Supplementary Material 1 Supplemental Material Table 1: Details for Table 1 of the paper. Ichnotaxon Biological Counterpart (Trackmaker) Ameghinichnus Rhynchosauroides hyperbates Rhynchosauroides spp. Chirotherium lulli Procolophonichnium Gwyneddichnium Apatopus Brachychirotherium parvum new taxon B Batrachopus deweyii “Batrachopus” gracilis unnamed dinosaurian genus 1 Otozoum “Grallator” “Anchisauripus” Eubrontes giganteus Atreipus spp. Anomoepus scambus advanced synapsid, possibly trithelodontid (1) lepidosauromorph or primitive archosauromorph (2,3) lepidosauromorphs (2,3) crurotarsan, possibly aetosaurid (4) procolophonid parareptile (5) tanystropheid (6) phytosaur (3) rauisuchian crurotarsan (7) crurotarsan, possibly crocodylomorph (8) crocodylomorph (9) crocodylomorph (9) unknown dinosaur, perhaps herrerasaurid prosauropod dinosaurs (10,11) small theropod dinosaur (12) small to medium sized theropod dinosaur (12) large theropod dinosaur (12) ornithischian dinosaur (13) ornithischian dinosaur (14) Supplementary Material 2 Supplementary Materials: Table 2: Ages and localities for Figure 2 of paper and Figures 1 and 2 of supplementary materials. na, indicates that although many tracks are known from the locality and are in various institutions, we have not attempted to quantify their numbers for this study; Maximum size is based on a survey of the largest of the specimens (15). Ichnotaxa age Formation Abbrev Basin Ma -iation Locality 199 Portland 1 Hartford 199 McCoy Brook 2 Fundy 200 Portland 3 200 Turners Falls 4 200 Turners Falls 5 201 Portland 6 201 Boonton 7 Age Ichnotaxa #Non-Dinosaur Tracks #Dinosaur Tracks Stony Brook, Hettangian- Batrachopus deweyii, Kelsey Sinemurian Grallator parallelus, Furguson Anchisauripus tuberosus, Quarry, Eubrontes giganteus, Simsbury, CT Otozoum moodii, Anomoepus scambus na Five Islands Hettangian- Batrachopus deweyii, Provincial Sinemurian Batrachopus gracilis, Park, Blue Sac Grallator parallelus, shore Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus, Otozoum moodii Hartford Chicopee, MA Hettangian- Batrachopus deweyii, Sinemurian Grallator parallelus, Anchisauripus tuberosus, Anomoepus scambus Deerfield Stoughton Hettangian Batrachopus deweyii, Quarry, Batrachopus gracilis, Montague, MA Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus Deerfield Barton Cove, Hettangian Batrachopus deweyii, Lily Pond, Batrachopus gracilis, Gill, MA Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus Hartford Portland Hettangian Batrachopus deweyii, brownstone Grallator parallelus, Quarry, Anchisauripus tuberosus, Portland, CT Anomoepus scambus, Otozoum moodii Newark Boonton Dam, Hettangian Batrachopus deweyii, Boonton, NJ Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus #Non Dinosaur Taxa #Dinosaur Taxa %Dino- Comments saur Taxa na %Dino- Max. saur TheroTracks pod Track Size na 34 1 5 83 (16) na na na 35 2 5 71 (14,27) na na na 20 1 3 75 (revised from ref. 17) na na na 35 2 3 60 (revised from ref. 17,) na na na 35 2 4 67 (revised from ref. 17) na na na 25 1 4 80 (revised from ref. 17) 1 9 82 35 1 4 80 youngest Newark basin assemblage (16) Supplementary Material 201 Towaco 8 Newark 201 Towaco 9 Newark 3 Riker Hill Quarry, Roseland, NJ Hettangian Ameghinichnus n. sp., Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus Stephen Drive, Hettangian Rhynchosauroides sp., Montville, NJ Grallator parallelus, Anchisauripus tuberosus 201 East Berlin 10 and lower Turners Falls Hartford 201 Towaco 11 Newark Vreeland Quarry, Montville, NJ 201 Towaco 12 Newark Toms Point, Lincoln Park, NJ 201 Feltville 13 Newark Shrump Quarry, Roseland, NJ 201 Turkey Run 14 Culpeper Oak Hill Estate, Aldie, VA 201 Feltville 15 Newark Exeter Golf Course, Exeter, PA 201 McCoy Brook 16 Fundy Wasson Bluff 201 Shuttle Meadow 17 Hartford Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Anomoepus scambus Hettangian Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, cf. Anomoepus scambus Hettangian Grallator cf. G. parallelus, Anchisauripus tuberosus, Eubrontes giganteus Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus, Otozoum moodii Hettangian Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus 100 1400 93 35 2 4 67 the most densely sampled locality in Newark basin (17) 1 9 82 20 1 2 67 LA Rhynchosauroides (16) na na na 36 1 4 80 (revised from ref.17) 1 404 100 35 1 4 80 (16) 1 99 98 35 1 4 80 (16) 1 9 82 25 1 3 75 (16) na na na 35 0 4 100 (27) 0 4 100 33 0 3 100 (16) na na na 35 1 5 83 (27) na na na 34 1 3 75 (revised from ref. 17) Supplementary Material 4 201 Midland 18 Culpeper Licking Run Reservoir, Midland, VA 201 Feltville 19 Newark 201 Passaic 20 201 Passaic Hettangian Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Batrachopus deweyii na na na 34 1 4 80 (16) Vosseller Rd., Hettangian Anchisauripus tuberosus, Martinsville, Eubrontes giganteus NJ 0 6 100 35 0 2 100 oldest interflow assemblage (16) Newark Exeter Village, Hettangian Rhynchosauroides sp., Exeter, PA Grallator parallelus 1 3 60 11 1 1 50 (16) 21 Newark R. H. Hamilton Hettangian Rhynchosauroides n. sp., Quarry, and Batrachopus deweyii, Montclair Grallator parallelus, State Univ., Anchisauripus tuberosus, Clifton and Eubrontes giganteus Paterson, NJ 200 1000 83 35 2 3 60 FA, Eubrontes giganteus; superb specimens of all taxa (16) 202 Passaic 22 Newark Exeter Village, Rhaetian Exeter, PA Batrachopus deweyii, Rhynchosauroides sp., Grallator parallelus, Anchisauripus tuberosus 50 2 4 20 2 2 50 (16) 202 Passaic 23 Newark Exeter Village, Rhaetian Exeter, PA Rhynchosauroides sp., Grallator parallelus 120 60 33 23 1 1 50 (16) 202 Passaic 24 Newark Friendship Rhaetian Home, Exeter, PA 10 33 20 5 2 29 LA, definite Apatopus sp. modified from ref. (18) 202 Passaic 25 Newark Friendship Rhaetian Home, Exeter, PA Rhynchosauroides sp., 20 Batrachopus gracilis, Apatopus sp., ?Brachychirotherium, New taxon B, Grallator parallelus, Anchisauripus tuberosus Brachychirotherium sp., 1 Grallator parallelus 1 50 13 1 1 50 LA, definite Brachychirotherium (16) 202 Passaic 26 Newark Friendship Rhaetian Home, Exeter, PA Rhynchosauroides, Batrachopus gracilis, Brachychirotherium, New taxon B, Grallator parallelus, Anchisauripus tuberosus 200 57 22 4 2 33 very good and abundant Brachychirotherium. Modified from ref. (18) 150 Supplementary Material 5 202 Passaic 27 Newark Wingspread, Exeter, PA Rhaetian Rhynchosauroides sp., Gwyneddichnium sp., Batrachopus gracilis, Brachychirotherium, New Taxon B, Grallator parallelus, Anchisauripus tuberosus Grallator parallelus ~50 100 67 20 5 2 29 LA, Gwyneddichnium, very good Anchisauripus tuberosus. Modified from ref. (18) 202 Passaic 28 Newark Type Pine Rhaetian Ridge, Exeter, PA 0 4 100 12 0 1 100 (16) 202 Passaic 29 Newark Pathfinder Meadows, Exeter Rhaetian Grallator parallelus 0 2 100 11 0 1 100 (16) 202 Passaic 30 Newark Pathfinder Meadows, Exeter Township Rhaetian NewTaxon B, ?Brachychirotherium sp., Rhynchosauroides sp., Grallator parallelus 5 30 86 17 3 1 25 major reptile bone site (26,16) 202 Passaic 31 Newark West Orange, NJ Rhaetian Apatopus sp. 1 0 0 na 1 0 0 (19) 204 Passaic 32 Newark Heister's Rhaetian Creek, Exeter Township, PA Rhynchosauroides sp., New Taxon B, ?Gwyneddichnium sp., Grallator parallelus 4 75 95 9 3 1 25 Modified from ref. (8) 204 Passaic 33 Newark Tulpehocken Rd., Exeter Township Grallator parallelus 0 2 100 16 0 1 100 (16) 204 Passaic 34 Newark Shelbourn Rhaetian Square, Exeter Township, PA Rhynchosauroides sp., New Taxon B, Batrachopus gracilis, Brachychirotherium sp., Grallator parallelus 10 20 67 9 4 1 20 Modified from ref. (8) 205 Passaic 35 Newark Valley Ridge, Rhaetian Exeter Township, PA Grallator parallelus 0 12 100 9 0 1 100 (16) 205 Passaic 36 Newark Fairview Rhaetian Chapel, Exeter Township, PA Rhynchosauroides sp. 20 0 0 na 1 0 0 (16) 206 Passaic 37 Newark Passaic, NJ Procolophonichnium sp., ?Gwyneddichnium sp. 3 0 0 na 2 0 0 (19) Rhaetian Rhaetian Supplementary Material 6 206 Passaic 38 Newark Furnace Hill, Rhaetian Exeter Township, PA 206 Blomidon 39 Fundy Red Head, Rossway, Nova Scotia 207 Passaic 40 Newark Monacacy Hill ?Rhaetian , Amity Township, PA 208 Passaic 41 Newark Victoria Hill, ?Rhaetian Amity Township, PA 208 Passaic 42 Newark Douglassville, ?Norian Amity Township, PA ?Rhaetian 40 35 10 6 1 14 modified from Szajna and Hartline (20) LA C. lulli, LA Atreipus na na 18 3 3 50 (27) 2 20 na 2 1 33 (16) Rhynchosauroides sp., Apatopus lineatus, New Taxon B, Grallator parallelus, Anchisauripus tuberosus Rhynchosauroides sp., Gwyneddichnium sp., ?Batrachopus sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus Apatopus sp. 7 5 42 25 3 2 40 FA Batrachopus cf. B. gracilis (16) 5 200 98 10 4 2 33 modified from ref. (8) 209 Balls Bluff 43 Culpeper Floris, VA na na na na 1 0 0 (21) 209 Balls Bluff 44 Culpeper Manassas Norian