Hypoxia in Estuarine and Coastal Waters by Y. Peter Sheng, Taeyun Kim, and Kijin Park Civil & Coastal Engineering Department University of Florida Content • What Cause Hypoxia? • Hypoxia in Gulf of Mexico & Chesapeake Bay • Hypoxia in Florida • Simulation of Hypoxia in Florida • How do External Loading and Climate Change Affect Hypoxia? What Cause Hypoxia? S tra tific a tio n + S O D External Loading F re s h w a te r Nutrients CBOD H y p o x ia Wind Mixing Tidal Mixing DO V e rtic a l S tra tific a tio n H y p o x ia SOD Sediment Oxygen Demand S e a w a te r Mississippi Dead Zone 4500-7000 sq mi NASA Satellite Imagery NOAA Ship Survey Chesapeake Bay Dead Zone 2.98E+06 Time = 194.2917 day July 2000 DO (mg/l) 2.97E+06 Northing (UTM,meter) 2.99E+06 Bottom-water Hypoxia in Charlotte Harbor, FL 375000 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 380000 385000 390000 395000 Easting (UTM,meter) 400000 Hypoxia in Charlotte Harbor After Charley (8/13/2004) D. Tomasko Bottom hypoxia Surface+Bottom hypoxia ~38 sq mi on 8/27/04 Hypoxia in Peace River Watershed 8/21/2004 Northing (UTM, meter) 2.9E+06 2.95E+06 3E+06 Simulation of Hypoxia Using an Integrated Modeling System for Estuarine and Coastal Ecosystems 350000 400000 Easting (UTM, meter) CH3D-IMS (Sheng et al. 2002) Model Grid 450000 River Discharge (m3/s) Hypoxia in Charlotte Harbor during 2000 100 Peace River Myakka River 80 60 40 20 0 50 100 150 200 250 300 Year Day 2000 DO (mg/l) 10 5 0 50 100 150 200 250 300 CH006 Simulated Surface DO Simulated Bottom DO Measured Surface DO Measured Bottom DO 15 DO (mg/l) CH005 Simulated Surface DO Simulated Bottom DO Measured Surface DO Measured Bottom DO 15 10 5 0 50 100 150 200 250 300 Sediment Oxygen Demand Station Latitude Longitude Measured Value (March 1984) Measured Value (Sep. 1984) SOD #1 26º 55' 00" 82º 06' 18" 1.49 1.03 SOD #2 26º 48' 18" 82º 06' 30" N/A 1.39 SOD #1 SOD (g O2 /m2/d) 2 1.5 BOD 1 Ks SOD 0.5 0 100 150 200 250 300 CBOD Kd2 SOD #2 2 NBOD 1.5 1 0.5 0 Water Sediments 50 Julian Day SOD (g O2 /m2/d) DOwater 50 100 150 200 Julian Day 250 300 KN2 DOsed Volume of Bottom Hypoxic Water is Related to River Discharge, Ri, and Tide w a te r a n d r iv e r d is c h a r g e J ul il iaa n n J u DD a ay 2 2 0 y 3 0 2 4 0 0 2E+08 4E+06 4E+08 8E+06 6E+08 1.2E+07 3 V o lu m e o f b o t t o m w a t e r f o r D O ( b e lo w 2 m g / l) a n d R i # ( o v e r 0 . 5 5 ) 1 . 4 E + 0 7 1 . 2 E + 0 7 1 E + 0 7 8 E + 0 6 6 E + 0 6 4 E + 0 6 2 E + 0 6 0 180 200 220 J u lia n D a y 240 0 1 8 0 2 0 0 J u l i a n D a y 2 2 0 2 4 0 - 5 0 - 1 0 0 Water surface elevation (cm NAVD88) 2 0 0 3 1 8 0 Volume of bottom water for RI # (m ) 0 1 0 River discharge (m /sec) 1.2E+07 8E+06 2 0 4E+06 3 0 Volume of bottom water for DO (m ) 3 Volume of bottom water (m ) o f b o tto m 4 0 Volume of bottom water (m ) 3 V o lu m e Can we control Hypoxia? • Sediment Oxygen Demand (SOD) is due to the oxidation of organic matter in bottom sediments. • The main sources of organic matter in bottom sediments are from river loading, waste discharge, and dead algae following major bloom. • SOD can be a large fraction of oxygen consumption in surface water bodies. DO and SOD with reduced nutrient/CBOD loading C H 0 0 5 (B o tto m ) B a s e lin e 5 0 % R e d u c t io n 1 0 0 % R e d u c t io n DO (mg/l) 5 4 3 2 6 0 DO (mg/l) 7 2 6 5 C H 0 0 9 2 7 0 J u lia n D a y 2 7 5 (B o tto m ) B a s e lin e 5 0 % R e d u c tio n 1 0 0 % R e d u c t io n 6 .5 6 5 .5 52 6 0 2 6 5 2 7 0 J u lia n D a y 2 7 5 2 SOD (g O2/m /d) 1 .5 1 0 .5 02 6 0 2 2 2 8 0 CH005 2 SOD (g O2/m /d) 2 8 0 1 .5 B a s e lin e 5 0 % R e d u c t io n 1 0 0 % R e d u c tio n 265 270 J u l ia n D a y 275 280 CH009 B a s e li n e 5 0 % R e d u c tio n 1 0 0 % R e d u c t io n 1 0 .5 02 6 0 265 270 J u l ia n D a y 275 280 SOD in the Upper Charlotte Harbor (Increased air temperature of 3°) CH005 SOD (g O2/m2/d) 2 1.5 1 0.5 0260 SOD (g O2/m2/d) 2 Baseline Increased air temperature (3 'C) 265 270 Julian Day 275 280 CH009 Baseline Increased air temperature (3 'C) 1.5 1 0.5 0260 265 270 Julian Day 275 280 DO in the Upper Charlotte Harbor (Increased air temperature of 3°) 6 CH005 (Bottom) Baseline Increased air temperature DO (mg/l) 5 4 3 2 1260 DO (mg/l) 7 265 270 Julian D ay CH009 (Bottom) 275 280 Baseline Increased air temperature 6 5 4260 265 270 Julian D ay 275 280 Phytoplankton (ug/l) Phytoplankton in the Upper Charlotte Harbor (Increased air temperature of 3°) CH005 (Baseline) Diatom Dinoflagellates Cynobacteria 10 5 Phytoplankton (ug/l) 50 100 150 200 Julian Day 250 300 250 300 CH005 (Increase air temperature) Diatom Dinoflagellates Cynobacteria 10 5 50 100 150 200 Julian Day Conclusion • Hypoxia exists in Gulf of Mexico, Chesapeake Bay, and Florida. • Hypoxia in Charlotte Harbor is governed by river flow induced stratification and Sediment Oxygen Demand. • Bottom hypoxic water decreases when – stratification decreases (low river flow, high wind, high tide) – external loading (nutrients/CBOD) decreases • Peak hypoxic water volume is reduced by 5-10% with 50-100% load reduction • Climate change will lead to increase in SOD and decrease in DO, and changes in phytoplankton species
© Copyright 2026 Paperzz