Download Now (.pdf file 2.7 MB)

Supplementary Material
1
Supplemental Material Table 1: Details for Table 1 of the paper.
Ichnotaxon
Biological Counterpart (Trackmaker)
Ameghinichnus
Rhynchosauroides hyperbates
Rhynchosauroides spp.
Chirotherium lulli
Procolophonichnium
Gwyneddichnium
Apatopus
Brachychirotherium parvum
new taxon B
Batrachopus deweyii
“Batrachopus” gracilis
unnamed dinosaurian genus 1
Otozoum
“Grallator”
“Anchisauripus”
Eubrontes giganteus
Atreipus spp.
Anomoepus scambus
advanced synapsid, possibly trithelodontid (1)
lepidosauromorph or primitive archosauromorph (2,3)
lepidosauromorphs (2,3)
crurotarsan, possibly aetosaurid (4)
procolophonid parareptile (5)
tanystropheid (6)
phytosaur (3)
rauisuchian crurotarsan (7)
crurotarsan, possibly crocodylomorph (8)
crocodylomorph (9)
crocodylomorph (9)
unknown dinosaur, perhaps herrerasaurid
prosauropod dinosaurs (10,11)
small theropod dinosaur (12)
small to medium sized theropod dinosaur (12)
large theropod dinosaur (12)
ornithischian dinosaur (13)
ornithischian dinosaur (14)
Supplementary Material
2
Supplementary Materials: Table 2: Ages and localities for Figure 2 of paper and Figures 1 and 2 of supplementary materials. na, indicates that although many tracks are known
from the locality and are in various institutions, we have not attempted to quantify their numbers for this study;
Maximum size is based on a survey of the largest of the specimens (15).
Ichnotaxa
age Formation Abbrev Basin
Ma
-iation
Locality
199 Portland
1
Hartford
199 McCoy
Brook
2
Fundy
200 Portland
3
200 Turners
Falls
4
200 Turners
Falls
5
201 Portland
6
201 Boonton
7
Age
Ichnotaxa
#Non-Dinosaur
Tracks
#Dinosaur
Tracks
Stony Brook, Hettangian- Batrachopus deweyii,
Kelsey
Sinemurian Grallator parallelus,
Furguson
Anchisauripus tuberosus,
Quarry,
Eubrontes giganteus,
Simsbury, CT
Otozoum moodii,
Anomoepus scambus
na
Five Islands
Hettangian- Batrachopus deweyii,
Provincial
Sinemurian Batrachopus gracilis,
Park, Blue Sac
Grallator parallelus,
shore
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus,
Otozoum moodii
Hartford Chicopee, MA Hettangian- Batrachopus deweyii,
Sinemurian Grallator parallelus,
Anchisauripus tuberosus,
Anomoepus scambus
Deerfield Stoughton
Hettangian Batrachopus deweyii,
Quarry,
Batrachopus gracilis,
Montague, MA
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus
Deerfield Barton Cove, Hettangian Batrachopus deweyii,
Lily Pond,
Batrachopus gracilis,
Gill, MA
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
Hartford Portland
Hettangian Batrachopus deweyii,
brownstone
Grallator parallelus,
Quarry,
Anchisauripus tuberosus,
Portland, CT
Anomoepus scambus,
Otozoum moodii
Newark Boonton Dam, Hettangian Batrachopus deweyii,
Boonton, NJ
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
#Non
Dinosaur
Taxa
#Dinosaur
Taxa
%Dino- Comments
saur
Taxa
na
%Dino- Max.
saur
TheroTracks pod
Track
Size
na
34
1
5
83
(16)
na
na
na
35
2
5
71
(14,27)
na
na
na
20
1
3
75
(revised from ref. 17)
na
na
na
35
2
3
60
(revised from ref. 17,)
na
na
na
35
2
4
67
(revised from ref. 17)
na
na
na
25
1
4
80
(revised from ref. 17)
1
9
82
35
1
4
80
youngest Newark basin
assemblage (16)
Supplementary Material
201 Towaco
8
Newark
201 Towaco
9
Newark
3
Riker Hill
Quarry,
Roseland, NJ
Hettangian Ameghinichnus n. sp.,
Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
Stephen Drive, Hettangian Rhynchosauroides sp.,
Montville, NJ
Grallator parallelus,
Anchisauripus tuberosus
201 East Berlin 10
and lower
Turners
Falls
Hartford
201 Towaco
11
Newark
Vreeland
Quarry,
Montville, NJ
201 Towaco
12
Newark
Toms Point,
Lincoln Park,
NJ
201 Feltville
13
Newark
Shrump
Quarry,
Roseland, NJ
201 Turkey
Run
14
Culpeper Oak Hill
Estate, Aldie,
VA
201 Feltville
15
Newark
Exeter Golf
Course,
Exeter, PA
201 McCoy
Brook
16
Fundy
Wasson Bluff
201 Shuttle
Meadow
17
Hartford
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Anomoepus scambus
Hettangian Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus, cf.
Anomoepus scambus
Hettangian Grallator cf. G.
parallelus, Anchisauripus
tuberosus, Eubrontes
giganteus
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Anomoepus scambus,
Otozoum moodii
Hettangian Batrachopus deweyii,
Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus
100
1400
93
35
2
4
67
the most densely sampled
locality in Newark basin
(17)
1
9
82
20
1
2
67
LA Rhynchosauroides
(16)
na
na
na
36
1
4
80
(revised from ref.17)
1
404
100
35
1
4
80
(16)
1
99
98
35
1
4
80
(16)
1
9
82
25
1
3
75
(16)
na
na
na
35
0
4
100
(27)
0
4
100
33
0
3
100
(16)
na
na
na
35
1
5
83
(27)
na
na
na
34
1
3
75
(revised from ref. 17)
Supplementary Material
4
201 Midland
18
Culpeper Licking Run
Reservoir,
Midland, VA
201 Feltville
19
Newark
201 Passaic
20
201 Passaic
Hettangian Grallator parallelus,
Anchisauripus tuberosus,
Eubrontes giganteus,
Batrachopus deweyii
na
na
na
34
1
4
80
(16)
Vosseller Rd., Hettangian Anchisauripus tuberosus,
Martinsville,
Eubrontes giganteus
NJ
0
6
100
35
0
2
100
oldest interflow assemblage
(16)
Newark
Exeter Village, Hettangian Rhynchosauroides sp.,
Exeter, PA
Grallator parallelus
1
3
60
11
1
1
50
(16)
21
Newark
R. H. Hamilton Hettangian Rhynchosauroides n. sp.,
Quarry, and
Batrachopus deweyii,
Montclair
Grallator parallelus,
State Univ.,
Anchisauripus tuberosus,
Clifton and
Eubrontes giganteus
Paterson, NJ
200
1000
83
35
2
3
60
FA, Eubrontes giganteus;
superb specimens of all taxa
(16)
202 Passaic
22
Newark
Exeter Village, Rhaetian
Exeter, PA
Batrachopus deweyii,
Rhynchosauroides sp.,
Grallator parallelus,
Anchisauripus tuberosus
50
2
4
20
2
2
50
(16)
202 Passaic
23
Newark
Exeter Village, Rhaetian
Exeter, PA
Rhynchosauroides sp.,
Grallator parallelus
120
60
33
23
1
1
50
(16)
202 Passaic
24
Newark
Friendship
Rhaetian
Home, Exeter,
PA
10
33
20
5
2
29
LA, definite Apatopus sp.