National Park, VA Rhynchosauroides sp. na na na na 1 0 0 (22) 210 Passaic Newark Atreipus sp. 0 6 100 14 0 1 100 (16) 45 East Greenville Norian Rhynchosauroides sp., 75 Batrachopus cf. B. gracilis, Brachychirotherium sp., Chirotherium lulli, Atreipus sp., Grallator parallelus Rhynchosauroides sp., na Apatopus cf. A. lineatus, Brachychirotherium, cf. Atreipus sp., Grallator parallelus, Anchisauripus tuberosus Rhynchosauroides sp., 8 Brachychirotherium sp., Atreipus sp. Norian 211 Balls Bluff 46 Culpeper Culpeper Norian Crushed Stone Quarry, Stevensburg. VA Rhynchosauroides sp., Brachychirotherium spp.. Anchisauripus tuberosus, Anchisauripus sp. na na na 25 2 2 50 (23) 211 Passaic Newark Rhynchosauroides sp., Apatopus sp., Brachychirotherium sp., unnamed dinosaurian genus 1, Atreipus sp., Grallator parallelus, Anchisauripus tuberosus 50 50 50 16 3 4 57 FA Anchisauripus tuberosus Modified from ref. (13) 47 Rutherford, NJ Norian Supplementary Material 7 214 Passaic 48 Newark Limrick Airport Business Campus, Limerick, PA Norian Rhynchosauroides sp., Atreipus sp., Grallator parallelus 6 6 50 5 1 2 67 (16) 214 Passaic 49 Newark Sanatoga Commons, Liberty Hill, Sanatoga, PA Norian Gwyneddichnium sp., Atreipus sp. 2 2 50 11 1 1 50 (16) 214 Passaic 50 Newark Sanatoga Auto Norian Body Shop, Sanatoga, PA Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp. 32 8 20 14 2 1 33 (16) 215 Passaic 51 Newark Smith-Clark Quarry, Milford, NJ Norian 200 89 12 5 4 44 FA C. lulli. Modified from ref. (13) 215 Passaic 52 Newark Sanatoga Quarry, Sanatoga, PA Norian Rhynchosauroides sp., R. 25 hyperbates, Apatopus lineatus, Chirotherium lulli, Brachychirotherium sp., Atreipus sp., Grallator parallelus, new genus 2 Rhynchosauroides sp., 900 Brachychirotherium sp., Atreipus acadianus, New Genus 1 250 22 10 2 2 50 Modified from ref. (13) 215 Blomidon 53 Fundy Paddy Island Norian area, Medford, Nova Scotia na na na na 5 3 38 216 Passaic 54 Newark Heather Glen, Norian Limerick, PA Rhynchosauroides sp., R. hyperbates, Apatopus lineatus, Chirotherium lulli, Brachychirotherium, Atreipus, unnamed dinosaurian genus 1 Rhynchosauroides sp, Atreipus sp 12 3 20 12 1 1 50 216 Passaic 55 Newark Graterford Norian Prison, Graterford, PA Rhynchosauroides sp., Atreipus sp. 20 200 91 12 1 1 50 217 Passaic 56 Newark Nishisackawic Carnok Creek, Norian Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp. 50 80 62 13 2 1 33 (16) Modified from ref. (13) Supplementary Material 8 217 Passaic 57 Newark Mainland, PA CarnoNorian 217 Passaic 58 Newark Ridge Pike & CarnoTownship Ln. Norian Rd., Trappe, PA 218 Passaic 59 Newark Blooming Glen Quarry, Blooming Glen, PA Carnian 219 Lockatong 60 Newark Upper Fairview, PA Carnian 221 Lockatong 61 Newark Arcola, PA Carnian 222 Lockatong 62 Newark Gwynedd, PA Carnian 222 Stockton 63 Newark Grandview and Carnian South Nyack, NY 222 Stockton 64 Newark Haverstraw (south), NY 222 Stockton 65 Newark Haverstraw (north), NY Rhynchosauroides sp., Gwyneddichnium sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus 20 25 56 10 3 2 40 (16) 38 12 24 10 2 2 50 (16) 21 6 22 15 4 1 20 (16) 28 2 7 na 2 1 33 (16) 200 10 5 12 5 2 29 FA R. hyperbates, Modified from ref. (13) 20 2 9 12 1 1 50 FA Gwyneddichnium (13) Brachychirotherium sp., Atreipus sp. 4 2 33 12 1 1 50 (16) Carnian Brachychirotherium sp., Grallator parallelus 3 2 40 7 1 1 50 FA Grallator parallelus. Modified from ref. (24) Carnian Rhynchosauroides sp., Apatopus sp., Brachychirotherium sp., Atreipus sp., ?Grallator parallelus sp. 10 4 29 9 3 2 40 FA listed taxa; oldest Newark basin track assemblage? Modified from ref. (24) Rhynchosauroides sp., Apatopus lineatus, Gwyneddichnium sp., Brachychirotherium sp., Atreipus sp. Rhynchosauroides sp., Brachychirotherium sp., indt. dinosaur Rhynchosauroides sp., R. hyperbates, Gwyneddichnium sp., Apatopus sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus Gwyneddichnium sp., ?Atreipus sp. Supplementary Material Table 2, continued: Osteological Taxa Age Ma Formation 9 Abbreviation Basin Locality Age Osteological Taxon Comments 199 Portland 66 Hartford Sinemurian protosuchian Stegomus longipes type specimen, partial skeleton and skull (17) 201 McCoy Brook 67 Fundy Hines Quarry, Longmeadow, MA Wasson Bluff, Cumberland County, Nova Scotia Hettangian protosuchian Protosuchus micmac 202 Passaic 68 Newark Pathfinder Meadows, Exeter Township Rhaetian protosuchian Protosuchus sp., Hypsognathus fennerii 202 Passaic 69 Newark Rhaetian phytosauria indet. 