Supplemental Report Submitted to the St. Johns River Water Management District, Contract #25325 STATISTICAL EVALUATION OF LONG TERM GROUNDWATER LEVEL IN NORTHEASTERN FLORIDA AND SOUTHERN GEORGIA Bin Gao1, Kathleen McKee2, Osvaldo Gargiulo1, and Wendy Graham1, 2 1 2 Agricultural & Biological Engineering, University of Florida, Gainesville, Florida 32611 Water Institute, University of Florida, Gainesville, Florida 32611 Table of Contents Table of Contents ______________________________________________________________ i 1. Long-Term Groundwater Levels and Trends _____________________________________ 1 1.1 SRWMD Florida Groundwater Trend ______________________________________ 1 3.2 USGS Georgia Groundwater Trend ________________________________________ 2 3.3 SJRWMD Groundwater Trend ____________________________________________ 3 2. Cluster Analysis of Long-Term Groundwater Level _______________________________ 9 2.1 Dendrogram____________________________________________________________ 9 2.2 Two Clusters __________________________________________________________ 10 2.3 Three Clusters _________________________________________________________ 12 2.4 Four Clusters __________________________________________________________ 14 Apendix S1 _________________________________________________________________ S1 Apendix S2 _________________________________________________________________ S2 Apendix S3 _________________________________________________________________ S3 Apendix S4 _________________________________________________________________ S4 i 1. Long-Term Groundwater Levels and Trends In this supplement report to the final report submitted under Contract #25325, the entire period of record for historic groundwater levels (upper Floridan) data in the Suwannee River basin and northeast Florida were analyzed for long-term trends and cluster analysis. In the final report under the original contract, groundwater level data available prior to 1980 was neglected since other time series of interest (principally groundwater withdrawal estimates) were not consistently available before then. There are 52 SRWMD wells that have more than 20 years of data. All available groundwater level data, for the entire period of record, were combined into annual time series, labeled as SRWMD Florida Groundwater, for trend analysis (Section 1.1). Units are feet above NGVD29. Groundwater level data from seven wells with more than 20 years of data were obtained from the USGS for the Georgia region of the study area. All available groundwater level data, for the entire period of record, were combined into time series, labeled as were labeled as USGS Georgia Groundwater for trend analysis (Section 1.2). Units were in feet below land surface. We received an additional set of groundwater level data from the SJRWMD for counties in northeastern Florida (Clay, Duval, Nassau, Putnam, and St Johns) and southeastern Georgia (Camden) that are east of the original study area. There were 73 wells with more than a 20 year data record. All available groundwater level data, for the entire period of record were combined into time series, labeled as SJRWMD Groundwater, for trend analysis (Section 1.3). Units are feet above mean sea level. 1.1 SRWMD Florida Groundwater Trend The 52 SRWMD groundwater wells with more than 20 years of data are located in 11 counties within the study area and each of the counties had at least three groundwater wells except Gilchrist County which had two (Figure 1.1). The raw data were processed into annual averages. Time series analysis was performed to statistically characterize each well time series as described in the methods section in the final report of contract #25325. LOWESS was used to determine whether the dataset contained monotonic or piecewise trends. Trend detections were conducted with the nonparametric statistical test (Mann-Kendall) on the residuals transformed using