Quaternary International 99-100 (2003) 29–43 Ice-rafted detritus evidence from 40Ar/39Ar ages of individual hornblende grains for evolution of the eastern margin of the Laurentide ice sheet since 43 14C ky Sidney R. Hemminga,*, Irena Hajdasb a Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Rt. 9W, Palisades, NY 10964, USA b AMS 14C Lab, ETH Hoenggerberg, HPK H27, CH-8093 Zurich, Switzerland Abstract During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.41N, 45.251W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 551N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely. r 2002 Elsevier Science Ltd and INQUA. All rights reserved. 1. Introduction The occurrence of ice rafted detritus (IRD) in marine sediments outlines the former presence of ice sheets that extended to the edges of the continental shelves, and the occurrence of both sea ice and iceberg IRD indicates the geographic extent of drifting ice (Ruddiman, 1977; Smythe et al., 1985). The distribution of IRD in the North Atlantic has been used to infer the major iceberg sources and the general pattern of surface circulation during the glacial cycles of the Pleistocene. It also has confirmed a similar pattern for glacial and interglacial times with a southward shift in the locus of melting related to colder surface water in glacial times (Ruddiman, 1977; Grousset et al., 1993; Dowdeswell et al., 1995; Robinson et al., 1995). Ruddiman (1977) showed that the flux of IRD during the last glacial cycle is correlated to the extent of ice sheets in the Northern *Corresponding author. Tel.: +1-845-365-8417; fax: +1-845-3658155. E-mail addresses: [email protected] (S.R. Hemming), [email protected] (I. Hajdas). Hemisphere. In addition to the depositional pattern, the composition of IRD constrains the origin of the icebergs. Accordingly, within the limits of grain size uncertainties in separating iceberg from sea ice rafting, IRD studies lend themselves to studying the evolutions of ice sheets, but only as the glaciers extended into the marine realm and began to release icebergs. In order to eventually document the relative IRD contribution of the different Northern Hemisphere ice sheets, it is necessary to constrain the compositions and relative timing along different ice sheet margins such as the Arctic, Labrador and Atlantic sectors of the Laurentide ice sheet. However, it is important to state up front that an increase of IRD from a particular source, by itself, does not require or even suggest a collapse of a particular ice sheet. The only IRD events where the documented evidence is strong for catastrophic collapse of an ice sheet are the Heinrich layers, particularly H1, H2, H4 and H5. This evidence is combined observations of greatly increased sediment flux (Francois and Bacon, 1994; Thomson et al., 1995; McManus et al., 1998; Veiga-Pires and Hillaire-Marcel, 1999), and distinctive provenance (e.g., Jantschik and 1040-6182/02/$ - see front matter r 2002 Elsevier Science Ltd and INQUA. All rights reserved. PII: S 1 0 4 0 - 6 1 8 2 ( 0 2 ) 0 0 1 1 0 - 6 30 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Fig. 1. Maps of the North Atlantic with generalized basement geology (modified from Hemming et al., 1998). (A) flux of IRD to the North Atlantic (mg/cm2/kyr) from 40 to 25 kyr (from Ruddiman, 1977). (B) flux of IRD to the North Atlantic from 25 to 13 kry (from Ruddiman, 1977). Huon, 1992; Bond et al., 1992; Grousset et al., 1993; Gwiazda et al., 1996a, b; Hemming et al., 1998). The many other documented ice rafting events are also important for understanding ocean–ice–atmosphere interactions, but they do not appear to represent major flux changes. In this study we present data at approximately 1 kyr resolution from 14 to 34 14C kyr and at approximately 4 kyr resolution from 6 to 14 and from 34 to 43 14C kyr in northwest Atlantic core V23-14. Although data are included for Heinrich layers H1–H5, the goal of this work is to understand the general evolution of IRD compositions, and by extension the evolution of ice caps on Laurentia, during Marine Isotope Stages (MIS) 3, 2 and 1. Due to the location of V23-14 (Fig. 1), we expect that the dominant IRD sources during glacial times will be the Laurentian margin; accordingly, we take variations in the provenance to represent variations in the extension of the ice caps into the marine environment such as proposed by Hemming et al. (2000b). 2. Samples and methods Core V23-14 (43.41N, 45.251W, 3177 m) was sampled at 2 cm intervals from 4 to 142 cm (total core length is S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Table 1 (continued) Table 1 Counting results from V23-14 Depth Weight F>63 split #forams/g %pachy #lithics/g %IRD (cm) (g) mm 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 1.428 1.426 1.373 1.409 1.485 1.811 1.249 2.507 2.724 2.115 2.025 2.140 2.336 2.260 2.063 2.648 2.589 2.233 2.350 2.810 3.034 2.660 2.642 1.868 2.081 1.926 2.426 2.834 2.170 0.45 0.27 0.33 0.25 0.23 0.24 0.25 0.46 0.50 0.39 0.34 0.32 0.39 0.37 0.44 0.40 0.35 0.30 0.25 0.27 0.26 0.29 0.22 0.24 0.21 0.22 0.31 0.29 0.21 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 2.493 1.922 3.062 2.865 2.070 2.261 2.711 1.783 1.783 1.670 2.155 3.373 3.373 2.298 2.511 2.274 2.581 2.137 2.263 1.516 2.355 1.949 1.924 2.276 1.706 2.294 1.778 2.702 1.905 2.299 2.408 0.20 0.34 0.38 0.30 0.32 0.38 0.62 0.50 0.49 0.44 0.44 0.28 0.21 0.29 0.40 0.45 0.52 0.53 0.48 0.30 0.31 0.24 0.25 0.19 0.24 0.23 0.25 0.25 0.21 0.22 0.21 31 16 4 8 4 4 4 7352 28 1282 91 5 152 28 5547 1548 2045 2314 1519 2238 