modified from ref. (18)
202 Passaic
25
Newark
Friendship
Rhaetian
Home, Exeter,
PA
Rhynchosauroides sp.,
20
Batrachopus gracilis,
Apatopus sp.,
?Brachychirotherium, New
taxon B, Grallator
parallelus, Anchisauripus
tuberosus
Brachychirotherium sp.,
1
Grallator parallelus
1
50
13
1
1
50
LA, definite
Brachychirotherium (16)
202 Passaic
26
Newark
Friendship
Rhaetian
Home, Exeter,
PA
Rhynchosauroides,
Batrachopus gracilis,
Brachychirotherium, New
taxon B, Grallator
parallelus, Anchisauripus
tuberosus
200
57
22
4
2
33
very good and abundant
Brachychirotherium.
Modified from ref. (18)
150
Supplementary Material
5
202 Passaic
27
Newark
Wingspread,
Exeter, PA
Rhaetian
Rhynchosauroides sp.,
Gwyneddichnium sp.,
Batrachopus gracilis,
Brachychirotherium, New
Taxon B, Grallator
parallelus, Anchisauripus
tuberosus
Grallator parallelus
~50
100
67
20
5
2
29
LA, Gwyneddichnium, very
good Anchisauripus
tuberosus. Modified from
ref. (18)
202 Passaic
28
Newark
Type Pine
Rhaetian
Ridge, Exeter,
PA
0
4
100
12
0
1
100
(16)
202 Passaic
29
Newark
Pathfinder
Meadows,
Exeter
Rhaetian
Grallator parallelus
0
2
100
11
0
1
100
(16)
202 Passaic
30
Newark
Pathfinder
Meadows,
Exeter
Township
Rhaetian
NewTaxon B,
?Brachychirotherium sp.,
Rhynchosauroides sp.,
Grallator parallelus
5
30
86
17
3
1
25
major reptile bone site
(26,16)
202 Passaic
31
Newark
West Orange,
NJ
Rhaetian
Apatopus sp.
1
0
0
na
1
0
0
(19)
204 Passaic
32
Newark
Heister's
Rhaetian
Creek, Exeter
Township, PA
Rhynchosauroides sp.,
New Taxon B,
?Gwyneddichnium sp.,
Grallator parallelus
4
75
95
9
3
1
25
Modified from ref. (8)
204 Passaic
33
Newark
Tulpehocken
Rd., Exeter
Township
Grallator parallelus
0
2
100
16
0
1
100
(16)
204 Passaic
34
Newark
Shelbourn
Rhaetian
Square, Exeter
Township, PA
Rhynchosauroides sp.,
New Taxon B,
Batrachopus gracilis,
Brachychirotherium sp.,
Grallator parallelus
10
20
67
9
4
1
20
Modified from ref. (8)
205 Passaic
35
Newark
Valley Ridge, Rhaetian
Exeter
Township, PA
Grallator parallelus
0
12
100
9
0
1
100
(16)
205 Passaic
36
Newark
Fairview
Rhaetian
Chapel, Exeter
Township, PA
Rhynchosauroides sp.
20
0
0
na
1
0
0
(16)
206 Passaic
37
Newark
Passaic, NJ
Procolophonichnium sp.,
?Gwyneddichnium sp.
3
0
0
na
2
0
0
(19)
Rhaetian
Rhaetian
Supplementary Material
6
206 Passaic
38
Newark
Furnace Hill, Rhaetian
Exeter
Township, PA
206 Blomidon
39
Fundy
Red Head,
Rossway,
Nova Scotia
207 Passaic
40
Newark
Monacacy Hill ?Rhaetian
, Amity
Township, PA
208 Passaic
41
Newark
Victoria Hill, ?Rhaetian
Amity
Township, PA
208 Passaic
42
Newark
Douglassville, ?Norian
Amity
Township, PA
?Rhaetian
40
35
10
6
1
14
modified from Szajna and
Hartline (20) LA C. lulli,
LA Atreipus
na
na
18
3
3
50
(27)
2
20
na
2
1
33
(16)
Rhynchosauroides sp.,
Apatopus lineatus, New
Taxon B, Grallator
parallelus, Anchisauripus
tuberosus
Rhynchosauroides sp.,
Gwyneddichnium sp.,
?Batrachopus sp.,
Brachychirotherium sp.,
Atreipus sp., Grallator
parallelus
Apatopus sp.
7
5
42
25
3
2
40
FA Batrachopus cf. B.
gracilis (16)
5
200
98
10
4
2
33
modified from ref. (8)
209 Balls Bluff 43
Culpeper Floris, VA
na
na
na
na
1
0
0
(21)
209 Balls Bluff 44
Culpeper Manassas
Norian
National Park,
VA
Rhynchosauroides sp.
na
na
na
na
1
0
0
(22)
210 Passaic
Newark
Atreipus sp.
0
6
100
14
0
1
100
(16)
45
East
Greenville
Norian
Rhynchosauroides sp.,
75
Batrachopus cf. B. gracilis,
Brachychirotherium sp.,
Chirotherium lulli,
Atreipus sp., Grallator
parallelus
Rhynchosauroides sp.,
na
Apatopus cf. A. lineatus,
Brachychirotherium, cf.
Atreipus sp., Grallator
parallelus, Anchisauripus
tuberosus
Rhynchosauroides sp.,
8
Brachychirotherium sp.,
Atreipus sp.