autocorrelation filtration (Appendix S1). Analysis was performed based on annual data to determine if long-term systematic trends existed. Therefore seasonality analysis was not performed. Finally, trends in historic groundwater levels were determined based on p-values and slopes (Table 1.1). A total of 13 wells were identified with either very certain (6), probably trending (1), or warning (6) monotonic trends, and all trends were downward (Figure 1.1 and Table 1.2). This is different from the results in the final report submitted under Contract #25325, which presented the trend analysis of SRWMD groundwater level data between 1980 and 2007. The trend analysis for this shorter data record only showed 8 trending wells with one very certain, two probable, and six warning trends. 1 Figure 1.1 Map of 52 SRWMD groundwater wells utilized for trend analysis and classification of trends. All trends are downwards. 1.2 USGS Georgia Groundwater Trend Seven wells in the Georgia study area had data records longer than 20 years. These groundwater wells were located in six counties within the state of Georgia (Figure 1.1). The raw data were processed by calculating annual averages. The same statistical analysis described above was conducted on this dataset (Appendix S2). Trends in the data were determined based on the p-value and the slope (Table 1.3). A total of 5 wells were identified with very certain (3) probably trending (1), or warning (1) monotonic trends, and all the trends were downward (Figure 1.2 and Table 1.4). This is similar to the results in the final report submitted under Contract #25325, which presented the trend analysis for USGS Georgia groundwater level data for the period between 1980 and 2007. The trend analysis for the shorter data record showed 4 trending wells at the same locations. 2 Figure 1.2 Map of 7 USGS groundwater wells used for trend analysis and classification of trends in Georgia. All trends are downwards. 1.3 SJRWMD Groundwater Trend After initial data analysis for the study area was completed, the St. Johns Water Management District (SJRWMD) requested trend analyses for additional groundwater levels in northeastern Florida (Clay, Duval, Nassau, Putnam, and St Johns Counties) and southeastern Georgia (Camden County) outside the previously defined study area. (Figure 1.3). The same statistical analysis was conducted on this dataset (Appendix S3). There were 73 additional wells with more than a 20 year time period, after omitting those that were already represented by the SRWMD groundwater level dataset. Trends in the data were determined based on the p-value and the slope (Table 1.5). A total of 28 wells were identified with very certain (21), probably trending (3), or warning (4) monotonic trends (Figure 1.3, Table 1.4). Of these trends, all were downward except one well with an upward trending slope in St. Johns County (ID 295357081294301). Figure 1.3 shows the distribution of the trending wells in the study area. This is different from the results in the final report submitted under Contract #25325, which presented the trend analysis for SJRWMD groundwater level data between 1980 and 2007. The trend analysis for the shorter time record showed 17 trending wells: seven were identified as very certain trending, four as probably trending, and six as having a warning trend. 