202 Passaic 70 Newark Walnut Street, Exeter Township, PA Clifton, NJ Abundant skeleteal elements, site also has produced abundant prosauropod dinosaurs, rare ornithischian and possible theropod dinosaur teeth and bones, and abundant sphenosuchian skeletons and elements, and rare trithelodonts (25) Protosuchus: osteoderms, jaw, postcranial fragments. Hypsognathus, abundant skulls, partial skeletons and individual bones and teeth (16) teeth (16) Rhaetian Hypsognathus fennerii 205 Passaic 206 Passaic 71 72 Newark Newark Passaic, NJ Passaic, NJ Rhaetian Rhaetian Hypsognathus fennerii Hypsognathus fennerii type specimen, partial skeleton and mandibles (26) several partial skulls and skeletons (26) partial skull (26) 206 Blomidon 73 Fundy Red Head, Rossway, Norian-Rhaetian Annapolis Co., Nova Scotia phytosauria indet. rostrum, fragmentary mandible, osteoderm (27) 210 Passaic 74 Newark East Greenville Norian Hypsognathus fennerii partial skull (26) 211 Passaic 75 Newark Norian 76 Newark Norian phytosaur: Clepsysaurus pennsylvanicus phytosauria indet. teeth, skull and postcranial fragments (28) 214 Passaic 215 Passaic 77 Newark Norian phytosauria indet. tooth (16) 215 Blomidon 78 Fundy Norian Hypsognathus cf. H. fennerii 221 Lockatong 79 Newark Carnian phytosaur, cf. Rutiodon Complete skull and fragmentary postcranial elements , partial mandible (26) partial juvenile skull (29) 222 Stockton 80 Newark Hosensack Creek, lower Milford, PA Sanatoga Auto Body Shop, Sanatoga, PA Smith-Clark Quarry, Milford, NJ Paddy Island area, Medford, Nova Scotia Granton Quarry, North Bergen, NJ Edgewater, NJ Carnian Rutiodon manhattanensis partial postcranial skeleton (30) postcranial elements and teeth (16) Supplementary Material 14 Supplemental Material, Table 3: Concentrations of elements at the four sections shown is Supplemental Material Figure 3 (31,32,33). LOI, represents loss on ignition and corresponds roughly to organic matter content plus water. Depth is depth above (+) or below (-) base of blue-gray sandstone: first number is top of sample, second is bottom. (--), indicates problems with the mechanics of processing the sample (e.g. vial damage). The prefixes 1, 2, 3, and g correspond to samples from sections I, II, III, and Grist Mills sections. Coordinates for localities given in ref. 34. Sample 1TJ-1 Depth (cm) 0,+10 1TJ-2 0, -5 1TJ-3 1TJ-4 1TJ-5 1TJ-6 1TJ-7 1TJ-8 1TJ-9 1TJ-10 1TJ-11 2TJ-12 2TJ-13 2TJ-14 2TJ-15 2TJ-16 2TJ-17 2TJ-18 2TJ-19 -5,-10 -10,-14 -14,-22 -22,-34 -34,-42 -42,51 -51,-60 -60,-79 -79,-111 +8,0 0,-9 -9,-14 -14,-25 -25,-35 -35,-43 -43,-50 -50,-56 Ir ppt(35) 97±19 < 80 25±10 96±19 76±17 71±17 SiO2 % TiO2 % Al2O3 % Fe2O3 % MnO % MgO % CaO % Na2O % K2O % P2O5 % LOI % 75.1 0.75 10.9 5.10 0.04 0 .34 0.19 0.31 2.23 0.11 4.93 31.0 0.55 11.0 4.13 0.02 1.15 2.24 1.76 2.19 0.09 46.0 49.2 0.83 18.5 8.06 <0.01 1.2 1.34 0.36 3.51 0.12 16.7 62.7 0.89 17.8 4.96 0.14 0.87 0.37 0.40 3.55 0.04 8.04 64.2 0.97 16.7 5.92 0.13 0.88 0.53 0.48 3.29 0.06 6.80 53.3 0.98 17.5 13.4 <0.01 0.92 0.23 0.66 4.16 0.12 8.41 56.8 1.01 19.5 8.77 0.15 1.29 0.32 0.32 4.64 0.13 7.11 68.6 0.94 15.0 4.50 0.11 1.07 0.28 0.85 3.04 0.10 5.33 TOTAL 99.97 100.07 99.84 99.73 99.90 99.69 100.01 99.82 Sc ppm V ppm Cr ppm Co ppm Ni ppm Cu ppm Zn ppm As ppm Se ppm Br ppm Rb ppm Sr ppm Y ppm Zr ppm Nb ppm Sb ppm Cs ppm Ba ppm La ppm Ce ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm Ir ppb(36) Au ppb Th ppm U ppm 10.0 174 66 4.5 17 7 169 61 10 1.6 96.1 74 20 233 13 2.73 4.41 363 36.7 72.3 32.4 5.63 1.10 3.87 0.55 0.38 2.75 0.44 6.68 0.89 <1 2 10.1 6.11 21.5 159 221 13.4 68 485 185 30 9 0.3 102 142 274 426 6 8.88 6.45 286 66.2 125 148 57.5 12.8 49.6 8.19 2.40 16.5 2.16 4.26 0.77 <1 0.4 10.2 18.6 22.4 249 151 12.9 33 180 146 272 6 10.9 202 122 80 138 12 11.9 12.5 465 70.4 151 91.3 23.7 4.43 17.6 2.65 1.15 7.32 1.03 4.87 1.18 <2 3 18.2 46.4 19.7 135 98 2.9 13 21 86.4 77 3 2.5 201 119 35 294 22 4.94 12.1 431 66.3 116 61.6 9.93 1.54 6.5 0.90 0.63 4.53 0.71 7.01 1.49 <1 2 18.4 13.2 19.0 137 98 3.9 15 45 100 78 3 0.8 199 111 35 242 21 7.71 10.4 473 57.5 102 46.0 9.29 1.51 6.51 0.94 0.54 3.71 0.55 7.29 1.40 <1 3 17.5 12.8 16.8 170 93 3.9 18 71 153 42 3 0.6 180 102 28 220 16 2.60 9.81 504 50.5 104 47.2 7.21 1.32 4.93 0.70 0.48 3.48 0.56 5.15 1.37 0.1 1 15.2 6.57 19.3 171 102 6.2 24 49 167 69 2 1.0 202 119 33 