Norian
211 Balls Bluff 46
Culpeper Culpeper
Norian
Crushed Stone
Quarry,
Stevensburg.
VA
Rhynchosauroides sp.,
Brachychirotherium spp..
Anchisauripus tuberosus,
Anchisauripus sp.
na
na
na
25
2
2
50
(23)
211 Passaic
Newark
Rhynchosauroides sp.,
Apatopus sp.,
Brachychirotherium sp.,
unnamed dinosaurian
genus 1, Atreipus sp.,
Grallator parallelus,
Anchisauripus tuberosus
50
50
50
16
3
4
57
FA Anchisauripus tuberosus
Modified from ref. (13)
47
Rutherford, NJ Norian
Supplementary Material
7
214 Passaic
48
Newark
Limrick
Airport
Business
Campus,
Limerick, PA
Norian
Rhynchosauroides sp.,
Atreipus sp., Grallator
parallelus
6
6
50
5
1
2
67
(16)
214 Passaic
49
Newark
Sanatoga
Commons,
Liberty Hill,
Sanatoga, PA
Norian
Gwyneddichnium sp.,
Atreipus sp.
2
2
50
11
1
1
50
(16)
214 Passaic
50
Newark
Sanatoga Auto Norian
Body Shop,
Sanatoga, PA
Rhynchosauroides sp.,
Brachychirotherium sp.,
Atreipus sp.
32
8
20
14
2
1
33
(16)
215 Passaic
51
Newark
Smith-Clark
Quarry,
Milford, NJ
Norian
200
89
12
5
4
44
FA C. lulli. Modified from
ref. (13)
215 Passaic
52
Newark
Sanatoga
Quarry,
Sanatoga, PA
Norian
Rhynchosauroides sp., R. 25
hyperbates, Apatopus
lineatus, Chirotherium
lulli, Brachychirotherium
sp., Atreipus sp., Grallator
parallelus, new genus 2
Rhynchosauroides sp.,
900
Brachychirotherium sp.,
Atreipus acadianus, New
Genus 1
250
22
10
2
2
50
Modified from ref. (13)
215 Blomidon
53
Fundy
Paddy Island Norian
area, Medford,
Nova Scotia
na
na
na
na
5
3
38
216 Passaic
54
Newark
Heather Glen, Norian
Limerick, PA
Rhynchosauroides sp., R.
hyperbates, Apatopus
lineatus, Chirotherium
lulli, Brachychirotherium,
Atreipus, unnamed
dinosaurian genus 1
Rhynchosauroides sp,
Atreipus sp
12
3
20
12
1
1
50
216 Passaic
55
Newark
Graterford
Norian
Prison,
Graterford, PA
Rhynchosauroides sp.,
Atreipus sp.
20
200
91
12
1
1
50
217 Passaic
56
Newark
Nishisackawic Carnok Creek,
Norian
Rhynchosauroides sp.,
Brachychirotherium sp.,
Atreipus sp.
50
80
62
13
2
1
33
(16)
Modified from ref. (13)
Supplementary Material
8
217 Passaic
57
Newark
Mainland, PA CarnoNorian
217 Passaic
58
Newark
Ridge Pike & CarnoTownship Ln. Norian
Rd., Trappe,
PA
218 Passaic
59
Newark
Blooming
Glen Quarry,
Blooming
Glen, PA
Carnian
219 Lockatong 60
Newark
Upper
Fairview, PA
Carnian
221 Lockatong 61
Newark
Arcola, PA
Carnian
222 Lockatong 62
Newark
Gwynedd, PA Carnian
222 Stockton
63
Newark
Grandview and Carnian
South Nyack,
NY
222 Stockton
64
Newark
Haverstraw
(south), NY
222 Stockton
65
Newark
Haverstraw
(north), NY
Rhynchosauroides sp.,
Gwyneddichnium sp.,
Brachychirotherium sp.,
Atreipus sp., Grallator
parallelus
Rhynchosauroides sp.,
Brachychirotherium sp.,
Atreipus sp., Grallator
parallelus
20
25
56
10
3
2
40
(16)
38
12
24
10
2
2
50
(16)
21
6
22
15
4
1
20
(16)
28
2
7
na
2
1
33
(16)
200
10
5
12
5
2
29
FA R. hyperbates, Modified
from ref. (13)
20
2
9
12
1
1
50
FA Gwyneddichnium (13)
Brachychirotherium sp.,
Atreipus sp.
4
2
33
12
1
1
50
(16)
Carnian
Brachychirotherium sp.,
Grallator parallelus
3
2
40
7
1
1
50
FA Grallator parallelus.
Modified from ref. (24)
Carnian
Rhynchosauroides sp.,
Apatopus sp.,
Brachychirotherium sp.,
Atreipus sp., ?Grallator
parallelus sp.
10
4
29
9
3
2
40
FA listed taxa; oldest
Newark basin track
assemblage? Modified from
ref. (24)
Rhynchosauroides sp.,
Apatopus lineatus,
Gwyneddichnium sp.,
Brachychirotherium sp.,
Atreipus sp.
Rhynchosauroides sp.,
Brachychirotherium sp.,
indt. dinosaur
Rhynchosauroides sp., R.
hyperbates,
Gwyneddichnium sp.,
Apatopus sp.,
Brachychirotherium sp.,
Atreipus sp., Grallator
parallelus
Gwyneddichnium sp.,
?Atreipus sp.
Supplementary Material
Table 2, continued: Osteological Taxa
Age
Ma
Formation
9
Abbreviation
Basin
Locality
Age
Osteological Taxon
Comments
199 Portland
66
Hartford
Sinemurian
protosuchian Stegomus longipes
type specimen, partial skeleton and skull (17)
201 McCoy Brook
67
Fundy
Hines Quarry,
Longmeadow, MA
Wasson Bluff,
Cumberland County,
Nova Scotia
Hettangian
protosuchian Protosuchus micmac
202 Passaic
68
Newark
Pathfinder Meadows,
Exeter Township
Rhaetian
protosuchian Protosuchus sp.,
Hypsognathus fennerii
202 Passaic
69
Newark
Rhaetian
phytosauria indet.