43 98 61 96 100 94 16 16 16 16 16 16 8 16 16 8 8 8 4780 6413 8539 6986 4082 5131 2248 3730 90 73 56 61 76 68 55 69 53 37 36 3236 3389 4757 3967 3933 3672 3183 5476 5360 4067 5294 2884 40 35 36 36 49 42 59 59 58 82 83 97 8 8 4 8 8 8 8 32 75 29 51 12 4 10 2515 2529 1071 1803 1511 1836 2723 99 97 97 97 99 100 100 8 8 8 8 8 8 8 8 32 32 64 64 64 32 8 32 64 32 64 64 64 16 16 16 16 8 8 16 8 32 8 16 8 18 1545 99 45 87 193 3 0 2674 16,525 14,718 13,389 14,718 12,978 3824 1705 6766 18,327 11,569 19,246 16,322 15,638 1034 1135 213 166 130 28 28 50 118 38 7 73 1075 566 1821 2092 2674 3053 7495 5133 7502 3718 7216 5588 3925 3522 2625 2308 4985 4432 5627 4654 4504 2725 4748 2913 2977 3020 3434 3422 2150 2644 2532 96 87 90 100 100 53 31 26 36 20 36 59 70 34 13 17 21 21 26 82 80 93 97 96 99 99 99 97 98 100 97 871 1114 89 14 78 39 41 64 52 45 47 73 68 46 52 55 57 55 Depth Weight F>63 split #forams/g %pachy #lithics/g %IRD (cm) (g) mm 124 126 128 130 132 134 136 138 140 142 2.884 3.378 3.387 2.947 4.018 3.580 3.522 5.201 3.862 3.119 0.23 0.27 0.54 0.60 0.28 0.24 0.23 0.21 0.26 0.27 16 16 32 64 32 32 32 32 32 8 28 28 4015 12,401 3233 2020 136 117 0 113 66 60 28 38 2607 4651 5981 5017 3369 2878 3861 2966 3314 1755 99 99 60 29 51 59 97 96 100 94 813 cm). Samples were dried, weighed and disaggregated and then wet-sieved at 63 mm. The weight of the >63 mm fraction was recorded. Samples were then sieved at 150 mm, and the 63–150 mm fraction saved for future work. The >150 mm fraction was split to save an archive for counting (fractions counted are reported in Table 1), and hornblende grains for 40Ar/39Ar dating and foraminifera for 14C dating were picked from the working fraction. Counts were made of the total foraminifera content, % Neoglobigerina pachyderma (s.) where possible, and total IRD from the >150 mm fraction. 14C analyses were made at the AMS lab at ETH Zurich. An early batch of five samples was measured in 1992 for W. S. Broecker. Samples to confirm and enhance the chronology were measured in 2000 and 2001. An effort was made to select at least 15 hornblende grains per sample; however, in some cases this was not possible, and all the grains were picked and analyzed. Hornblende grains were co-irradiated with hornblende monitor standard Mmhb (age=525 Myr, Samson and Alexander, 1987) in the Cd-lined, in core facility (CLICIT) at the Oregon State reactor. Analyses were made in the Ar geochronology laboratory at LamontDoherty Earth Observatory. Individual grains were fused with a CO2 laser, and ages were calculated from Ar isotope ratios corrected for mass discrimination, interfering nuclear reactions, procedural blanks and atmospheric Ar contamination. 3. Results Data are presented in Tables 1–3 and Figs. 2–6. Heinrich layers can be identified in this core by visual inspection of the >150 mm fraction. Within the Heinrich layers, foraminifera are absent and detrital carbonate percentages are high. The locations of the Heinrich layers can thus be easily spotted based on the low number of foraminifera per gram (Fig. 2). It can also be seen that the Heinrich layers in this core are character- S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 32 Table 2 14 C ages and H-layer identifications from core V23-14 ETH 9894 22,560 22,561 9586 22,562 22,563 22,564 9582 24,638 24,639 9581 9580 ST 3218 10,812 10,813 3036 10,814 10,815 10,816 3032 11,896 11,897 3031 3030 H-1 H-2 H-3 H-4 H-5 Depth (cm) 4 18 24 30 72 74 76 85 96 128 130 170 14 Fossil Inflata N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy N. Pachy C agea (yr) b (left) (left) (left) (left) (left) (left) (left) (left) (left) (left) (left) 6175 14,580c 16,040c 17,360b 23,710c 23,620c 24,860c 28,010b 30,730c 36,670c 38,660b >37,360b Interval (cm) 14 10–17 40–64 B85–87e 106–126e 136–ende 14,000 20,500 27,000 35,000 43,000 71s 65 150 120 130 190 210 210 300 260 430 760 420 d13C 8.9 0.8 0.2 0.7 0.4 0.8 2.1 5.4 1.5 0.7 1.4 6.4 71s 1.1 1.2 1.2 1.4 1.2 1.2 1.2 1.4 1.1 1.1 2.4 1.8 C aged (yr) Radiocarbon measurements made at ETH, Zurich. . Not corrected for B400 year reservoir effect. Samples measured in 1992. Blank age B38000. c Samples measured in 2000 and 2001. Blank age B45,000. d Heinrich layer 14C age estimates are based on data from Bond et al. (1992, 1993) and Voelker et al. (1998, 2000) e Between 66 and 76 cm, there is little detrital carbonate. At 78 cm there is abundant detrital carbonate, but also abundant foraminifera. From 78 to 142 cm (the bottom of the studied interval), there is detrital carbonate. H-3, H-4, and H-5 are picked where the abundance of foraminifera is very low. a b ized by a low fraction of >63 mm material relative to the bulk sediment, and by a relatively low number of lithic grains per gram (Fig. 2). While the numbers of foraminifera, and thus % IRD are consistent with previous identifications of the Heinrich layers, the numbers of lithic grains per gram are low in core V2314 compared to those reported at other sites (e.g., V2882, McManus et al., 1998). Results of 14C analyses are presented in Table 2, and stratigraphic information and an age model are presented in Figs. 2 and 3, respectively. Core V23-14 has a low sedimentation rate outside of the Heinrich layers, particularly above H1 and below H4, B0.5 cm/kyr. Between Heinrich layers within the H1–H4 interval the sedimentation rate is approximately 2 cm/kyr. Heinrich layers H1, H2, and H4, interpreted to have been deposited almost instantaneously, have thicknesses of 7, 24, and 20 cm, respectively (Table 1, Figs. 2 and 3). One thousand and thirty-eight