217 17 4.02 12.0 549 64.8 132 58.0 9.42 1.53 6.07 0.84 0.52 3.65 0.56 5.98 1.24 <1 2 17.2 8.76 14.5 112 76 6.8 26 28 134 24 2 0.8 136 83 34 386 20 1.68 6.82 450 51.5 95.4 45.7 7.48 1.24 6.56 1.06 0.66 4.64 0.68 11.2 1.38 <1 <5 15.2 7.13 13.2 111 73 7.3 29 45 163 25 <3 0.5 123 87 35 417 19 1.63 6.30 468 51.3 97.6 47.4 7.54 1.30 6.54 1.05 0.67 4.70 0.73 12.3 1.36 <2 <5 15.2 7.77 K/U Th / U La / Th Zr / Hf Hf / Ta La / Yb Eu/ Eu* 3030 1.65 3.63 34.9 7.51 13.3 0.72 977 0.55 6.49 100.0 5.53 4.01 0.73 628 0.39 3.87 28.3 4.13 9.62 0.66 2233 1.39 3.60 41.9 4.70 14.6 0.59 2134 1.37 3.29 33.2 5.21 15.5 0.59 5256 2.31 3.32 42.7 3.76 14.5 0.68 4397 1.96 3.77 36.3 4.82 17.8 0.62 3539 2.13 3.39 34.4 8.12 11.1 0.54 3301 1.96 3.38 33.9 9.04 10.9 0.57 40±12 35±12 56±15 69.3 0.95 14.7 4.72 0.07 1.08 0.29 0.86 3.09 0.10 5.20 -- -- 21±9 119±21 103±20 <85 61±15 23±9 73±17 35±12 70.8 0.92 13.2 3.59 0.14 1.05 0.28 3.84 1.58 0.10 4.9 77.7 0.75 10.1 3.36 0.35 0.77 0.24 0.88 1.81 0.07 3.58 44.4 0.44 17.8 5.83 0.70 4.16 20.0 0.85 3.46 0.16 0.92 77.9 0.68 8.0 6.21 <0.01 0.11 0.19 0.55 1.79 0.10 4.78 53.0 0.7 12.6 9.12 0.09 0.97 1.66 0.47 2.96 0.19 17.86 52.6 0.92 20.0 9.06 1.96 1.31 0.62 0.24 4.8 0.15 8.59 56.1 0.97 20.5 7.95 <0.01 1.23 0.41 0.26 4.87 0.13 7.43 58.9 0.98 15.7 13.14 0.03 0.82 0.25 0.58 3.64 0.17 6.19 70.2 0.85 12.4 7.30 0.32 0.64 0.23 0.92 2.43 0.21 4.41 56.6 1.08 21.4 6.05 <0.01 2.02 0.52 0.53 5.09 0.13 7.15 99.64 98.70 100.29 99.64 100.23 99.81 100.33 99.97 100.5 12.0 109 70 7.8 38 30 166 49 3 1.4 109 81 37 441 20 6.50 5.53 388 53.4 90.8 43.9 7.74 1.34 6.30 0.98 0.68 4.80 0.73 12.6 1.23 <1 5 14.6 25.4 8.75 94 48 43.5 35 110 142 10 1 0.6 73.1 58 35 365 14 0.83 3.57 295 39.7 80.9 40.5 8.58 1.82 6.69 1.02 0.55 3.68 0.56 9.66 0.85 <1 0.8 11.5 5.04 9.17 318 110 1.8 88 147 155 16 16 19.9 25.8 111 94 340 3 2.07 2.08 492 16.5 49.8 75.8 31.8 6.53 24.1 3.67 1.32 8.02 1.16 14.4 0.23 <1 2 3.36 28.5 7.22 189 51 2.7 35 5 133 111 18 1.1 75.7 49 24 297 12 3.40 2.81 284 35.7 70.8 33.1 5.68 1.07 3.98 0.57 0.38 2.71 0.41 8.47 0.72 <1 <4 8.98 6.08 15.4 475 49 3.4 30 106 304 34 35 9.3 110 78 32 150 12 7.55 7.89 334 42.9 87.2 44.3 10.6 2.38 8.12 1.23 0.58 3.76 0.57 9.39 0.95 <1 1 11.7 33.3 19.8 280 111 4.5 21 52 230 134 22.5 3.6 222 111 26 143 16 4.11 13.5 551 66.5 118 51.6 8.51 1.28 4.96 0.65 0.45 3.20 0.48 4.46 0.48 <1 2 17.0 12.9 18.8 273 106 3.9 18 54 169 92 10 2.6 194 117 32 224 19 4.68 11.8 538 57.9 108 50.1 8.15 1.37 5.03 0.74 0.45 3.09 0.48 4.83 1.05 <1 1 15.5 10.3 15.3 141 84 4.3 51 30 246 72.7 2.35 0.67 146 84 29 207 16 6.69 7.00 476 45.0 83.2 36.8 6.84 1.18 5.16 0.77 0.46 3.18 0.48 6.40 1.07 <1 0.4 13.2 11.3 10.6 107 64 6.1 22 31 179 26 6 0.7 93.7 66 31 354 14 1.63 4.26 345 41.7 80.4 36.8 6.08 1.17 5.46 0.89 0.54 3.79 0.60 10.9 1.04 <1 0.4 12.9 7.11 22.1 172 111 19.6 43 107 186 23 2 1.2 236 147 44 267 22 1.96 15.4 607 74.8 147 71.9 10.8 1.95 8.34 1.27 0.76 5.27 0.77 6.81 1.60 <2 1 18.1 8.43 516 0.57 3.66 35.0 10.2 11.1 0.59 2981 2.28 3.45 37.8 11.4 10.8 0.73 1008 0.12 4.91 23.6 62.6 2.06 0.72 2444 1.48 3.98 35.1 11.8 13.2 0.69 738 0.35 3.67 16.0 9.88 11.4 0.78 3089 1.32 3.91 32.1 9.29 20.8 0.60 3925 1.50 3.74 46.3 4.60 18.7 0.65 2674 1.17 3.41 32.3 5.98 14.2 0.61 2837 1.81 3.23 32.5 10.5 11.0 0.62 5012 2.15 4.13 39.2 4.26 14.2 0.63 100.35 100.46 Supplementary Material 15 TABLE 3, CONTINUED: CONCENTRATIONS OF ELEMENTS AT THE FOUR SECTIONS SHOWN IN FIGURE 8 Sample 3TJ-20 3TJ-21 3TJ-22 3TJ-23 3TJ-24 3TJ-25 3TJ-25A gTJ-26 gTJ-27 gTJ-28 gTJ-29 gTJ-30 gTJ-31 gTJ-32 gTJ-33 gTJ-34 gTJ-35 gTJ-36 Depth (cm) +15,0 0,-5 -5,-9 -9,-13 -13,-22 -22,-29 -29,-36 +3,0 0,-5 -5,-9 -9,-21 -21,-31 -31,-40 -40,-47 -47,-51 -51,-57 -57,-62 -62,-65 Ir ppt (35) 158±25 285±33 87±18 114±21 34±11 48±14 39±12 60±15 83±18 177±26 113±21 116±21 19±9 83±18 97±19 28±10 SiO2 % TiO2 % Al2O3 % Fe2O3 % MnO % MgO % CaO % Na2O % K2O % P2O5 % LOI % 74.3 0.9 11.0 5.57 <0.01 0.49 0.25 0.80 2.21 0.13 4.78 75.1 0.90 12.2 4.04 <0.01 0.52 0.27 1.04 2.19 0.08 3.83 78.8 0.75 9.7 3.19 0.04 0.56 0.52 0.80 2.01 0.11 3.44 58.4 1.00 20.8 5.24 <0.01 2.16 0.66 0.39 5.12 0.21 5.76 65.1 0.94 16.4 6.07 <0.01 1.58 0.49 0.31 4.09 0.13 4.72 TOTAL 100.38 100.02 100.19 100.38 100.42 100.04 100.15 99.86 99.71 99.88 57.3 1.17 19.9 7.59 0.01 1.18 0.35 0.42 4.81 0.11 7.19 60.1 1.22 20.2 4.81 <0.01 1.15 0.34 0.46 5.05 0.09 6.82 57.2 1.22 19.8 6.14 <0.01 1.25 0.52 0.61 4.68 0.12 8.88 76.5 0.86 11.9 3.42 <0.01 0.45 0.25 0.93 2.59 