202 Passaic
70
Newark
Walnut Street, Exeter
Township, PA
Clifton, NJ
Abundant skeleteal elements, site also has
produced abundant prosauropod dinosaurs,
rare ornithischian and possible theropod
dinosaur teeth and bones, and abundant
sphenosuchian skeletons and elements, and
rare trithelodonts (25)
Protosuchus: osteoderms, jaw, postcranial
fragments. Hypsognathus, abundant skulls,
partial skeletons and individual bones and
teeth (16)
teeth (16)
Rhaetian
Hypsognathus fennerii
205 Passaic
206 Passaic
71
72
Newark
Newark
Passaic, NJ
Passaic, NJ
Rhaetian
Rhaetian
Hypsognathus fennerii
Hypsognathus fennerii
type specimen, partial skeleton and mandibles
(26)
several partial skulls and skeletons (26)
partial skull (26)
206 Blomidon
73
Fundy
Red Head, Rossway,
Norian-Rhaetian
Annapolis Co., Nova Scotia
phytosauria indet.
rostrum, fragmentary mandible, osteoderm (27)
210 Passaic
74
Newark
East Greenville
Norian
Hypsognathus fennerii
partial skull (26)
211 Passaic
75
Newark
Norian
76
Newark
Norian
phytosaur: Clepsysaurus
pennsylvanicus
phytosauria indet.
teeth, skull and postcranial fragments (28)
214 Passaic
215 Passaic
77
Newark
Norian
phytosauria indet.
tooth (16)
215 Blomidon
78
Fundy
Norian
Hypsognathus cf. H. fennerii
221 Lockatong
79
Newark
Carnian
phytosaur, cf. Rutiodon
Complete skull and fragmentary postcranial
elements , partial mandible (26)
partial juvenile skull (29)
222 Stockton
80
Newark
Hosensack Creek, lower
Milford, PA
Sanatoga Auto Body
Shop, Sanatoga, PA
Smith-Clark Quarry,
Milford, NJ
Paddy Island area,
Medford, Nova Scotia
Granton Quarry, North
Bergen, NJ
Edgewater, NJ
Carnian
Rutiodon manhattanensis
partial postcranial skeleton (30)
postcranial elements and teeth (16)
Supplementary Material
14
Supplemental Material, Table 3: Concentrations of elements at the four sections shown is Supplemental Material Figure 3 (31,32,33). LOI, represents loss
on ignition and corresponds roughly to organic matter content plus water. Depth is depth above (+) or below (-) base of blue-gray sandstone: first number is
top of sample, second is bottom. (--), indicates problems with the mechanics of processing the sample (e.g. vial damage). The prefixes 1, 2, 3, and g correspond
to samples from sections I, II, III, and Grist Mills sections. Coordinates for localities given in ref. 34.
Sample
1TJ-1
Depth (cm) 0,+10
1TJ-2
0, -5
1TJ-3 1TJ-4 1TJ-5 1TJ-6 1TJ-7 1TJ-8 1TJ-9 1TJ-10 1TJ-11 2TJ-12 2TJ-13 2TJ-14 2TJ-15 2TJ-16 2TJ-17 2TJ-18 2TJ-19
-5,-10 -10,-14 -14,-22 -22,-34 -34,-42 -42,51 -51,-60 -60,-79 -79,-111 +8,0
0,-9
-9,-14 -14,-25 -25,-35 -35,-43 -43,-50 -50,-56
Ir ppt(35) 97±19
< 80
25±10 96±19 76±17 71±17
SiO2 %
TiO2 %
Al2O3 %
Fe2O3 %
MnO %
MgO %
CaO %
Na2O %
K2O %
P2O5 %
LOI %
75.1
0.75
10.9
5.10
0.04
0 .34
0.19
0.31
2.23
0.11
4.93
31.0
0.55
11.0
4.13
0.02
1.15
2.24
1.76
2.19
0.09
46.0
49.2
0.83
18.5
8.06
<0.01
1.2
1.34
0.36
3.51
0.12
16.7
62.7
0.89
17.8
4.96
0.14
0.87
0.37
0.40
3.55
0.04
8.04
64.2
0.97
16.7
5.92
0.13
0.88
0.53
0.48
3.29
0.06
6.80
53.3
0.98
17.5
13.4
<0.01
0.92
0.23
0.66
4.16
0.12
8.41
56.8
1.01
19.5
8.77
0.15
1.29
0.32
0.32
4.64
0.13
7.11
68.6
0.94
15.0
4.50
0.11
1.07
0.28
0.85
3.04
0.10
5.33
TOTAL
99.97
100.07
99.84
99.73
99.90
99.69
100.01
99.82
Sc ppm
V ppm
Cr ppm
Co ppm
Ni ppm
Cu ppm
Zn ppm
As ppm
Se ppm
Br ppm
Rb ppm
Sr ppm
Y ppm
Zr ppm
Nb ppm
Sb ppm
Cs ppm
Ba ppm
La ppm
Ce ppm
Nd ppm
Sm ppm
Eu ppm
Gd ppm
Tb ppm
Tm ppm
Yb ppm
Lu ppm
Hf ppm
Ta ppm
Ir ppb(36)
Au ppb
Th ppm
U ppm
10.0
174
66
4.5
17
7
169
61
10
1.6
96.1
74
20
233
13
2.73
4.41
363
36.7
72.3
32.4
5.63
1.10
3.87
0.55
0.38
2.75
0.44
6.68
0.89
<1
2
10.1
6.11
21.5
159
221
13.4
68
485
185
30
9
0.3
102
142
274
426
6
8.88
6.45
286
66.2
125
148
57.5
12.8
49.6
8.19
2.40
16.5
2.16
4.26
0.77
<1
0.4
10.2
18.6
22.4
249
151
12.9
33
180
146
272
6
10.9
202
122
80
138
12
11.9
12.5
465
70.4
151
91.3
23.7
4.43
17.6
2.65
1.15
7.32
1.03
4.87
1.18
<2
3
18.2
46.4
19.7
135
98
2.9
13
21
86.4
77
3
2.5
201
119
35
294
22
4.94
12.1
431
66.3
116
61.6
9.93
1.54
6.5
0.90
0.63
4.53
0.71
7.01
1.49
<1
2