individual hornblende grains from 57 samples, covering the interval of approximately 6–43 14C kyr, were analyzed for this study (Table 3, Fig. 4). Outside of Heinrich layer samples, there are only four samples where fewer than 13 grains were analyzed. Three of these are the 3 samples above H1, and the other is at 40 cm, just above H2. Hornblende age populations are presented on histogram plots for specific intervals within the core: (1) above H1 (Fig. 5a), (2) H1 (Fig. 5b), (3) between H1 and H2 (Fig. 5c), (4) H2 (Fig. 5d), (5) between H2 and H3 (Fig. 5e), (6) H3 (Fig. 5f), (7) between H3 and H4 (Fig. 5g), (8) H4 (Fig. 5h), (9) between H4 and H5 (Fig. 5i). The histogram age bin intervals are not even, but rather are divided based on known major geological provinces around the North Atlantic (Fig. 1). It is apparent from these plots that most of the intervals have a dominant Paleoproterozoic (1650–1900 Myr) age population. The two exceptions are the intervals between H3 and H2 and between H2 and H1. In these two intervals, there is a substantial increase in Paleozoic (250–600 Myr) and Mesoproterozoic (Grenville, 800– 1100 Myr) populations. 4. Discussion Core V23-14 is located within the thickest part of Ruddiman’s (1977) IRD belt, and directly downstream of any Gulf of St. Lawrence region contributions (Fig. 1). We suggest that the results presented here provide constrains on the evolution of the Laurentide ice sheet or smaller satellite ice sheets (e.g., Stea et al., 1998) and their contributions of icebergs to the northwest Atlantic margin. In Fig. 6, the individual hornblende data are binned according to the age brackets as in the histograms (Fig. 5) for individual sample depths between the Heinrich layers. Data from within the Heinrich layers are lumped into one interval with an assumed duration of 0.1 kyr. There is some disagreement S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Table 3 40 A/39Ar hornblende data from core V23-14 Depth (cm) 40 33 Table 3 (continued) 7 Age (14C ky BP) Ca/K % Ar* Age (Myr) 4 4 4 4 4 4 4 4 4 6 6 6 6 6 8 8 8 8 8 8 8 8 8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 8.5 8.5 8.5 8.5 8.5 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 23.3 7.6 6.1 7.4 28.4 32.1 19.7 9.9 7.4 18.0 14.2 11.1 5.0 7.4 6.3 6.3 12.0 6.8 10.1 13.7 12.4 10.1 19.9 97.2 99.8 99.2 99.6 99.1 98.8 97.8 99.6 99.5 100.1 99.7 99.4 98.7 99.4 99.7 99.8 30.8 99.7 100.0 97.4 96.0 99.0 97.4 1465 1755 1786 1763 1690 1670 1751 1900 2636 1643 2574 1834 2116 1879 1689 1719 81 1697 2635 1596 1650 1644 1725 5 5 8 8 16 12 28 8 13 10 8 7 7 8 4 4 5 6 13 23 32 12 14 10 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 16 16 16 16 16 16 18 18 18 18 18 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.1 14.7 14.7 14.7 14.7 14.7 22.2 7.6 33.6 35.6 10.4 21.4 5.6 6.6 7.6 13.2 25.2 13.7 21.4 9.2 37.2 4.0 9.5 6.9 21.3 10.3 6.2 7.6 14.3 9.2 12.5 6.9 35.1 7.4 15.7 8.2 14.6 7.7 25.2 7.9 18.1 6.5 8.0 99.6 99.4 99.5 88.1 97.7 99.0 99.7 93.9 100.2 99.3 93.1 95.9 93.3 98.7 95.2 97.8 100.0 99.8 98.9 65.1 99.4 97.7 82.7 98.2 99.4 99.2 78.3 97.6 99.1 97.9 98.4 97.4 98.1 96.6 98.7 99.7 99.6 1715 1857 2360 1992 1773 1773 2557 1711 1705 1755 1697 1740 2336 2815 1814 1524 1712 1703 1694 1786 1725 1652 2065 1697 2546 1734 1747 1709 2461 1706 1724 2530 1785 2053 1851 1653 2592 5 15 18 31 5 10 32 22 11 17 48 12 48 16 47 4 10 5 16 19 11 14 39 8 28 11 9 7 12 12 11 14 6 6 7 4 13 7 Age (14C ky BP) Ca/K %40Ar* 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 32.7 14.1 13.2 11.1 6.0 5.7 5.1 6.7 9.8 34.9 8.8 10.9 6.4 8.4 18.9 8.1 8.0 97.7 97.8 99.0 98.4 98.4 99.8 99.7 99.9 99.8 89.1 97.3 94.7 97.0 99.7 78.3 99.0 98.2 1687 1858 1739 1720 1211 1698 1716 2622 1707 1658 1658 1797 1549 1017 1735 2545 1397 12 11 9 7 3 4 6 7 7 21 5 8 6 7 9 14 11 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 12.1 9.4 26.6 10.9 23.7 3.6 7.2 6.1 24.5 34.9 28.8 8.6 13.3 9.5 32.1 13.4 27.8 6.9 34.6 10.8 6.2 7.8 9.6 9.2 15.2 8.1 8.0 23.9 4.8 9.3 6.1 10.2 13.6 13.8 11.7 12.0 8.3 19.5 8.6 6.5 9.4 12.7 12.2 1.6 98.7 99.4 98.7 99.5 97.5 93.9 99.4 99.3 97.7 92.4 97.0 99.4 98.8 99.2 95.3 97.6 99.4 98.9 99.0 98.3 98.5 91.9 95.2 99.0 98.6 99.0 95.2 98.9 69.0 99.6 97.5 99.0 91.0 99.9 97.8 99.1 99.7 98.5 98.3 98.0 94.9 95.5 88.2 5.3 2133 1952 1906 1774 1709 396 1963 1787 1724 1768 3260 1814 1748 1812 1970 2139 2393 2617 1837 1710 1738 2163 1177 2639 1745 1735 2555 1635 47 2537 2443 1752 851 1800 985 1821 2616 1776 2654 1730 1815 2007 1595 1048 4 5 6 6 9 2 9 8 16 15 38 6 8 14 29 25 28 18 8 8 7 10 8 11 8 6 8 16 2 13 79 10 11 12 17 19 21 33 33 19 80 64 68 212 Depth (cm) Age (Myr) S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 34 Table 3 (continued) Depth (cm) 22 22 22 22 22 22 22 22 24 24 24 24 24 24 24 24 24 24 24 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28 Table 3 (continued) Age (14C ky BP) Ca/K 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 1.3 5.9 5.2 6.2 2.0 2.6 5.8 7.2 7.6 11.6 9.3 31.7 18.0 6.7 7.6 5.6 7.4 16.9 7.6 10.3 6.3 16.5 1.6 8.2 2.2 5.7 7.5 11.7 6.1 8.5 6.7 24.0 6.3 7.0 6.9 8.5 8.9 10.7 10.2 20.9 31.7 8.1 31.3 5.8 5.6 3.7 9.1 5.9 6.2 1.8 34.0 5.0 7.4 10.5 6.9 5.3 7.5 35.7 13.9 7.2 8.2 25.3 %40Ar* 38.3 92.0 93.1 87.0 71.8 92.8 88.1 92.1 98.3 99.0 99.5 96.5 99.4 98.4 99.4 99.9 99.1 99.6 96.2 99.4 99.7 93.3 96.2 82.6 99.5 99.1 99.6 98.8 98.1 99.6 98.4 97.3 95.0 99.4 99.4 99.5 99.9 98.1 96.0 70.0 89.9 98.0 89.2 96.2 98.9 66.3 99.0 96.3 100.9 99.5 67.5 99.6 99.6 98.2 98.8 99.1 98.8 75.3 99.1 100.0 99.6 97.7 Age (Myr) 397 1772 933 897 640 1325 1022 1981 864 950 1446 1648 3296 1042 940 1738 1012 