0.07 3.55 17.5 0.26 5.22 2.34 0.68 1.63 41.8 0.93 1.07 0.10 28.5 71.4 0.85 12.6 5.50 0.02 1.22 0.45 0.77 2.91 0.26 4.15 30 25 72.8 0.77 12.1 3.99 <0.01 1.26 1.27 0.84 2.63 0.08 4.43 61.2 0.94 17.0 8.10 <0.01 1.9 0.52 0.27 4.26 0.14 5.94 60.3 0.94 18.4 6.76 0.01 1.94 0.5 0.35 4.67 0.13 5.96 70.9 0.12 11.7 3.29 <0.01 0.48 0.25 0.11 2.43 0.12 8.63 51.8 0.87 20.5 6.17 0.07 2.70 1.48 0.22 5.12 0.13 11.14 54.5 0.93 20.9 5.55 0.05 2.86 1.37 0.24 5.19 0.22 7.44 71.2 0.97 14.1 4.02 <0.01 1.34 0.47 0.86 3.32 0.07 4.46 100.15 100.25 99.92 97.98 100.19 99.27 100.80 100.17 Sc ppm V ppm Cr ppm Co ppm Ni ppm Cu ppm Zn ppm As ppm Se ppm Br ppm Rb ppm Sr ppm Y ppm Zr ppm Nb ppm Sb ppm Cs ppm Ba ppm La ppm Ce ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm Ir ppb (36) Au ppb Th ppm U ppm 10.9 187 92 4.9 33 10 264 33 4 0.9 98.1 83 33 350 18 1.92 4.57 324 41.9 74.9 33.8 7.01 1.35 5.68 0.88 0.52 3.63 0.55 10.8 1.05 <1 1 11.8 6.15 18.9 316 165 4.2 23 45 486 56 4 1.9 163 194 48 263 22 6.06 8.77 459 49.9 90.9 49.0 9.15 1.69 6.43 0.93 0.56 3.85 0.58 5.28 1.16 <1 0.4 13.3 7.22 20.2 232 145 3.3 17 19 379 35 3 1.9 197 203 44 215 24 3.74 11.0 504 60.2 99.3 48.6 9.67 1.46 6.41 0.90 0.56 3.89 0.60 5.79 1.32 <1 6 15.0 9.09 23.5 330 183 4.9 21 49 441 52 6 8 194 158 67 220 21 3.91 12.6 503 61.0 106 60.3 13.3 2.79 10.7 1.66 0.87 5.86 0.92 7.27 1.41 0.5 10 16.2 15.0 11.0 124 83 3.7 18 7 188 31 3 0.5 100 84 31 366 17 3.15 4.47 414 44.8 75.8 39.1 7.16 1.11 5.41 0.81 0.49 3.41 0.52 7.88 1.21 <1 0.2 12.2 7.07 10.8 223 81 3.5 18 20 233 33 2 1.1 101 89 36 428 17 2.75 4.49 495 50.4 88.9 44.5 7.68 1.39 6.86 1.12 0.67 4.62 0.70 13.5 1.22 0.2 0.4 14.3 5.12 11.5 118 73 3.3 19 19 222 27 4 0.9 102 86 38 396 18 2.50 4.26 361 45.8 87.6 42.1 7.27 1.48 6.66 1.10 0.69 4.85 0.72 12.3 1.23 0.2 1 13.8 5.17 8.32 107 49 11.0 32 55 49.1 8 <1 0.6 93.7 57 30 363 13 1.26 4.80 349 45.8 89.0 43.6 8.12 1.49 6.01 0.89 0.52 3.58 0.53 10.4 0.82 <1 0.4 11.5 2.87 21.8 179 109 24.2 52 242 104 26 2 0.3 251 100 44 271 21 1.81 13.7 552 62.4 108 51.8 11.9 1.93 9.1 1.38 0.68 4.50 0.62 6.42 1.24 <1 < 20 17.7 6.52 16.4 143 89 16.7 48 74 93.4 13 1 0.5 184 79 40 254 20 2.13 9.80 484 47.7 92.0 43.1 8.42 1.73 6.69 1.03 0.57 3.88 0.59 6.55 1.10 <1 2 13.9 3.3 11.1 99 59 12.4 49 16 72.7 8 1 0.5 129 64 42 335 17 1.22 6.47 358 40.0 80.5 44.9 8.77 1.79 7.17 1.12 0.63 4.33 0.64 8.77 1.01 <1 1 12.1 3.47 17.1 138 87 17.7 52 <2 107 94 <2 2.6 211 80 40 246 19 4.78 12.6 576 58.6 98.8 52.5 9.47 1.94 7.65 1.19 0.66 4.50 0.67 6.37 1.35 <1 2 15.5 10.6 16.0 154 84 14.6 51 43 99.1 10 1 0.2 179 85 35 177 18 2.02 10.6 508 43.9 87.3 34.8 7.14 1.27 5.14 0.75 0.45 3.10 0.47 4.46 0.92 <1 2 12.2 4.06 5.8 29 21 5.5 17 48 27.1 9 2 0.5 39.7 348 28 106 <3 0.74 1.89 132 17.1 38.4 24.9 7.56 1.63 6.38 1.01 0.39 2.43 0.37 1.22 0.21 <1 2 3.17 4.29 17.2 182 87 21.9 48 392 124 16 <2 0.6 212 106 35 153 18 1.08 11.7 521 56.5 97.7 44.1 7.70 1.50 5.36 0.77 0.52 3.72 0.53 4.18 1.03 0.2 2 14.5 3.80 20.3 198 86 20.8 14 227 147 30 2 0.6 18.0 106 39 156 19 1.66 14.0 545 54.6 99.4 40.3 9.08 2.02 7.96 1.29 0.62 4.05 0.60 11.4 1.28 <1 2 15.1 7.21 12.7 100 68 10.3 29 66 76.1 8 2 0.5 155 78 37 479 20 1.15 8.45 563 52.4 102 49.7 7.97 1.38 7.15 1.17 0.70 4.81 0.72 13.2 1.54 <1 0.4 16.2 5.00 9.23 85 48 9.7 26 42 40.3 5 1 0.4 105 363 70 29 304 16 5.19 435 36.2 70.1 34.9 5.93 1.12 5.03 0.82 0.49 3.43 0.52 8.90 0.96 <1 0.5 10.9 3.24 K/U Th / U La / Th Zr / Hf Hf / Ta La / Yb Eu/ Eu* 2983 1.92 3.55 32.4 10.3 11.5 0.65 5530 1.84 3.75 49.8 4.55 13.0 0.67 4612 1.65 4.01 37.1 4.39 15.5 0.57 2590 1.08 3.77 30.3 5.16 10.4 0.72 3041 1.73 3.67 46.4 6.51 13.1 0.55 1735 2.79 3.52 31.7 11.1 10.9 0.59 3516 2.67 3.32 32.2 10.0 9.44 0.65 5814 4.01 3.98 34.9 12.7 12.8 0.65 6519 2.71 3.53 42.1 5.18 13.9 0.57 10289 4.21 3.43 38.7 5.95 12.3 0.70 6962 3.49 3.31 38.2 8.68 9.24 0.69 3336 1.46 3.78 38.6 4.72 13.0 0.70 9549 3.00 3.60 39.7 4.85 14.2 0.64 4702 0.74 5.39 86.5 5.81 7.04 0.72 11185 3.82 3.90 36.6 4.06 15.2 0.71 5976 2.09 3.62 13.7 8.91 13.5 0.73 5512 3.24 3.23 36.3 8.57 10.9 0.56 2141 3.36 3.32 3.26 9.27 10.6 0.63 Supplementary Material Supplemental Material Table 4: Average Ir values for the four sites in Supplemental Material Figure 3 and Table 4 (32). Depth (cm) -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 average IR 59.0 84.0 84.0 141.2 91.1 80.9 109.8 121.9 118.1 101.5 77.0 75.8 75.8 75.8 75.8 62.0 62.0 66.3 65.0 65.0 65.0 55.5 60.8 60.8 36.5 30.0 46.7 43.7 43.7 43.7 