Gas Hydrate Saturations and Their Uncertainties From Chlorinity and Well Log Data at IODP Site U1325 (Exp. 311, Cascadia Margin) Alberto Malinverno, Miriam Kastner, Marta E. Torres, Ulrich J. Wortmann and the IODP Exp. 311 Scientific Party Timothy S. Collett, Michael Riedel, Mitchell J. Malone, Gilles Guèrin, Fumio Akiba, Marie-Madeleine Blanc-Valleron, Michelle Ellis, Yoshitaka Hashimoto, Verena Heuer, Yosuke Higashi, Melanie Holland, Peter D. Jackson, Masanori Kaneko, Ji-Hoon Kim, Hiroko Kitajima, Philip E. Long, Greg Myers, Leena D. Palekar, John Pohlman, Peter Schultheiss, Barbara Teichert, Anne M. Trèhu, Jiashen Wang, Hideyoshi Yoshioka Fire and ice clathrate (Chemistry) a compound in which molecules of one component are physically trapped within the crystal structure of another. ORIGIN 1940s: from L. clathratus, from clathri ‘lattice-bars’. 2 GHSZ on continental margins No GHSZ above 300-500 m 3 Cascadia Gas Hydrate Model after Hyndman and Davis, 1992 4 ODP Leg 146 after Hyndman et al., 1999 5 ODP Leg 204 6 7 Cascadia Plate Tectonics 8 9 Site U1328 (Cold Vent) Exp. 311 Sites 10 Quantifying Gas Hydrate • Visual inspection • Infrared imaging • Pressure coring • Well logging • Interstitial water chemistry 11 Archie’s equation Rw R0 = m φ R0 Rw Rt R0 Rt = (S w )n Resistivity of watersaturated sample Resistivity of water “True” resistivity of sample Φ Sw m n a ! a Rw Sw = m φ Rt " 1n Porosity Water saturation Cementation exponent ≈ 2 Saturation exponent ≈ 2 Constant ≈ 1 Pore water salinity 14 1 0.9 0.8 0.7 w(Cb − C) Sh = C + w(Cb − C) 0.6 0.5 0.4 0.3 0.2 0.1 ρw NAvo Vcell w= Mw nw Sh Cb C ρw Gas hydrate saturation Baseline chlorinity Measured chlorinity Water density 0 0 0.2 0.4 C Cb 0.6 0.8 1 NAvoAvogadro’s number Vcell Volume of unit cell (Type I) Mw Molar mass of water nw Water molec. in unit cell (Type I) 15 Uncertainty quantification ! a Rw Sh = 1 − m φ Rt " 1n w(Cb − C) Sh = C + w(Cb − C) Parameter Measured porosity Φ Standard deviation 3% Measured resistivity Rt 10 % Pore water resistivity Rw 2% Constant a Cementation exponent m Fit R0-Rt in watersaturated interval Fit between Archie and chlorinity Sh Saturation exponent n Baseline chlorinity Cb 5 mM Measured chlorinity C 5 mM 16 Uncertainty propagation y = f(x) !! !! ∂y ! ! σy = σx !! !! ∂x σx x Example: Sh = f(Φ, Rt, Rw, a, m, n) 17 Measured salinity 0 20 30 Measured chlorinity (mM) Gas hydrate saturation 40300 400 500 600 0 0.2 0.4 0.6 0 Baseline 50 100 100 150 150 200 200 250 250 300 300 Hole U1325BC Thin sands (1-3 cm) Depth (mbsf) Depth (mbsf) 50 Site U1325 Depth (mbsf) 0 20 30 Measured chlorinity (mM) Gas hydrate saturation 40300 400 500 600 0 0.2 0.4 0.6 0 50 50 100 100 150 150 200 200 250 250 300 300 Depth (mbsf) Measured salinity 9 cm-sand 20 Hole U1325BCnts 0 Depth (mbsf) 180 10 0 10 GVR (! m) 0 10 DIT (! m) 0 10 180 185 185 190 190 195 195 200 200 205 205 210 210 215 215 220 220 225 225 230 230 Hole U1325A Hole U1325A Hole U1325A Hole U1325C Depth (mbsf) Ph. 400 kHz (! m)Ph. 2 MHz (! m) 9 cm-sand R0 and Rt (! m) Porosity 0.2 0.4 0.6 0.8 0 10 Gas hydrate saturation 0 0.2 50 0.4 0.6 ! a Rw Sw = m φ Rt 0.8 50 " 1n 100 100 150 150 200 200 250 250 Site U1325 (a=2.11 m=1.1 n=2.4 +/! 0.52) Depth (mbsf) Depth (mbsf) Sh = 1 − Sw Rw a, m n From measured T, salinity From fitting R0 to Rt (0-190 mbsf) From fitting chlorinity results in 9 cm-sand Measurement uncertainties: Φ 3% Rt 10% Gas hydrate saturation 0 0.2 0.4 0.6 50 GHSZ Average Sh = 3 ± 0.7% Depth (mbsf) 100 150 200 Average Sh = 7.8 ± 1.5% Sh = 55 ± 5% 250 23 Logs in U1325A, Cl in U1325BCnts Greetings 24
© Copyright 2026 Paperzz