18.4
13.2
19.0
137
98
3.9
15
45
100
78
3
0.8
199
111
35
242
21
7.71
10.4
473
57.5
102
46.0
9.29
1.51
6.51
0.94
0.54
3.71
0.55
7.29
1.40
<1
3
17.5
12.8
16.8
170
93
3.9
18
71
153
42
3
0.6
180
102
28
220
16
2.60
9.81
504
50.5
104
47.2
7.21
1.32
4.93
0.70
0.48
3.48
0.56
5.15
1.37
0.1
1
15.2
6.57
19.3
171
102
6.2
24
49
167
69
2
1.0
202
119
33
217
17
4.02
12.0
549
64.8
132
58.0
9.42
1.53
6.07
0.84
0.52
3.65
0.56
5.98
1.24
<1
2
17.2
8.76
14.5
112
76
6.8
26
28
134
24
2
0.8
136
83
34
386
20
1.68
6.82
450
51.5
95.4
45.7
7.48
1.24
6.56
1.06
0.66
4.64
0.68
11.2
1.38
<1
<5
15.2
7.13
13.2
111
73
7.3
29
45
163
25
<3
0.5
123
87
35
417
19
1.63
6.30
468
51.3
97.6
47.4
7.54
1.30
6.54
1.05
0.67
4.70
0.73
12.3
1.36
<2
<5
15.2
7.77
K/U
Th / U
La / Th
Zr / Hf
Hf / Ta
La / Yb
Eu/ Eu*
3030
1.65
3.63
34.9
7.51
13.3
0.72
977
0.55
6.49
100.0
5.53
4.01
0.73
628
0.39
3.87
28.3
4.13
9.62
0.66
2233
1.39
3.60
41.9
4.70
14.6
0.59
2134
1.37
3.29
33.2
5.21
15.5
0.59
5256
2.31
3.32
42.7
3.76
14.5
0.68
4397
1.96
3.77
36.3
4.82
17.8
0.62
3539
2.13
3.39
34.4
8.12
11.1
0.54
3301
1.96
3.38
33.9
9.04
10.9
0.57
40±12 35±12 56±15
69.3
0.95
14.7
4.72
0.07
1.08
0.29
0.86
3.09
0.10
5.20
--
--
21±9 119±21 103±20
<85
61±15
23±9
73±17
35±12
70.8
0.92
13.2
3.59
0.14
1.05
0.28
3.84
1.58
0.10
4.9
77.7
0.75
10.1
3.36
0.35
0.77
0.24
0.88
1.81
0.07
3.58
44.4
0.44
17.8
5.83
0.70
4.16
20.0
0.85
3.46
0.16
0.92
77.9
0.68
8.0
6.21
<0.01
0.11
0.19
0.55
1.79
0.10
4.78
53.0
0.7
12.6
9.12
0.09
0.97
1.66
0.47
2.96
0.19
17.86
52.6
0.92
20.0
9.06
1.96
1.31
0.62
0.24
4.8
0.15
8.59
56.1
0.97
20.5
7.95
<0.01
1.23
0.41
0.26
4.87
0.13
7.43
58.9
0.98
15.7
13.14
0.03
0.82
0.25
0.58
3.64
0.17
6.19
70.2
0.85
12.4
7.30
0.32
0.64
0.23
0.92
2.43
0.21
4.41
56.6
1.08
21.4
6.05
<0.01
2.02
0.52
0.53
5.09
0.13
7.15
99.64
98.70
100.29
99.64
100.23
99.81
100.33
99.97
100.5
12.0
109
70
7.8
38
30
166
49
3
1.4
109
81
37
441
20
6.50
5.53
388
53.4
90.8
43.9
7.74
1.34
6.30
0.98
0.68
4.80
0.73
12.6
1.23
<1
5
14.6
25.4
8.75
94
48
43.5
35
110
142
10
1
0.6
73.1
58
35
365
14
0.83
3.57
295
39.7
80.9
40.5
8.58
1.82
6.69
1.02
0.55
3.68
0.56
9.66
0.85
<1
0.8
11.5
5.04
9.17
318
110
1.8
88
147
155
16
16
19.9
25.8
111
94
340
3
2.07
2.08
492
16.5
49.8
75.8
31.8
6.53
24.1
3.67
1.32
8.02
1.16
14.4
0.23
<1
2
3.36
28.5
7.22
189
51
2.7
35
5
133
111
18
1.1
75.7
49
24
297
12
3.40
2.81
284
35.7
70.8
33.1
5.68
1.07
3.98
0.57
0.38
2.71
0.41
8.47
0.72
<1
<4
8.98
6.08
15.4
475
49
3.4
30
106
304
34
35
9.3
110
78
32
150
12
7.55
7.89
334
42.9
87.2
44.3
10.6
2.38
8.12
1.23
0.58
3.76
0.57
9.39
0.95
<1
1
11.7
33.3
19.8
280
111
4.5
21
52
230
134
22.5
3.6
222
111
26
143
16
4.11
13.5
551
66.5
118
51.6
8.51
1.28
4.96
0.65
0.45
3.20
0.48
4.46
0.48
<1
2
17.0
12.9
18.8
273
106
3.9
18
54
169
92
10
2.6
194
117
32
224
19
4.68
11.8
538
57.9
108
50.1
8.15
1.37
5.03
0.74
0.45
3.09
0.48
4.83
1.05
<1
1
15.5
10.3
15.3
141
84
4.3
51
30
246
72.7
2.35
0.67
146
84
29
207
16
6.69
7.00
476
45.0
83.2
36.8
6.84
1.18
5.16
0.77
0.46
3.18
0.48
6.40
1.07
<1
0.4
13.2
11.3
10.6
107
64
6.1
22
31
179
26
6
0.7
93.7
66
31
354
14
1.63
4.26
345
41.7
80.4
36.8
6.08
1.17
5.46
0.89
0.54
3.79
0.60
10.9
1.04
<1
0.4
12.9
7.11
22.1
172
111
19.6
43
107
186
23
2
1.2
236
147
44
267
22
1.96
15.4
607
74.8
147
71.9
10.8
1.95
8.34
1.27
0.76
5.27
0.77
6.81
1.60
<2
1
18.1
8.43
516
0.57
3.66
35.0
10.2
11.1
0.59
2981
2.28
3.45
37.8
11.4
10.8
0.73
1008
0.12
4.91
23.6
62.6
2.06
0.72
2444
1.48
3.98
35.1
11.8
13.2
0.69
738
0.35
3.67
16.0
9.88
11.4
0.78
3089
1.32
3.91
32.1
9.29
20.8
0.60
3925
1.50
3.74
46.3
4.60
18.7
0.65
2674
1.17
3.41
32.3
5.98
14.2
0.61
2837
1.81
3.23
32.5
10.5
11.0
0.62
5012
2.15
4.13
39.2
4.26
14.2
0.63
100.35 100.46
Supplementary Material
15
TABLE 3, CONTINUED: CONCENTRATIONS OF ELEMENTS AT THE FOUR SECTIONS SHOWN IN FIGURE 8
Sample
3TJ-20 3TJ-21 3TJ-22 3TJ-23 3TJ-24 3TJ-25 3TJ-25A gTJ-26 gTJ-27 gTJ-28 gTJ-29 gTJ-30 gTJ-31 gTJ-32 gTJ-33 gTJ-34 gTJ-35 gTJ-36
Depth (cm) +15,0
0,-5
-5,-9 -9,-13 -13,-22 -22,-29 -29,-36 +3,0
0,-5
-5,-9 -9,-21 -21,-31 -31,-40 -40,-47 -47,-51 -51,-57 -57,-62 -62,-65