1724 936 1734 1687 470 1731 1077 1933 1023 1828 988 909 2655 950 1760 1136 2613 2316 1741 1818 1778 1818 965 422 2588 2099 1069 1818 549 1744 415 1019 1660 1050 1045 1044 1409 1796 1026 1702 759 1035 1762 1770 1842 7 23 53 27 29 10 40 31 48 3 7 7 22 19 6 6 10 9 22 6 9 9 4 10 11 34 8 12 10 12 26 7 19 8 13 16 12 13 19 15 63 11 18 57 10 16 60 17 6 15 17 23 8 11 10 12 7 10 9 22 13 16 50 Depth (cm) 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Age (14C ky BP) Ca/K 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 4.8 5.9 6.6 29.6 18.0 9.5 6.1 5.9 7.2 7.8 13.4 25.5 7.5 7.3 8.6 4.6 5.9 2.6 26.0 7.0 7.4 37.9 3.9 7.0 11.3 16.0 5.0 9.8 36.9 7.4 10.0 8.8 7.3 1.7 17.9 25.2 12.4 5.7 35.4 7.9 10.0 4.3 9.9 5.6 10.7 5.5 6.9 35.5 23.9 5.3 5.4 6.2 11.5 7.0 17.9 9.8 27.0 5.4 11.3 18.5 8.7 8.9 %40Ar* 97.4 97.5 93.9 96.6 103.4 49.2 95.3 97.8 98.8 98.5 98.9 56.8 99.4 93.9 95.2 99.6 98.4 41.9 89.9 97.6 98.6 97.7 23.9 92.5 98.9 98.9 99.8 99.2 95.9 99.2 97.6 95.4 99.5 101.2 98.3 97.7 99.5 98.8 80.2 97.9 99.6 98.4 98.9 96.5 92.8 99.4 98.4 92.1 97.6 98.0 96.2 99.4 99.7 97.1 60.2 99.5 95.1 99.6 98.8 99.0 98.3 98.2 Age (Myr) 1053 1734 1790 1844 61 418 1826 1031 2044 1041 994 1729 1852 995 1801 1771 1831 406 1859 1920 1793 1875 75 440 775 2394 1801 2584 1006 1875 1423 1778 1013 70 1695 1833 1965 1070 1871 1070 2671 1764 1750 815 798 1758 974 495 3005 1357 1699 2542 2120 971 27 973 1850 1796 1827 1737 1818 1814 7 13 37 55 41 33 43 46 10 12 10 21 90 13 13 39 12 15 37 79 20 13 80 13 3 6 34 10 17 15 11 12 30 8 10 21 28 25 10 98 18 13 12 12 9 7 16 13 6 23 9 15 25 13 11 5 9 36 16 15 18 17 20 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Table 3 (continued) Depth (cm) 32 32 32 32 32 32 32 32 32 32 32 32 32 32 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 36 36 36 36 36 36 36 36 36 36 36 36 35 Table 3 (continued) Age (14C ky BP) Ca/K 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 4.6 6.9 11.7 1.5 6.4 6.5 5.6 10.6 5.2 19.9 18.8 13.6 36.6 27.2 7.3 23.9 9.7 27.4 39.8 2.5 8.2 32.8 9.3 4.9 12.7 11.8 5.2 9.6 15.5 5.6 5.9 10.2 4.1 4.2 7.1 5.0 24.6 5.2 29.3 9.1 7.6 15.9 3.7 1.8 21.6 8.7 9.1 11.5 14.5 13.4 10.3 7.6 15.1 8.0 7.9 31.2 7.6 6.5 5.0 38.7 8.6 12.7 %40Ar* 97.7 98.1 98.7 95.7 99.7 94.6 98.0 99.1 99.6 89.8 87.1 96.5 92.3 88.7 99.8 97.8 98.9 98.8 99.2 100.0 99.9 70.7 99.8 99.6 90.9 99.3 85.1 98.9 99.7 98.8 99.7 98.8 99.5 87.6 99.2 99.9 97.3 99.0 98.2 99.6 99.7 97.2 97.7 68.9 95.8 99.7 99.1 99.1 98.7 99.2 94.7 99.8 99.4 99.7 98.8 98.3 99.5 99.9 99.4 96.6 100.4 99.7 Age (Myr) 1063 1842 1816 343 1841 404 1909 1958 1712 1756 964 1910 1706 500 1758 1858 2057 2866 2503 2359 1781 421 1722 1793 951 1737 1705 1841 2665 1923 1822 1835 1795 531 968 1664 1872 2226 1904 2548 1066 543 382 133 1797 1805 1767 1819 1833 1818 421 1916 2105 1781 1804 3029 1741 1761 1737 1507 1805 2638 7 11 21 36 3 17 4 20 21 10 19 14 22 43 12 10 11 14 40 29 35 18 22 17 13 18 17 15 18 11 12 13 24 13 5 7 10 26 11 33 23 7 6 3 5 25 17 14 16 20 14 4 11 21 14 15 26 14 13 13 24 16 22 Depth (cm) %40Ar* Age (Myr) 7 Age (14C ky BP) Ca/K 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 10.7 5.4 8.0 1.8 9.1 11.9 8.6 7.6 4.7 6.9 10.8 18.8 6.2 7.4 19.0 7.3 9.5 3.5 10.3 22.9 4.2 6.6 24.7 32.2 29.5 5.0 5.7 8.1 16.0 5.4 10.3 2.9 5.6 7.7 13.9 5.0 29.0 7.2 7.3 8.5 99.5 99.8 99.7 98.8 93.2 99.4 99.1 94.1 93.5 99.8 99.5 99.6 99.0 98.2 99.2 97.7 98.7 98.0 99.7 100.3 99.8 100.1 104.3 98.7 96.5 99.4 97.8 100.0 99.3 99.5 99.9 95.0 99.5 99.4 98.7 97.8 91.7 98.7 99.6 99.2 1820 1749 2721 1784 1746 1732 1747 1855 1776 1043 1817 1791 1739 1737 2537 1716 2128 551 1788 2036 1954 1776 1927 2540 1912 1900 1802 1834 1819 1792 2668 530 1648 1876 1738 1937 2401 1798 1777 1799 16 17 20 22 16 22 20 24 36 9 18 32 14 14 43 16 15 6 25 23 11 15 60 15 28 16 15 14 13 12 23 5 11 11 16 17 33 15 11 15 40 40 40 40 40 42 42 42 42 42 42 42 42 42 42 42 44 44 44 46 46 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 22.0 9.4 12.8 11.1 19.5 10.2 5.6 17.1 12.4 9.6 8.8 4.0 7.9 36.6 23.9 6.2 9.2 16.3 14.7 9.1 35.7 98.6 99.6 99.3 100.0 97.8 99.6 99.5 95.0 98.4 98.2 100.2 99.9 99.3 92.4 97.6 99.7 95.7 98.1 97.2 98.8 96.5 1406 2468 2651 2677 1953 1778 1909 2494 1607 1966 1756 1756 1846 1836 1778 1811 1784 1825 1828 2673 2042 19 14 21 22 48 15 18 29 16 26 19 16 15 57 33 17 19 23 25 16 20 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 36 Table 3 (continued) Depth (cm) 46 46 46 46 46 50 50 50 52 52 52 52 52 52 52 52 52 52 52 54 54 54 54 54 54 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 58 58 58 58 58 58 58 Table 3 (continued) Age (14C ky BP) Ca/K 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 12.1 8.2 12.4 10.6 16.9 17.8 13.5 4.9 37.5 27.2 25.9 2.4 5.9 12.1 16.3 12.7 8.0 21.5 7.8 2.1 7.0 4.4 8.3 10.3 11.3 11.5 19.2 10.1 13.4 10.3 8.7 9.6 11.0 3.2 7.9 8.4 11.9 7.9 6.7 9.8 5.7 1.6 10.7 11.2 19.1 9.6 4.9 11.1 6.8 21.0 14.6 6.1 20.3 24.8 6.9 7.7 20.5 6.9 7.0 9.3 12.4 5.9 %40Ar* 94.2 99.3 79.6 100.4 90.7 99.0 98.7 99.3 95.5 99.1 94.6 98.5 100.6 100.3 99.2 99.3 98.7 85.6 99.2 81.9 99.9 96.9 98.2 100.0 100.0 95.6 99.1 99.5 100.1 99.5 99.3 98.7 98.7 59.4 99.1 99.5 99.2 99.5 99.8 99.0 98.1 97.4 99.9 100.2 99.1 66.5 99.9 99.5 99.7 99.8 98.0 99.4 96.0 92.7 100.2 99.7 99.5 99.9 99.5 99.3 98.0 99.9 Age (Myr) 1733 2027 1719 1765 1757 1750 1904 2960 2542 1839 1349 2208 1858 1804 1738 1831 2583 1629 2607 658 1756 1723 2583 1778 1797 2009 1928 1826 2735 1816 1848 1848 1773 2647 1761 1705 1809 1761 2727 2745 1809 662 1794 1828 2402 532 1751 1760 1783 1752 1836 1733 1772 1729 1929 1761 1663 1920 1878 1776 1775 1790 7 21 23 67 25 22 18 47 16 15 18 20 41 24 21 26 15 19 