH – M dt d(i1(t)) Problem 8 (cont) (a) Find the steady-state expressions for the currents ig(t) and iL(t) when iL(t) 2mH dt di2(t) d(i1(t)) + V1 V2 V2 = j& L2 I2 + j& M I1 Problem 8 – M + V1 = j& L1 I1 + j& M I2 Margarida Jacome - UT Austin EE411 _ di1(t) v2(t) = L2 dt + j&L1 L2 v2(t) _ d(i1(t)) + V1 + v1(t) L1 _ di1(t) i2(t) M + L2 v2(t) _ _ i1(t) + v1(t) L1 v2(t) i1(t) + L2 i2(t) M 30# ig(t) = 5cos (5000t – 37.87o) A ! iL(t) = cos (5000t – 180o) A 70 = (10 + j10) Ig + j10 IL Ig = 4 – j3 = 5"-37.87o A 0 = j10 Ig +(30 + j40) IL IL = -1 A = 1"-180o 70 j10 0 30 + j40 Ig = = 4 – j3 A 10 + j10 j10 j10 30 + j40 10 + j10 70 j10 0 10 + j10 j10 j10 30 + j40 IL = Margarida Jacome - UT Austin EE411 = -1 A 36 Problem 8 (cont) Time Domain: ig(t) 10# vg(t) +– Problem 8 (cont) (b) Find the coefficient of coupling iL(t) 2mH 2mH k= M = L1L2 2 = 0.5 ig(t) 10# vg(t) +– 16 2mH (c) Find the energy stored in the magnetically coupled coils at t = 100)µs and t = 200)µs iL(t) 2mH 8mH 30# 30# 8mH t = 100)µs: $ 5000t =(5000)(100)µ)(10-6) = 0.5) = 90o iL(100)µs) = cos (-90o) = 0 o iL(t) = cos (5000t – 180 ) A ig(100)µs) = 5cos (52.13o) = 3A o ig(t) = 5cos (5000t – 37.87 ) A w(100)µs) = (1/2)(2%10-3)(32) + 0 + 0 = 9mJ w(t) = (1/2) L1 ig2(t) + (1/2) L2 iL2(t) + M ig(t)iL(t) (see slide 32 -- note polarity of current i2(t)) Margarida Jacome - UT Austin EE411 37 Problem 8 (cont) ig(t) 10# vg(t) +– 2mH 8mH 30# t = 200)µs: $ 5000t =(5000)(200)µ)(10-6) = ) = 180o iL(200)µs) = cos (0o) = 1A o iL(t) = cos (5000t – 180 ) A ig(200)µs) = 5cos (143.13o) = -4A o ig(t) = 5cos (5000t – 37.87 ) A ! w(200)µs) = (1/2)(2%10-3)(42) + (1/2)(8%10-3)(12) + (2%10-3)(-4%1) = 12mJ w(t) = (1/2) L1 ig2(t) + (1/2) L2 iL2(t) + M ig(t)iL(t) Margarida Jacome - UT Austin EE411 38 Outline - Part 2 iL(t) 2mH Margarida Jacome - UT Austin EE411 39 ! Series, Parallel, and !-to-Y Simplifications ! Source Transformations and Thévenin-Norton Equivalent Circuits ! Node-Voltage Method and Mesh-Current Methods ! Phasor Diagrams ! Mutual Inductance ! The Transformer ! The Ideal Transformer contMargarida Jacome - UT Austin EE411 40 ! The Transformer Linear Transformer Circuit ! Device based on magnetic coupling, used in both communication and power circuits ! A simple transformer is formed when two coils are wound on a single core to ensure magnetic coupling # Communications: used to match impedances and eliminate dc signals from portions of the system (a) ZS " Linear transformer +s V – # Power circuits: used to establish voltage levels that facilitate transmission, distribution and consumption of electrical power Margarida Jacome - UT Austin EE411 Vs V +s – R1 I1 (b) j&L1 j&L2 I2 (a) Load impedance R1 = resistance of primary winding R2 = resistance of secondary winding L1 = self-inductance of primary winding L2 = self-inductance of secondary winding M = mutual inductance Margarida Jacome - UT Austin EE411 Analysis of the circuit aims at determining: I1 = primary current of the transformer I2 = secondary current of the transformer Zab = impedance seen looking into the transformer from 43 terminals a,b 42 Primary and Secondary Currents ZS ZL secondary winding of the transformer (connected to the load) Margarida Jacome - UT Austin EE411 I1 (b) KVL: R1 R2 j&M I1 = + s Vs V – (d) Zab (d) 41 R2 (c) j&M ZL j&L2 primary winding of the transformer (connected to the source) Parameters of Linear Transformer Circuit (a) j&M (b) ! Understanding of the sinusoidal steady-state behavior of the transformer is required in the analysis of communication and power circuits Frequency domain circuit