Ir ppt (35) 158±25 285±33 87±18 114±21 34±11 48±14
39±12 60±15 83±18 177±26 113±21 116±21 19±9
83±18
97±19 28±10
SiO2 %
TiO2 %
Al2O3 %
Fe2O3 %
MnO %
MgO %
CaO %
Na2O %
K2O %
P2O5 %
LOI %
74.3
0.9
11.0
5.57
<0.01
0.49
0.25
0.80
2.21
0.13
4.78
75.1
0.90
12.2
4.04
<0.01
0.52
0.27
1.04
2.19
0.08
3.83
78.8
0.75
9.7
3.19
0.04
0.56
0.52
0.80
2.01
0.11
3.44
58.4
1.00
20.8
5.24
<0.01
2.16
0.66
0.39
5.12
0.21
5.76
65.1
0.94
16.4
6.07
<0.01
1.58
0.49
0.31
4.09
0.13
4.72
TOTAL
100.38 100.02 100.19 100.38 100.42 100.04 100.15
99.86
99.71
99.88
57.3
1.17
19.9
7.59
0.01
1.18
0.35
0.42
4.81
0.11
7.19
60.1
1.22
20.2
4.81
<0.01
1.15
0.34
0.46
5.05
0.09
6.82
57.2
1.22
19.8
6.14
<0.01
1.25
0.52
0.61
4.68
0.12
8.88
76.5
0.86
11.9
3.42
<0.01
0.45
0.25
0.93
2.59
0.07
3.55
17.5
0.26
5.22
2.34
0.68
1.63
41.8
0.93
1.07
0.10
28.5
71.4
0.85
12.6
5.50
0.02
1.22
0.45
0.77
2.91
0.26
4.15
30
25
72.8
0.77
12.1
3.99
<0.01
1.26
1.27
0.84
2.63
0.08
4.43
61.2
0.94
17.0
8.10
<0.01
1.9
0.52
0.27
4.26
0.14
5.94
60.3
0.94
18.4
6.76
0.01
1.94
0.5
0.35
4.67
0.13
5.96
70.9
0.12
11.7
3.29
<0.01
0.48
0.25
0.11
2.43
0.12
8.63
51.8
0.87
20.5
6.17
0.07
2.70
1.48
0.22
5.12
0.13
11.14
54.5
0.93
20.9
5.55
0.05
2.86
1.37
0.24
5.19
0.22
7.44
71.2
0.97
14.1
4.02
<0.01
1.34
0.47
0.86
3.32
0.07
4.46
100.15 100.25
99.92
97.98
100.19
99.27
100.80 100.17
Sc ppm
V ppm
Cr ppm
Co ppm
Ni ppm
Cu ppm
Zn ppm
As ppm
Se ppm
Br ppm
Rb ppm
Sr ppm
Y ppm
Zr ppm
Nb ppm
Sb ppm
Cs ppm
Ba ppm
La ppm
Ce ppm
Nd ppm
Sm ppm
Eu ppm
Gd ppm
Tb ppm
Tm ppm
Yb ppm
Lu ppm
Hf ppm
Ta ppm
Ir ppb (36)
Au ppb
Th ppm
U ppm
10.9
187
92
4.9
33
10
264
33
4
0.9
98.1
83
33
350
18
1.92
4.57
324
41.9
74.9
33.8
7.01
1.35
5.68
0.88
0.52
3.63
0.55
10.8
1.05
<1
1
11.8
6.15
18.9
316
165
4.2
23
45
486
56
4
1.9
163
194
48
263
22
6.06
8.77
459
49.9
90.9
49.0
9.15
1.69
6.43
0.93
0.56
3.85
0.58
5.28
1.16
<1
0.4
13.3
7.22
20.2
232
145
3.3
17
19
379
35
3
1.9
197
203
44
215
24
3.74
11.0
504
60.2
99.3
48.6
9.67
1.46
6.41
0.90
0.56
3.89
0.60
5.79
1.32
<1
6
15.0
9.09
23.5
330
183
4.9
21
49
441
52
6
8
194
158
67
220
21
3.91
12.6
503
61.0
106
60.3
13.3
2.79
10.7
1.66
0.87
5.86
0.92
7.27
1.41
0.5
10
16.2
15.0
11.0
124
83
3.7
18
7
188
31
3
0.5
100
84
31
366
17
3.15
4.47
414
44.8
75.8
39.1
7.16
1.11
5.41
0.81
0.49
3.41
0.52
7.88
1.21
<1
0.2
12.2
7.07
10.8
223
81
3.5
18
20
233
33
2
1.1
101
89
36
428
17
2.75
4.49
495
50.4
88.9
44.5
7.68
1.39
6.86
1.12
0.67
4.62
0.70
13.5
1.22
0.2
0.4
14.3
5.12
11.5
118
73
3.3
19
19
222
27
4
0.9
102
86
38
396
18
2.50
4.26
361
45.8
87.6
42.1
7.27
1.48
6.66
1.10
0.69
4.85
0.72
12.3
1.23
0.2
1
13.8
5.17
8.32
107
49
11.0
32
55
49.1
8
<1
0.6
93.7
57
30
363
13
1.26
4.80
349
45.8
89.0
43.6
8.12
1.49
6.01
0.89
0.52
3.58
0.53
10.4
0.82
<1
0.4
11.5
2.87
21.8
179
109
24.2
52
242
104
26
2
0.3
251
100
44
271
21
1.81
13.7
552
62.4
108
51.8
11.9
1.93
9.1
1.38
0.68
4.50
0.62
6.42
1.24
<1
< 20
17.7
6.52
16.4
143
89
16.7
48
74
93.4
13
1
0.5
184
79
40
254
20
2.13
9.80
484
47.7
92.0
43.1
8.42
1.73
6.69
1.03
0.57
3.88
0.59
6.55
1.10
<1
2
13.9
3.3
11.1
99
59
12.4
49
16
72.7
8
1
0.5
129
64
42
335
17
1.22
6.47
358
40.0
80.5
44.9
8.77
1.79
7.17
1.12
0.63
4.33
0.64
8.77
1.01
<1
1
12.1
3.47
17.1
138
87
17.7
52
<2
107
94
<2
2.6
211
80
40
246
19
4.78
12.6
576
58.6
98.8
52.5
9.47
1.94
7.65
1.19
0.66
4.50
0.67
6.37
1.35
<1
2
15.5
10.6
16.0
154
84
14.6
51
43
99.1
10
1
0.2
179
85
35
177
18
2.02
10.6
508
43.9
87.3
34.8
7.14
1.27
5.14
0.75
0.45
3.10
0.47
4.46
0.92
<1
2
12.2
4.06
5.8
29
21
5.5
17
48
27.1
9
2
0.5
39.7
348
28
106
<3
0.74
1.89
132
17.1
38.4
24.9
7.56
1.63
6.38
1.01
0.39
2.43
0.37
1.22
0.21
<1
2
3.17
4.29
17.2
182
87
21.9
48
392
124
16
<2
0.6
212
106
35
153
18
1.08
11.7
521
56.5
97.7
44.1
7.70
1.50
5.36
0.77
0.52
3.72
0.53
4.18
1.03
0.2
2
14.5
3.80
20.3
198
86
20.8
14
227
147
30
2
0.6
18.0
106
39
156
19
1.66
14.0
545
54.6
99.4
40.3
9.08
2.02
7.96
1.29
0.62
4.05
0.60
11.4
1.28
<1
2
15.1
7.21
12.7
100
68
10.3
29
66
76.1
8
2
0.5
155
78
37
479
20
1.15
8.45
563
52.4
102
49.7
7.97
1.38
7.15
1.17
0.70
4.81
0.72
13.2
1.54
<1
0.4
16.2
5.00
9.23
85
48
9.7
26
42
40.3
5
1
0.4