74 15 7 15 24 37 22 30 15 17 17 27 16 16 24 12 253 18 12 20 15 13 34 32 10 24 18 16 10 14 19 17 47 35 18 32 24 37 12 13 14 11 14 46 17 Depth (cm) %40Ar* Age (Myr) 7 Age (14C ky BP) Ca/K 58 58 58 58 58 58 58 60 60 60 60 60 60 60 60 60 60 60 60 62 62 62 62 62 62 64 64 64 64 64 64 64 64 64 64 64 64 64 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 26.0 6.6 5.1 21.7 7.0 5.4 36.9 4.2 21.8 4.7 6.5 8.1 5.3 32.6 7.0 8.2 7.1 5.9 14.7 10.4 9.7 8.6 26.6 13.3 12.4 8.8 6.9 10.7 18.0 9.4 5.7 8.0 17.6 5.2 16.2 13.1 31.0 8.0 100.0 78.7 99.5 99.2 99.9 99.1 99.1 100.2 92.6 98.9 98.7 83.7 98.6 89.8 99.1 99.9 99.6 99.6 99.8 99.1 99.5 99.1 98.3 97.9 98.5 98.1 99.5 99.1 95.7 100.2 99.6 100.4 75.7 99.7 99.3 99.8 99.7 96.6 2797 1620 2483 1718 2635 1793 1986 2621 648 1744 1831 3135 1836 1891 2023 1838 1737 1752 2520 2505 1730 1756 2038 1773 1772 1775 1987 2791 567 1807 1743 1857 1731 1741 1800 2549 1812 1648 33 21 14 35 14 18 12 41 9 16 16 25 18 75 19 14 19 22 32 15 11 18 60 32 26 27 16 52 5 14 4 13 86 12 15 31 58 38 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 68 68 68 68 68 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.8 21.8 21.8 21.8 21.8 19.2 6.2 21.4 5.3 37.4 14.1 16.1 13.2 6.5 2.8 5.6 11.3 8.4 23.5 6.9 13.6 9.3 25.8 28.1 3.5 6.1 10.0 8.8 98.0 99.0 88.0 99.8 43.0 99.5 99.0 99.6 98.4 62.3 99.0 98.6 94.9 96.2 93.2 59.3 97.9 50.9 12.0 98.0 98.8 98.6 99.5 844 1777 427 1791 53 2158 1801 1856 2757 539 1770 518 1633 1979 1783 475 1753 385 390 596 986 1799 1810 12 15 23 16 13 13 19 19 10 4 6 6 15 30 57 43 13 19 62 4 7 13 12 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Table 3 (continued) Depth (cm) 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 70 70 70 70 70 70 70 70 70 70 70 70 70 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 74 74 74 74 74 74 74 74 74 74 74 74 74 74 76 76 76 76 37 Table 3 (continued) Age (14C ky BP) Ca/K 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 24.4 24.4 24.4 24.4 16.5 8.4 24.6 16.5 7.4 7.0 6.8 16.5 4.9 7.7 23.8 7.9 7.5 13.9 5.5 13.7 4.6 29.2 14.4 6.2 4.6 8.4 25.7 20.4 14.6 23.8 12.7 5.0 15.1 4.1 40.4 15.5 20.8 37.3 26.3 14.1 36.0 7.6 9.8 9.4 8.6 10.5 6.2 7.9 8.5 20.1 12.1 1.7 7.6 3.9 12.5 5.8 20.7 7.5 19.0 5.8 4.5 15.9 14.5 17.8 14.4 9.6 %40Ar* 92.0 99.9 97.2 97.7 83.5 100.0 96.0 13.8 99.2 99.3 98.7 99.4 99.6 86.3 96.6 74.8 99.7 68.4 92.1 98.9 89.2 99.0 73.2 90.5 85.9 87.2 99.3 97.2 97.6 98.0 99.9 95.7 99.0 76.4 97.8 95.2 92.6 99.4 99.1 100.1 96.2 99.6 99.3 98.4 60.4 41.6 58.1 99.2 98.9 -6.9 99.5 96.6 97.8 99.2 91.2 96.9 98.8 83.1 99.5 96.1 14.7 99.9 Age (Myr) 718 1066 1222 1694 1044 1780 980 333 1003 1755 1847 1753 1803 975 993 455 996 427 483 993 409 1737 447 983 1617 436 1818 1780 1677 984 1666 1721 1724 995 2227 1767 1509 950 2384 1700 1043 1841 1625 70 13 5 28 1725 1769 2 1850 1434 2716 1814 65 1804 2160 396 1761 1748 40 2607 7 5 11 12 76 55 39 13 283 9 23 20 10 10 93 10 6 8 16 5 8 4 22 11 28 30 24 22 14 5 5 44 14 17 47 21 27 34 7 13 19 28 22 15 11 1 1 4 30 11 2 14 10 25 12 11 12 14 14 8 8 16 10 Depth (cm) 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 80 80 80 80 80 80 80 80 80 80 80 80 80 80 Age (14C ky BP) Ca/K %40Ar* 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 25.6 29.4 7.0 23.7 16.2 11.3 6.0 16.5 11.2 8.6 20.7 13.1 7.8 11.3 15.4 18.0 8.7 10.0 10.8 9.7 4.6 4.8 24.8 12.0 12.4 8.0 10.5 18.4 9.9 34.4 9.3 37.5 7.0 5.2 34.7 8.2 9.0 7.3 6.7 13.3 9.2 7.9 6.2 8.5 6.5 8.1 12.4 15.6 10.2 12.0 6.0 6.1 9.7 36.1 9.6 10.0 8.8 27.1 9.9 4.9 6.7 8.5 8.9 99.7 99.7 98.0 98.9 98.8 99.8 95.2 96.9 99.9 99.3 81.5 99.6 90.5 98.0 98.7 99.7 97.6 99.4 99.0 99.1 99.6 98.7 99.4 98.6 97.6 98.3 98.7 93.0 98.3 98.9 94.5 99.2 99.6 98.5 99.9 99.6 99.9 99.9 98.0 98.4 99.3 99.4 98.7 99.3 98.6 99.1 99.0 96.9 99.4 99.8 99.7 97.2 93.9 99.8 99.3 99.2 97.6 99.2 99.8 99.7 98.4 98.9 Age (Myr) 4001 1722 1654 1892 1703 1710 1904 1656 1713 1782 65 1710 175 1885 1656 2586 1704 2670 1732 1667 1713 2575 1775 1726 2514 2570 1850 4027 1731 1814 4483 1729 1808 1703 1705 1767 1629 915 1813 1821 1687 1763 2590 1237 1799 1747 2562 1987 2645 1753 1635 1743 2647 1709 1746 1698 1782 2597 1657 1776 1847 1729 7 71 9 21 19 13 6 15 13 6 16 7 8 17 11 15 12 11 13 7 5 6 23 6 16 21 15 9 45 15 9 36 9 7 24 7 11 10 5 20 7 8 8 16 7 13 15 32 20 6 6 5 5 18 5 11 16 35 12 26 13 14 7 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 38 Table 3 (continued) Depth (cm) Table 3 (continued) %40Ar* Age (Myr) 7 Age (14C ky BP) Ca/K 80 80 80 80 80 80 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 25.6 25.6 25.6 25.6 25.6 25.6 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26.3 5.9 9.2 7.9 10.3 6.9 9.9 10.0 30.2 7.0 4.5 8.7 8.0 4.9 8.9 9.6 9.5 5.4 8.5 6.5 9.8 5.2 8.7 14.3 8.5 8.9 8.3 6.9 18.4 21.4 99.2 100.0 96.6 93.4 99.4 97.4 99.6 96.9 99.4 99.8 99.8 99.9 99.8 99.1 99.7 98.3 99.6 98.4 99.0 99.4 99.1 96.4 98.4 99.8 99.6 98.2 99.5 95.3 46.0 1945 1721 1684 1704 2592 1624 2674 1494 1652 1762 1017 2529 1729 2522 2618 2637 1794 1025 1555 1995 1703 2624 465 1807 1682 1816 2000 1640 1875 45 18 18 12 13 21 7 42 4 4 6 11 6 24 8 10 7 8 7 12 7 18 7 9 19 12 10 15 61 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 39.1 20.4 14.4 7.7 16.2 4.7 7.8 12.4 9.0 7.4 19.7 6.8 14.6 6.3 8.1 6.6 8.6 21.1 9.0 8.7 6.8 34.3 6.9 98.2 99.0 98.3 99.3 99.6 77.2 99.4 99.1 99.3 99.6 97.4 99.5 97.6 99.4 99.5 99.6 99.6 96.2 98.9 99.3 99.8 97.7 99.3 2276 1453 1752 1888 1765 1673 1778 2382 1712 1760 1816 1933 1765 1833 2697 1764 2601 1771 1754 2587 1722 1019 1763 8 16 9 7 14 6 9 13 6 6 7 9 11 6 24 8 20 36 12 11 7 16 18 86 86 86 86 86 86 86 86 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 