65.0 61.0 61.0 61.0 61.0 68.0 68.0 68.0 33.5 33.5 33.5 33.5 34.5 34.5 34.5 34.5 32.0 25.0 16 Supplementary Material 17 Captions for Supplemental Material Supplemental Material Figure 1, Detailed locality information for Figure 1 of paper. Numbers adjacent to ticks at specific stratigraphic levels refer to localities listed in Supplemental Material Table 2. Supplemental Material Figure 2: Detailed sections for footprint localities (numbers), pollen- and spore-producing levels (P), and macrofossil plant localities (M). Numbers for footprint localities refer to Supplemental Material Table 2. Supplemental Material Figure 3: Measured sections for four along strike sections and the average Ir concentrations (34. 35). Data from Supplemental Material Tables 2, 3, and 4. Note that the highest Ir levels tend to be associated with the white-weathering claystone or adjacent coaly unit (Sections 1III). However, in the Grist Mills section, the highest Ir is within a red claystone under a light gray siltstone. We believe this red claystone correlates with some part of the white claystone in the other sections, but contains hematite because it was formed under a more oxidizing environment, closer to the border fault. In addition, there is another gray claystone lower in the Grist Mills section without an adjacent an Ir anomaly. Because, red units have the lowest organic C content (oxidizing depositional and diagenetic environment) and black units the highest organic C content (reducing depositional and diagenetic environment), it is clear that there is no consistent pattern between the Ir anomaly and redox state of the strata, arguing against a diagenetic origin of the Ir anomaly. Note also that the uppermost Ir maximum in Section I, is within a gray sandstone containing visible clasts of white claystone, and the relatively high Ir levels probably reflect a reworked clast eroded from the underlying white claystone. Supplemental Material Figure 4: Detail and added contextual information for Figure 2 of text showing position detail of boundary section in the Jacksonwald Syncline Composite section as well as correlation to two other Newark basin boundary sections, paleomagnetic polarity data, and footprint and pollen and spore assemblage distribution. Note that “new taxon B” is the term applied to an unnamed form by (8), and cly, md, and ss, refer to claystone, mudstone, and sandstone, respectively. Average Ir and pollen and spore percentages from Supplemental Material Figure 3. Interval of time represented by Jacksonwald syncline detailed section based on linear extrapolation from the average accumulation rate implied by the astronomical calibration of the Jacksonwald syncline composite section. Correlation throughout the Newark basin is based on the distinctive magnetic polarity and cycle stratigraphy and the basalts. Supplementary Material References and Notes 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25 . 26 . 27 . 28. 29 . P. E. Olsen, in Field Guide and Proceedings of the Twelfth Annual Meeting of the Geological Association of New Jersey, J. E. B. Baker, Ed. (Geological Association of New Jersey, William Patterson College, Patterson, 1995), pp. 156-190. P. E. Olsen, in Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 185-230. D. Baird, Harvard College Mus. Comp. Zool. Bull. 117, 449 (1957). Based on the relatively large manus, compared to the pes. D. Baird, The Mosasaur 3, 125 (1986). P. E. Olsen, J. Flynn, The Mosasaur 4, 1 (1989). Based on the relatively small manus, radial arrangement of manual phalanges, and coalesced pads on digit IV. S. M. Silvestri, M. J. Szajna, New Mexico Mus. Natural Hist. Sci. Bull. 3, 439 (1993). P. E. Olsen, K. Padian, in The Beginning of the Age of Dinosaurs, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 259-273. M. Lockley, A. P. Hunt, Dinosaur Tracks and Other Fossil Footprints of the Western United States (New York, Columbia University Press, 1995). E. C. Rainforth, Geol. Soc. Amer., Abst. Prog. 32, 67 (2000). P. E. Olsen, J. B. Smith, N. G. McDonald, J. Vert. Paleo. 