105
363
70
29
304
16
5.19
435
36.2
70.1
34.9
5.93
1.12
5.03
0.82
0.49
3.43
0.52
8.90
0.96
<1
0.5
10.9
3.24
K/U
Th / U
La / Th
Zr / Hf
Hf / Ta
La / Yb
Eu/ Eu*
2983
1.92
3.55
32.4
10.3
11.5
0.65
5530
1.84
3.75
49.8
4.55
13.0
0.67
4612
1.65
4.01
37.1
4.39
15.5
0.57
2590
1.08
3.77
30.3
5.16
10.4
0.72
3041
1.73
3.67
46.4
6.51
13.1
0.55
1735
2.79
3.52
31.7
11.1
10.9
0.59
3516
2.67
3.32
32.2
10.0
9.44
0.65
5814
4.01
3.98
34.9
12.7
12.8
0.65
6519
2.71
3.53
42.1
5.18
13.9
0.57
10289
4.21
3.43
38.7
5.95
12.3
0.70
6962
3.49
3.31
38.2
8.68
9.24
0.69
3336
1.46
3.78
38.6
4.72
13.0
0.70
9549
3.00
3.60
39.7
4.85
14.2
0.64
4702
0.74
5.39
86.5
5.81
7.04
0.72
11185
3.82
3.90
36.6
4.06
15.2
0.71
5976
2.09
3.62
13.7
8.91
13.5
0.73
5512
3.24
3.23
36.3
8.57
10.9
0.56
2141
3.36
3.32
3.26
9.27
10.6
0.63
Supplementary Material
Supplemental Material Table 4: Average Ir values for the four sites in Supplemental Material Figure 3 and Table 4 (32).
Depth (cm)
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
average IR
59.0
84.0
84.0
141.2
91.1
80.9
109.8
121.9
118.1
101.5
77.0
75.8
75.8
75.8
75.8
62.0
62.0
66.3
65.0
65.0
65.0
55.5
60.8
60.8
36.5
30.0
46.7
43.7
43.7
43.7
65.0
61.0
61.0
61.0
61.0
68.0
68.0
68.0
33.5
33.5
33.5
33.5
34.5
34.5
34.5
34.5
32.0
25.0
16
Supplementary Material
17
Captions for Supplemental Material
Supplemental Material Figure 1, Detailed locality information for Figure 1 of paper. Numbers adjacent to ticks at specific stratigraphic levels refer to
localities listed in Supplemental Material Table 2.
Supplemental Material Figure 2: Detailed sections for footprint localities (numbers), pollen- and spore-producing levels (P), and macrofossil plant
localities (M). Numbers for footprint localities refer to Supplemental Material Table 2.
Supplemental Material Figure 3: Measured sections for four along strike sections and the average Ir concentrations (34. 35). Data from Supplemental
Material Tables 2, 3, and 4. Note that the highest Ir levels tend to be associated with the white-weathering claystone or adjacent coaly unit (Sections 1III). However, in the Grist Mills section, the highest Ir is within a red claystone under a light gray siltstone. We believe this red claystone correlates with
some part of the white claystone in the other sections, but contains hematite because it was formed under a more oxidizing environment, closer to the
border fault. In addition, there is another gray claystone lower in the Grist Mills section without an adjacent an Ir anomaly. Because, red units have the
lowest organic C content (oxidizing depositional and diagenetic environment) and black units the highest organic C content (reducing depositional and
diagenetic environment), it is clear that there is no consistent pattern between the Ir anomaly and redox state of the strata, arguing against a diagenetic
origin of the Ir anomaly. Note also that the uppermost Ir maximum in Section I, is within a gray sandstone containing visible clasts of white claystone,
and the relatively high Ir levels probably reflect a reworked clast eroded from the underlying white claystone.
Supplemental Material Figure 4: Detail and added contextual information for Figure 2 of text showing position detail of boundary section in the
Jacksonwald Syncline Composite section as well as correlation to two other Newark basin boundary sections, paleomagnetic polarity data, and footprint
and pollen and spore assemblage distribution. Note that “new taxon B” is the term applied to an unnamed form by (8), and cly, md, and ss, refer to
claystone, mudstone, and sandstone, respectively. Average Ir and pollen and spore percentages from Supplemental Material Figure 3. Interval of time
represented by Jacksonwald syncline detailed section based on linear extrapolation from the average accumulation rate implied by the astronomical
calibration of the Jacksonwald syncline composite section. Correlation throughout the Newark basin is based on the distinctive magnetic polarity and
cycle stratigraphy and the basalts.