8.3 5.7 17.1 18.1 23.3 18.5 19.9 19.0 99.9 99.2 93.0 96.9 90.9 99.0 99.5 99.5 1769 1874 1808 2142 1866 1886 1942 1910 6 6 8 44 44 8 18 23 7 Age (14C ky BP) Ca/K %40Ar* 86 86 86 86 86 86 86 86 86 86 86 86 86 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 17.2 18.2 7.8 8.3 5.4 13.6 4.1 7.0 16.6 12.2 24.3 19.2 17.9 98.6 99.0 99.4 99.7 99.7 98.7 99.0 98.7 99.2 99.7 98.5 98.7 98.8 1822 1856 1857 2259 1759 1841 1822 1770 3248 1717 2334 1941 1829 25 16 7 11 8 18 9 7 43 14 29 16 20 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 28.2 7.8 21.0 17.1 20.9 16.9 14.2 7.6 5.8 7.9 12.7 10.2 8.4 19.6 28.2 10.3 21.7 7.2 3.0 5.9 11.8 8.8 15.2 4.0 7.1 30.1 1.5 8.4 18.5 4.7 10.8 4.3 13.1 7.0 16.7 15.7 8.2 10.2 7.6 98.3 98.3 99.0 99.3 97.8 99.4 99.8 99.7 99.6 98.9 99.5 98.8 92.1 97.9 99.1 97.3 99.5 93.7 98.8 99.8 99.9 99.4 99.4 99.8 99.3 82.3 94.3 98.3 97.8 98.6 95.2 89.9 98.8 98.0 98.6 99.4 98.8 99.1 1812 1754 1763 1859 1679 1607 1706 1653 1703 1877 2593 1748 368 1795 2928 1717 1716 1288 1618 2498 2555 2543 1838 1696 2575 816 1684 1703 1606 1874 1887 1643 1772 1658 2883 2436 1742 1723 4 6 6 6 7 7 4 4 5 7 8 8 12 7 15 11 11 37 9 10 15 14 6 6 14 3 17 21 11 24 19 75 15 35 27 20 18 13 90 90 90 90 90 90 90 90 90 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 8.9 4.1 11.0 10.4 8.3 7.4 9.8 8.8 6.0 96.3 99.0 99.7 99.8 98.7 99.5 99.5 99.6 100.0 1790 1152 1769 2668 1727 1813 1788 1783 1750 6 3 6 8 8 7 6 10 10 Depth (cm) Age (Myr) S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Table 3 (continued) Depth (cm) 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 39 Table 3 (continued) Age (14C ky BP) Ca/K 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 28.9 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 8.0 8.9 1.1 7.7 4.9 8.0 9.0 6.6 17.8 12.0 10.0 7.3 26.3 9.9 6.0 14.4 7.5 3.6 25.0 12.2 6.9 21.8 20.9 15.8 6.7 13.4 8.7 8.1 8.9 13.2 8.6 7.3 7.1 11.5 15.5 7.0 6.6 18.4 6.5 6.0 6.7 20.4 4.9 39.0 8.2 10.1 12.6 7.0 7.2 37.5 4.8 7.9 6.1 10.1 6.9 12.8 9.3 8.2 8.9 4.5 12.6 16.8 %40Ar* 99.6 91.9 98.8 84.3 97.5 99.2 98.7 96.2 99.3 99.5 99.7 99.6 71.1 99.6 99.9 100.0 98.8 83.9 98.8 99.5 99.7 99.1 86.1 96.7 99.3 99.2 99.0 98.8 98.0 99.5 97.3 98.8 99.4 99.7 98.0 98.1 97.4 96.4 99.2 99.8 99.8 88.8 99.5 91.9 99.3 97.6 99.2 99.7 99.8 99.8 99.8 99.6 91.4 99.8 99.2 98.4 81.8 99.9 99.8 99.9 99.6 97.6 Age (Myr) 1784 1650 1716 1703 1661 2518 2018 1712 1703 2501 1776 1713 1431 1668 1708 1709 1719 376 1452 1897 1682 2546 1507 2724 1670 1638 1611 1758 1717 2677 1677 1690 1756 2576 1770 1722 1682 1661 1682 1694 1771 517 1575 1595 2540 1819 1718 1684 1650 2175 1689 1765 1783 1772 1758 1753 1560 1726 1722 1714 1682 1717 7 Depth (cm) Age (14C ky BP) Ca/K 9 12 5 9 12 10 16 8 18 12 12 13 60 18 12 47 21 26 5 7 6 21 61 24 6 10 8 15 12 21 15 13 20 16 18 15 8 26 12 10 11 16 12 46 12 28 5 4 5 11 8 6 11 5 6 9 8 5 8 6 8 12 94 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 100 100 100 100 100 30.1 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 32.1 32.1 32.1 32.1 32.1 30.2 8.1 17.5 7.6 22.9 10.6 9.3 5.6 7.4 8.6 19.8 20.4 5.6 7.9 7.5 9.1 13.5 4.9 12.7 20.2 11.4 3.9 35.7 5.3 30.9 3.9 18.9 5.4 9.8 6.1 29.0 7.2 28.5 8.1 6.1 12.9 18.1 6.5 23.4 8.0 8.3 8.6 5.7 18.3 7.7 8.3 8.0 7.3 6.7 6.4 5.8 14.7 17.3 18.3 8.3 15.2 6.4 7.0 13.9 7.1 7.3 7.1 %40Ar* 97.1 99.7 98.9 99.6 94.8 97.2 95.9 99.3 84.6 97.6 98.4 99.4 99.7 99.5 99.6 92.4 99.6 99.7 98.8 98.1 98.7 99.7 99.2 99.8 99.3 99.6 100.3 99.7 99.7 99.4 99.7 99.5 97.6 99.5 99.8 99.7 101.3 100.3 99.7 99.8 99.6 98.2 99.7 99.4 99.4 99.8 99.7 99.6 99.9 97.1 99.8 99.4 98.7 97.6 99.8 99.6 99.8 99.1 97.3 99.6 99.7 100.0 Age (Myr) 1696 1760 1700 2046 1712 1133 1747 1654 1517 1794 1765 1609 1491 2086 1761 1702 1780 1693 1662 1719 1732 1719 1642 1663 1760 1827 2720 1633 2760 1650 1646 1717 1466 1689 1657 1758 1794 1743 1792 1811 1757 1768 2582 1788 1741 1730 1755 1705 1716 1792 1745 1696 1728 2342 1793 1701 1780 1735 1710 1768 1825 1715 7 28 6 9 6 8 5 8 7 8 8 18 8 4 10 7 14 9 6 19 14 11 25 28 8 31 21 73 7 13 11 21 13 37 13 7 20 48 14 5 7 14 11 11 10 12 10 8 5 8 8 11 14 10 28 12 17 15 8 18 6 10 8 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 40 Table 3 (continued) Table 3 (continued) %40Ar* Depth (cm) Age (14C ky BP) Ca/K 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.7 7.3 8.0 16.5 10.3 4.6 9.6 10.9 25.9 6.7 10.3 23.2 9.5 5.4 7.6 9.9 13.0 7.9 3.3 8.7 6.5 8.4 32.8 5.9 8.8 12.1 11.7 9.2 7.9 5.7 13.7 6.8 8.3 13.0 9.1 9.6 26.0 14.6 28.3 7.2 11.5 19.3 8.7 7.9 6.7 98.3 99.9 92.6 101.4 100.3 100.5 99.9 89.1 94.7 99.7 99.0 95.8 98.6 99.1 98.4 94.6 99.3 99.7 99.6 99.7 99.1 98.2 99.2 99.8 99.4 99.1 99.0 99.4 99.4 97.1 99.4 100.0 98.7 100.6 99.6 98.4 100.1 96.2 95.6 99.3 95.1 99.1 91.7 97.2 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0 10.0 14.8 8.3 8.7 13.2 7.5 11.5 16.4 18.9 9.0 13.6 11.1 9.9 7.9 7.5 15.2 6.2 99.7 99.6 99.6 99.4 99.8 99.5 96.8 99.4 100.0 100.1 79.8 99.8 99.8 99.9 99.6 99.7 98.9 7 Depth (cm) Age (14C ky BP) Ca/K 1815 1740 1812 1778 1711 1704 1674 1950 1693 1707 1926 1691 2161 1792 1784 1510 1728 1616 1743 2647 1690 1589 1736 1683 1703 1842 1750 1839 1736 2590 1742 1774 1771 1768 1855 1870 1739 1757 1688 2633 1663 1660 1675 1605 31 8 19 54 9 23 24 61 14 12 19 29 15 11 8 28 4 4 9 8 6 44 12 27 12 31 6 9 8 31 10 11 17 26 34 50 28 22 8 16 11 17 14 10 106 110 110 110 110 110 110 110 110 110 110 110 110 110 110 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 126 126 126 126 126 126 126 126 126 126 126 34.