18, 586 (1998). P. E. Olsen, D. Baird, in The Beginning of the Age of Dinosaurs, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 61-87. P. E. Olsen, E. C. Rainforth, in The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology, P. M. LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press). We are especially grateful to the many amateur paleontologists who allowed us access to their collections, without which this paper would have been impossible. Most of the Late Triassic age footprint assemblages with quantitative data are in the private collections of M.J.S. and B.W.H. Most of the Clifton locality data are from the collections of Donald Carter, Fred Cassel, and Ken McKim. this paper. R. S. Lull, State Connecticut, State Geol. Nat. Hist. Surv. Bull. 24, 1 (1915). M. J. Szajna, S. M. Silvestri, Mus. Northern Arizona Bull. 60, 275 (1996). D. Baird, The Mosasaur 3, 125 (1986). M. J. Szajna, B. W. Hartline, in The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology, P. M. LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press). N. C. Fraser, pers. comm., 1999. P. J. W. Gore, P. J. W. in Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 369400, This particular footprint at the Culpeper basin has been termed Kayentapus minor (R. E. Weems, Virginia Div. Min. Res. Pub. 119, 113, (1990)). but is in our view indistinguishable from large Anchisauripus sp. P. E. Olsen, J. Flynn, The Mosasaur 4, 1 (1989). P. E. Olsen, N. H. Shubin, M. E. Anders, Science 237, 1025 (1987). H.-D. Sues, P. E. Olsen, D. M. Scott, P. S. Spencer, J. Vert. Paleo. 20, 275 (2000). P. E. Olsen, R. W. Schlische, P. J. W. Gore, Field Guide to the Tectonics, Stratigraphy, Sedimentology, and Paleontology of the Newark Supergroup, Eastern North America. (International Geological Congress, Guidebooks for Field Trips T351, American Geophysical Union, Washington, D.C., 1989). I. Lea, Jour. Acad. Nat. Sci. Phil. (series 2) 2, 185 (1853). E. H. Colbert, Novitates 2230, 1 (1965). 18 Supplementary Material 30. 31. 32. 33. 34. 35. 36. F. von Huene, Bull. Am. Mus. Nat. Hist. 32, 275 (1913). All analyses by XRF and INAA except as noted. Common datum for averaging is the base of the "blue-gray sandstone" at 0 m. Averaging performed by interpolated Ir values to common depth scale, in 1 cm increments in columns and then averaging across equal depths in rows. Material consisted of channel samples ( i.e. contiguous, continuously sampled intervals) covering an average of 3 cm. Samples were manually crushed in plastic wrap, then mechanically in an alumina (ceramic) jaw crusher, and powdered using an automatic agate mill. Analyses for major and selected trace elements was done by standard X-ray fluorescence spectrometry (XRF) procedures (for information on standards, procedures, accuracy and precision, see W. U. Reimold, C. Koeberl, J. Bishop, Geochim. Cosmochim. Acta, 58, 2689, 1994). The rest of the elements, except the ICS Ir (see ref. 36), were measured using instrumental neutron activation analysis (INAA). For details on the method, instrumentation, procedures, standards, data reduction, accuracy, precision, etc., see C. Koeberl, J. Radioanalytic. Nuclear Chem., 168, 47 (1993). Samples were irradiated at the TRIGA Mark II type reactor at the Atominstitut der Österreichischen Universitäten in Vienna for 7 hours at a flux of about 2 x 1012 ncm-2s-1. Section I, lat 40°18’76”, long 075°50’56”; Section II, lat 40°18’76”, long 075°50’55”; Section III, lat 40°18’81”, long 075°50’38”; Grist Mills, lat 40°18’85”, long 075°51’20”. Ir content was measured with the ICS (iridium coincidence spectrometry) system at the Institute of Geochemistry at the University of Vienna. Crushed and powdered samples of about 50 mg each, as well as standards, were sealed into high purity quartz glass tubes, packed into aluminum foil and an aluminum capsule, and irradiated for 24 to 48 at a flux of about 7 x 1013 ncm-2s-1. After a cooling period of about ten weeks, the samples were first measured for five to eight hours. The lines of 192Ir at 316 and 468 keV were used, and the method requires that only coincident signals at both lines are used for further processing. Samples that yielded results close to the detection limit (ca. 5 ppt) were measured for at least another 24 hours. The precision of the Ir measurements follows a logarithmic error function with the lowest relative errors in the highest concentrations (e.g., 21±9 ppt vs. 285±33 ppt). For details on this method (standards, instrumentation, data reduction, precision, accuracy, etc.), see C. Koeberl, and H. Huber, J. Radioanalytic. Nuclear Chem., 244, 655. (2000). INAA data for Ir have detection limits of 1 - 2 ppb and are hence not reliable. 19
© Copyright 2026 Paperzz