Supplementary Material
References and Notes
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25 .
26 .
27 .
28.
29 .
P. E. Olsen, in Field Guide and Proceedings of the Twelfth Annual Meeting of the Geological Association of New Jersey, J. E. B. Baker, Ed.
(Geological Association of New Jersey, William Patterson College, Patterson, 1995), pp. 156-190.
P. E. Olsen, in Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 185-230.
D. Baird, Harvard College Mus. Comp. Zool. Bull. 117, 449 (1957).
Based on the relatively large manus, compared to the pes.
D. Baird, The Mosasaur 3, 125 (1986).
P. E. Olsen, J. Flynn, The Mosasaur 4, 1 (1989).
Based on the relatively small manus, radial arrangement of manual phalanges, and coalesced pads on digit IV.
S. M. Silvestri, M. J. Szajna, New Mexico Mus. Natural Hist. Sci. Bull. 3, 439 (1993).
P. E. Olsen, K. Padian, in The Beginning of the Age of Dinosaurs, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 259-273.
M. Lockley, A. P. Hunt, Dinosaur Tracks and Other Fossil Footprints of the Western United States (New York, Columbia University Press, 1995).
E. C. Rainforth, Geol. Soc. Amer., Abst. Prog. 32, 67 (2000).
P. E. Olsen, J. B. Smith, N. G. McDonald, J. Vert. Paleo. 18, 586 (1998).
P. E. Olsen, D. Baird, in The Beginning of the Age of Dinosaurs, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 61-87.
P. E. Olsen, E. C. Rainforth, in The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology, P. M.
LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press).
We are especially grateful to the many amateur paleontologists who allowed us access to their collections, without which this paper would have been
impossible. Most of the Late Triassic age footprint assemblages with quantitative data are in the private collections of M.J.S. and B.W.H. Most of the
Clifton locality data are from the collections of Donald Carter, Fred Cassel, and Ken McKim.
this paper.
R. S. Lull, State Connecticut, State Geol. Nat. Hist. Surv. Bull. 24, 1 (1915).
M. J. Szajna, S. M. Silvestri, Mus. Northern Arizona Bull. 60, 275 (1996).
D. Baird, The Mosasaur 3, 125 (1986).
M. J. Szajna, B. W. Hartline, in The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology, P. M.
LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press).
N. C. Fraser, pers. comm., 1999.
P. J. W. Gore, P. J. W. in Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 369400,
This particular footprint at the Culpeper basin has been termed Kayentapus minor (R. E. Weems, Virginia Div. Min. Res. Pub. 119, 113, (1990)). but is
in our view indistinguishable from large Anchisauripus sp.
P. E. Olsen, J. Flynn, The Mosasaur 4, 1 (1989).
P. E. Olsen, N. H. Shubin, M. E. Anders, Science 237, 1025 (1987).
H.-D. Sues, P. E. Olsen, D. M. Scott, P. S. Spencer, J. Vert. Paleo. 20, 275 (2000).
P. E. Olsen, R. W. Schlische, P. J. W. Gore, Field Guide to the Tectonics, Stratigraphy, Sedimentology, and Paleontology of the Newark Supergroup,
Eastern North America. (International Geological Congress, Guidebooks for Field Trips T351, American Geophysical Union, Washington, D.C.,
1989).
I. Lea, Jour. Acad. Nat. Sci. Phil. (series 2) 2, 185 (1853).
E. H. Colbert, Novitates 2230, 1 (1965).
18
Supplementary Material
30.
31.
32.
33.
34.
35.
36.
F. von Huene, Bull. Am. Mus. Nat. Hist. 32, 275 (1913).
All analyses by XRF and INAA except as noted.
Common datum for averaging is the base of the "blue-gray sandstone" at 0 m. Averaging performed by interpolated Ir values to common depth scale,
in 1 cm increments in columns and then averaging across equal depths in rows.
Material consisted of channel samples ( i.e. contiguous, continuously sampled intervals) covering an average of 3 cm. Samples were manually
crushed in plastic wrap, then mechanically in an alumina (ceramic) jaw crusher, and powdered using an automatic agate mill. Analyses for major and
selected trace elements was done by standard X-ray fluorescence spectrometry (XRF) procedures (for information on standards, procedures, accuracy
and precision, see W. U. Reimold, C. Koeberl, J. Bishop, Geochim. Cosmochim. Acta, 58, 2689, 1994). The rest of the elements, except the ICS Ir
(see ref. 36), were measured using instrumental neutron activation analysis (INAA). For details on the method, instrumentation, procedures,
standards, data reduction, accuracy, precision, etc., see C. Koeberl, J. Radioanalytic. Nuclear Chem., 168, 47 (1993). Samples were irradiated at the
TRIGA Mark II type reactor at the Atominstitut der Österreichischen Universitäten in Vienna for 7 hours at a flux of about 2 x 1012 ncm-2s-1.
Section I, lat 40°18’76”, long 075°50’56”; Section II, lat 40°18’76”, long 075°50’55”; Section III, lat 40°18’81”, long 075°50’38”; Grist Mills, lat
40°18’85”, long 075°51’20”.
Ir content was measured with the ICS (iridium coincidence spectrometry) system at the Institute of Geochemistry at the University of Vienna.
Crushed and powdered samples of about 50 mg each, as well as standards, were sealed into high purity quartz glass tubes, packed into aluminum foil
and an aluminum capsule, and irradiated for 24 to 48 at a flux of about 7 x 1013 ncm-2s-1. After a cooling period of about ten weeks, the samples
were first measured for five to eight hours. The lines of 192Ir at 316 and 468 keV were used, and the method requires that only coincident signals at
both lines are used for further processing. Samples that yielded results close to the detection limit (ca. 5 ppt) were measured for at least another 24
hours. The precision of the Ir measurements follows a logarithmic error function with the lowest relative errors in the highest concentrations (e.g.,
21±9 ppt vs. 285±33 ppt). For details on this method (standards, instrumentation, data reduction, precision, accuracy, etc.), see C. Koeberl, and H.
Huber, J. Radioanalytic. Nuclear Chem., 244, 655. (2000).
INAA data for Ir have detection limits of 1 - 2 ppb and are hence not reliable.
19