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 15.0 9.8 14.5 8.1 3.3 5.9 17.3 7.3 7.2 8.3 8.3 12.8 21.2 14.4 16.0 10.1 20.4 7.2 36.3 24.0 12.9 19.4 8.2 9.8 11.5 10.2 7.4 8.7 10.5 9.7 8.4 9.1 19.6 15.0 7.7 10.4 8.4 36.3 26.6 12.8 9.9 9.7 8.4 99.4 99.2 100.0 99.9 94.6 99.4 99.6 99.7 99.4 99.2 99.4 100.1 98.8 100.3 99.2 99.6 98.8 99.8 99.6 99.3 99.5 99.4 99.4 99.6 99.5 99.6 99.0 99.4 99.9 99.8 99.8 99.8 99.5 99.7 99.7 99.9 99.4 93.7 99.5 97.5 99.7 98.5 99.4 1777 1619 1764 1819 2953 1748 1784 1688 1664 1680 1800 1543 1718 1687 1784 1749 1932 1806 1748 2122 1728 1716 2689 1789 1726 1708 1788 1717 2553 1723 1727 1819 1722 1840 1743 2605 1668 1825 2249 1730 1914 1706 1735 22 19 12 18 57 7 35 11 15 11 11 15 20 22 10 6 11 6 12 7 5 11 9 8 9 6 10 9 18 10 6 7 5 6 4 6 4 105 9 8 6 6 6 1761 1724 1711 1761 1709 1998 1731 1734 1683 1780 1708 1898 1913 1734 1727 1782 1696 7 5 6 10 9 7 9 26 15 7 17 12 7 15 8 12 8 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 36.2 8.4 15.2 24.7 20.1 14.1 8.3 9.0 10.6 9.9 8.1 7.4 8.2 30.9 7.1 10.9 10.3 7.8 17.5 99.6 99.0 83.5 99.6 98.6 99.4 99.2 96.9 99.6 99.2 99.9 99.2 99.4 99.8 98.8 99.4 100.0 85.8 1826 1758 392 1696 949 1759 1731 1759 1755 1690 1692 1698 1767 1728 1819 1754 1777 461 4 7 6 6 5 5 6 7 10 6 8 9 21 7 10 7 8 13 Age (Myr) %40Ar* Age (Myr) 7 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 41 Table 3 (continued) Depth (cm) Age (14C ky BP) Ca/K 128 128 128 128 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 36.2 36.2 36.2 36.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 5.9 22.2 17.8 9.2 13.6 10.8 6.6 33.5 11.8 35.1 14.8 8.6 3.9 7.4 8.9 13.9 6.7 25.8 32.9 7.3 7.1 7.1 18.9 7.0 8.8 6.8 9.8 25.5 8.7 6.5 26.4 7.7 8.3 39.7 29.5 9.1 10.2 7.2 7.9 6.5 30.2 14.9 24.2 7.6 7.5 14.5 14.7 7.8 4.9 7.7 11.6 9.0 11.1 8.7 11.1 18.8 6.0 11.9 %40Ar* 96.2 98.1 98.3 98.8 99.5 100.0 99.9 99.7 99.8 92.7 99.7 99.7 96.3 98.9 99.7 99.8 99.6 98.0 93.5 99.9 99.7 99.9 99.1 99.7 99.4 99.7 99.8 99.4 100.0 99.9 99.6 99.8 98.8 97.0 84.2 99.8 99.8 99.3 99.3 99.7 99.4 99.6 99.5 99.8 99.7 99.1 99.6 99.3 99.0 98.5 99.1 98.7 99.6 99.0 99.3 97.7 99.6 97.1 Age (Myr) 1495 1734 2271 1771 1752 1737 1746 1787 2612 2312 1734 1759 1539 1767 1832 1914 1862 1706 1656 1730 1738 1804 1843 1688 2595 1700 2631 2047 2625 1710 1758 1800 1770 1751 1852 1759 1728 2585 1755 2033 2249 2057 2684 1740 1672 2153 2704 1736 532 1820 1727 1773 1701 1725 1799 1650 1838 1726 7 7 35 19 10 4 6 5 9 10 17 6 8 42 9 7 11 8 10 22 5 5 8 7 5 7 5 6 14 13 6 16 8 7 24 24 10 7 11 6 3 7 5 15 6 6 8 8 7 4 9 9 9 8 9 11 14 6 13 about the duration of Heinrich layers, from estimates that they were virtually instantaneous, to estimates of 1000 years or more. Currently available published Fig. 2. Stratigraphy of core V23-14 based on numbers of foraminifera/ gram (top), fraction of >63 mm size (middle), and numbers of lithic grains/gram (bottom). Intervals of Heinrich layers H1–H5 are shaded. Fig. 3. C-14 age-depth model for core V23-14 based on measurements as well as the locations of Heinrich layers, and ages determined from other sources (Table 2). results of dating and flux methods used do not allow clearly constraining these estimates, although one pair of 14C estimates on either side of H2 are analytically indistinguishable from core SU90-09 (F. Grousset, Pers. Comm., 2001; IRD data for this core are published in Grousset et al., 2001). We take the very pure provenance of the Heinrich layers in eastern Atlantic core V28-82 to indicate close to instantaneous deposition of the detritus in order to swamp out other contributions (Hemming et al., 1998). By lumping the Heinrich layer samples into 42 S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Fig. 4. Scatter plot of measured hornblende age in Myr (x-axis) plotted with depth (y-axis) in core V23-14. The positions of Heinrich layers are indicated. The two vertical lines labeled ‘‘C’’ show the range of 40Ar/39Ar ages (1650–1900 Myr) considered to represent the Churchill Province (Gwiazda et al., 1996b; Hemming et al., 1998, 2000a). a small interval, and plotting the cumulative fraction data against estimated age, we emphasize the ambient evolution of the Laurentide ice sheet (Fig. 6). Between 42.5 and 26 14C kyr, there is little evidence of iceberg contributions from Laurentian sources south of 551N which should provide dominantly Grenville and Appalachian ages (Fig. 1). In contrast, between 26 and 14 14C kyr, there is abundant evidence of contributions from this sector. Finally, between 14 and 6 14C kyr, Grenville and Appalachian ages are again absent. These observations are consistent with the results of Hemming et al. (2000b) from Orphan Knoll in the interval above H2. They are also consistent with the observations of Ruddiman (1977), who presented IRD fluxes across the North Atlantic in several time intervals, including 40– 25, and 25–13 kyr. The average flux appears to be approximately double the 40–25 kyr flux in the 25– 13 kyr interval, and there is an overall correspondence between the flux of IRD and the extent of the Northern Hemisphere ice sheets (Ruddiman, 1977). Fig. 5. Histogram plots of hornblende populations in different segments of core V23-14, as labeled on graph. evolution of ice sheets of the northwest Atlantic margin since 43 kyr. Between Heinrich layers H5 and H3 (MIS 3), it appears that the ice sheet (or sheets) was (were) not extended far enough southeast to drop iceberg deposits with Grenville or Appalachain derivation into the North Atlantic. Between H3 and H1 (MIS 2), and outside the Heinrich layers, significant portions of the hornblende grains have ages indicating derivation from the southeastern sector, and thus indicate a significant expansion at about 