model for a transformer used to connect a load to source R2 (c) j&L1 " Ideal transformer ZS R1 j&L1 Z11 j&L2 I2 ZL self impedance of the mesh containing the primary winding I2 = Z22 Z11 Z22 + &2M2 j&M Z11 Z22 + &2M2 Vs Vs Vs = (ZS + R1 + j&L1) I1 – j&M I2 0 = – j&M I1 + (j&L2 + R2 + ZL) I2 Z22 Vs = Z11 I1 – j&M I2 0 = – j&M I1 + Z22 I2 # I2 = j&M 2 2 Vs = Z11 I1 + & M I1 Z22 I1 Z22 Jacome - UT Austin Margarida Z22: self impedance of the mesh 44 EE411 containing the secondary winding Zab: Impedance “seen” by the Source Zint (a) ZS R1 R2 j&M (a) Z22 I1 = I1 + s Vs V – Reflected Impedance Zr j&L1 (b) Zab ? Zint = Z11 Z22 + &2M2 ZL I2 j&L2 Vs I1 Z11 Z22 + &2M2 = Z22 = Z11 + Vs I1 + s Vs V – Zab= R1 + j&L1 + &2M 2 j&L2 + R2 + ZL Reflected impedance is due to the existence of mutual inductance. If the two coils are decoupled, M is zero, and thus Zr is zero. Margarida Jacome - UT Austin EE411 45 j&L1 j&L2 ZL &2M 2 j&L2 + R2 + ZL (b) ZS + s Vs V – R1 R2 j&M j&L1 ZL j&L2 (b) # Load impedance: ZL = RL + jXL Reactance XL is positive if the load is inductive and negative if the load is capacitive 2 2 # Reflected impedance: Zr = & M [R2 + RL – j (&L2 + XL)] |Z22|2 # Writing reflected impedance in rectangular form: &2M 2 Zr = R2 + RL + j (&L2 + XL) 46 Reflected Impedance Zr (a) Zr = + s Vs V – ZL Impedance of the second coil & load impedance transmitted (or reflected) to the primary side of the transformer. Zab &2M2 Z22 R2 j&M I2 &2M2 Z22 Reflected impedance Zr Reflected Impedance Zr (cont) R1 j&L2 Zab = R1 + j&L1 + ! Margarida Jacome - UT Austin EE411 (a) j&L1 Z22 &2M2 – Z &2M2 S = R1 + j&L1 + Z22 Z22 Z11 = ZS + R1 + j&L1 ZS R2 j&M (b) &2M2 Zr = Zab= Zint – ZS = Z11 + R1 ZS = &2M2 [R2 + RL – j (&L2 + XL)] (R2 + RL )2 + (&L2 + XL)2 Margarida Jacome - UT Austin EE411 = &2M 2 |Z22|2 scaling factor [R2 + RL – j (&L2 + XL)] magnitude of self impedance of47the mesh containing the secondary winding sign of the reactive component (&L2 + XL) is reversed. Thus, Thus,the thelinear lineartransformer transformerreflects reflectsthe theconjugate conjugateofofthe theself-impedance self-impedanceofofthe thesecondary secondary circuit scaled by some Margarida Jacome - UT Austinfactor. circuit(Z (Z22*)*)into intothe theprimary primarywinding winding scaled by some factor. 48 22 EE411 Thevenin Equivalent (a) ZS R1 R2 j&M + s Vs V – j&L1 Problem 9 (a) ZTh = Zab = R1 + j&L1 + j(5000)(16%10-3) = j80# j&L2 = j(5000)(64%10-3) = j320# -j/(&CL) = -j160# j&M = j(160k)# &2M2 Z22 &2M2 Zab = R1 + j&L1 + = 40 + j80 + Z22 (160k)2 120 + j320 – j160 = 40 + j80 + 76.8k2 – j102.4k2 = 40 + 76.8k2 = 40+60 = 100 # (b) Purely resistive means: 102.4k2 = 80 $ k = 0.88 Margarida Jacome - UT Austin EE411 Margarida Jacome - UT Austin EE411 49 Thevenin Equivalent w.r.t. to Terminals c,d ZS R1 + s Vs V – R2 j&M j&L1 R1 (c) ZS I1 ZL j&L2 R2 j&M + s Vs V – I1 R2 j&M j&L1 RTh = R2 + j&L2 + Z’r VTh = j&M I1 = j&M (d) (c) j&L2 (d) (c) j&L2 ! 50 RTh j&L1 (d) R1 Zab= 100 # Thevenin Equivalent w.r.t. to Terminals c,d VTh = ? ZS L1 L2 = k (16)(64)10-6 = k32mH Moving to frequency domain: Zr ZTh + s Vs V – M =k (b) j&L1 = (a) 1.25µF 64mH (b) ZS The value of k is adjusted until Zab is purely resistive when & = 5k rad/s. Find Zab. 120# 16mH ZL j&L2 k 40# Vs ZS + R1 + j&L1 Zr = (VOC $ I2 = 0) Margarida Jacome - UT Austin EE411 where Z’r is the impedance reflected from the secondary winding when the voltage source is substituted by a short-circuit. 51 &2M 2 j&L2 + R2 + ZL $ Z’r= &2M 2 j&L1 + R1 + ZS Margarida Jacome - UT Austin EE411 (‘symmetry’) 52
© Copyright 2026 Paperzz