26 14C kyr. After H1 (MIS 1), no detritus attributable to the southeastern sector is found, and judging from the present day situation, most of the IRD was likely derived from the Greenland ice sheet in the Holocene interval. Acknowledgements 5. Conclusion Results from studies of the ice rafted detritus population from core V23-14 provide insights into the Thanks go to Millie Mendelson for counting the samples, and for picking foraminifera for 14C dating, Elizabeth Clark for picking hornblende grains, and S.R. Hemming, I. Hajdas / Quaternary International 99-100 (2003) 29–43 Fig. 6. Down-core plot as a function of age of the hornblende populations from core V23-14. Heinrich layers are indicated by the dashed lines. Ages are reported in Table 3, and the geological subdivisions used are discussed in the text. Wally Broecker for supporting the 14C analyses. Thanks to Patty Catanzaro for drafting help with the figures. Discussions with Wally Broecker, Roberto Gwiazda, Jerry McManus, Sean Higgins, Donny Barber, and Ralph Stea have added valuable insights. Editorial comments were made for the journal by C. Periera and N. Catto. This research was supported by NSF Grant OCE 99-07290. Support for the curating facilities of the Lamont-Doherty Earth Observatory Deep-Sea Sample Repository is provided by the National Science Foundation through Grant OCE94-02150 and the Office of Naval Research through Grant N00014-I-0186. This is Lamont-Doherty Earth Observatory contribution 6369. References Bond, G., Heinrich, H., Broecker, W.S., Labeyrie, L., McManus, J., Andrews, J.T., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., 1992. Evidence for massive discharges of icebergs into the glacial Northern Atlantic. Nature 360, 245–249. Dowdeswell, J.A., Maslin, M.A., Andrews, J.T., McCave, I.N., 1995. Iceberg production, debris rafting, and the extent and thickness of 43 Heinrich layers (H-1, H-2) in North Atlantic sediments. Geology 23, 301–304. Francois, R., Bacon, M., 1994. Heinrich events in the North Atlantic: radiochemical evidence. Deep-Sea Research I 41 (2), 315–334. Grousset, F.E., Labeyrie, L., Sinko, J.A., Cremer, M., Bond, G., Duprat, J., Cortijo, E., Huon, S., 1993. Patterns of ice-rafted detritus in the glacial North Atlantic (40–551N). Paleoceanography 8, 175–192. Grousset, F.E., Cortijo, E., Huon, S., Herve, L., Richter, T., Burdloff, D., Duprat, J., Weber, O., 2001. Zooming in on Heinrich layers. Paleoceanography 16, 240–259. Gwiazda, R.H., Hemming, S.R., Broecker, W.S., 1996a. Tracking the sources of icebergs with lead isotopes: the provenance of ice-rafted debris in Heinrich layer 2. Paleoceanography 11, 77–93. Gwiazda, R.H., Hemming, S.R., Broecker, W.S., Onsttot, T., Mueller, C., 1996b. Evidence from 40Ar/39Ar ages for a Churchill Province source of ice-rafted amphiboles in Heinrich layer 2. Journal of Glaciology 42, 440–446. Hemming, S.R., Broecker, W.S., Sharp, W.D., Bond, G.C., Gwiazda, R.H., McManus, J.F., Klas, M., Hajdas, I., 1998. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd–Sr–Pb isotopes in the fine sediment fraction. Earth and Planetary Science Letters 164, 317–333. Hemming, S.R., Gwiazda, R.H., Andrews, J.T., Broecker, W.S., Jennings, A.E., Onstott, T., 2000a. 40Ar/39Ar and Pb–Pb study of individual hornblende and feldspar grains from southeastern Baffin Island glacial sediments: implications for the provenance of the Heinrich layers. Canadian Journal of Earth Sciences 37, 879–890. Hemming, S.R., Bond, G.C., Broecker, W.S., Sharp, W.D., KlasMendelson, M., 2000b. Evidence from 40Ar/39Ar Ages of individual hornblende grains for varying Laurentide sources of iceberg discharges 22,000 to 10,500 14C yr B.P. Quaternary Research 54, 372–383. Jantschik, R., Huon, S., 1992. Detrital silicates in northeast Atlantic deep-sea sediments during the late Quaternary: mineralogical and K–Ar isotopic data. Eclogae Geologica Helvetica 85, 195–212. McManus, J.F., Anderson, R.F., Broecker, W.S., Fleisher, M.Q., Higgins, S.M., 1998. Radiometrically determined sedimentary fluxes in the sub-polar North Atlantic during the last 140,000 years. Earth and Planetary Science Letters 155, 29–43. Robinson, S.G., Maslin, M.A., McCave, N., 1995. Magnetic susceptibility variations in upper Pleistocene deep-sea sediments of the NE Atlantic: implications for ice rafting and palaeocirculation at the last glacial maximum. Paleoceanography 10, 221–250. Ruddiman, W.F., 1977. Late Quaternary deposition of ice-rafted sand in the sub-polar North Atlantic (40–60 N). Geological Society of America Bulletin 88, 1813–1827. Samson, S.D., Alexander Jr., E.C., 1987. Calibration of the interlaboratory 40Ar–39Ar dating standard, MMhb-1. Chemical Geology (Isotope Geoscience Section) 66, 27–34. Smythe Jr., F.W., Ruddiman, W.F., Lumsden, D.N., 1985. Ice-rafted evidence of long-term North Atlantic circulation. Marine Geology 64, 131–141. Stea, R.R., Piper, D.J.W., Fader, G.B.J., Boyd, R., 1998. Wisconsinan glacial and sea-level history of Maritime Canada and the adjacent continental shelf: a correlation of land and sea events. Geological Society of America Bulletin 110, 821–845. Thomson, J., Higgs, N.C., Clayton, T., 1995. A geochemical criterion for the recognition of Heinrich events and estimation of their depositional fluxes by the 230Thexcess profiling method. Earth and Planetary Science Letters 135, 41–56. Veiga-Pires, C.C., Hillaire-Marcel, C., 1999. U and Th isotope constraints on the duration of Heinrich events H0–H4 in the southeastern Labrador Sea. Paleoceanography 14, 187–199.
© Copyright 2026 Paperzz