3 Figure 1.3 Map of 73 SJRWMD groundwater wells used for trend analyses and classification of trends. All trends are downward except #105 which trends upward. Map IDs listed in Table 1.5. Table 1.1 Mann-Kendall trend analysis, with trend direction, of Florida annual groundwater levels from SRWMD. Site ID County -111811001 -092307001 -081926001 -081703001 -072215001 -072132001 -061734001 -061629001 -061114001 -052033002 -051933001 -051819001 -051428004 -051311001 Alachua Clay Alachua Alachua Bradford Bradford Colombia Columbia Lafayette Union Union Columbia Suwannee Suwannee SJRWMD Site ID A-0004 C-0009 A-0056 A-0002 B-0011 B-0012 CO0008 NA NA NA U-0004 CO0005 NA NA Trend Slope p-value Trend & Direction Type (ft/y) M -0.118 0.527 NT ↓ M -0.164 0.075 W ↓ M -0.104 0.253 NT ↓ M -0.062 0.123 NT ↓ M -0.188 0.004 VC ↓ M -0.099 0.175 NT ↓ M -0.053 0.156 NT ↓ M -0.062 0.187 NT ↓ M -0.160 0.090 W ↓ data not suitable for the analysis M -0.135 0.020 VC↓ M -0.104 0.130 NT ↓ M -0.223 0.088 W ↓ M -0.175 0.054 W ↓ 4 Site ID County -041923001 -041705001 -041625001 -041329001 -041223004 -041014001 -032012001 -031908001 -031601003 -031232001 -031105006 -031012001 -021934001 -021902001 -021805001 -021624001 -021516001 -021335001 -012029001 -012003001 -011727001 -011534001 -011511001 -011035001 +010719001 +011316001 +011422007 +011608001 +021002001 +021125001 +021432001 Union Columbia Columbia Suwannee Suwannee Lafayette Baker Baker Columbia Suwannee Suwannee Lafayette Baker Baker Columbia Columbia Suwannee Suwannee Baker Baker Columbia Hamilton Hamilton Madison Madison Hamilton Hamilton Hamilton Madison Hamilton Hamilton SJRWMD Site ID U-0001 CO0010 CO0011 NA NA NA BA0011 BA0015 NA NA NA NA BA0024 BA0005 CO0007 NA NA SW0078 BA0018 BA0009 CO0117 H-0071 NA NA NA NA H-0072 NA NA NA H-0073 -102006001 Alachua A-0019 -101722001 Alachua A-0068 -091938002 Alachua A-0075 -091607001 Gilchrist GI0065 -091420001 Gilchrist NA -062102001 Bradford B-0010 +021211001 Hamilton NA M=Monotonic; P=Piecewise; NA=not NT=No Trend; Trend Type M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M Slope p-value Trend & Direction (ft/y) -0.176 0.014 VC ↓ -0.119 0.164 NT ↓ -0.211 0.253 NT ↓ -0.118 0.245 NT ↓ -0.098 0.287 NT ↓ -0.165 0.200 NT ↓ -0.125 0.270 NT ↓ -0.108 0.006 VC ↓ -0.191 0.342 NT ↓ -0.150 0.093 W ↓ -0.072 0.433 NT ↓ -0.198 0.016 VC ↓ -0.282 0.187 NT ↓ -0.258 0.199 NT ↓ -0.214 0.042 PT ↓ -0.156 0.215 NT ↓ -0.159 0.111 NT ↓ -0.173 0.161 NT ↓ -0.181 0.014 VC ↓ -0.117 0.294 NT ↓ -0.147 0.103 NT ↓ -0.113 0.403 NT ↓ -0.183 0.152 NT ↓ -0.196 0.125 NT ↓ -0.125 0.094 W ↓ -0.074 0.282 NT ↓ -0.135 0.264 NT ↓ -0.133 0.191 NT ↓ -0.041 0.570 NT ↓ -0.086 0.316 NT ↓ -0.088 0.316 NT ↓ 0.707 0.175 NT ↑ P -0.017 0.958 NT ↓ 0.640 0.052 W↑ P -0.238 0.197 NT ↓ 1.021 0.265 NT ↑ P -0.170 0.112 NT ↓ 1.379 0.014 VC ↑ P -0.478 0.161 NT ↓ 0.186 0.291 NT ↑ P -0.098 0.284 NT ↓ 0.277 0.119 NT ↑ P -0.050 0.535 NT ↓ 0.227 0.392 NT ↑ P -0.345 0.115 NT ↓ available, VC=Very Certain, PT=Probably Trend, W=Warning, 5 Table 1.2 Summary of monotonic trends (all downward) of SRWMD Florida annual groundwater level time series. Label Count Site ID -072215001 -041923001 -051933001 -031908001 Very Certain 6 -031012001 -012029001 Probably Trend 1 -021805001 -092307001 -061114001 -051428004 -051311001 Warning 6 -031232001 +010719001 Table 1.3 Mann-Kendall trend analysis, with trend direction, of Georgia annual groundwater levels from USGS. Slope Site ID County Trend Type p Value Trend & Direction (ft/y) 312712082593301 Tift M -0.888 0.000 VC ↓ 310706082155101 Ware M -0.186 0.050 PT ↓ 304942082213801 Charlton M -0.339 0.099 W ↓ 313146083491601 Worth M -0.651 0.000 VC ↓ 310813083260301 Cook M -0.342 0.000 VC ↓ -0.324 0.243 NT ↓ 314330084005402 Worth P 0.244 0.201 NT ↑ 0.440 0.010 W↑ 304949083165301 Lowndes P -0.063 0.721 NT ↓ M=Monotonic; P=Piecewise; NA=not available, VC=Very Certain, PT=Probably Trend, W=Warning, NT=No Trend; Table 1.4 Summary of monotonic trends (all downward) of USGS Georgia annual groundwater level time series. Label Count Site ID Very Certain 3 310813083260301 312712082593301 313146083491601 Probably Trend 1 310706082155101 Warning 1 304942082213801 Table 1.5 Mann-Kendall trend analysis, with trend direction, of Florida annual groundwater levels from SJRWMD. Map IDs are used in Figure 1.3. Map ID Well ID # County 53 54 55 56 57 58 59 A-0001 A-0005 A-0071 BA0019 C-0120 P-0001 P-0008 Alachua Alachua Alachua Baker Clay Putnam Putnam Trend Type M M M M M M M 6 Slope (ft/y) -0.49 -0.07 -0.14 -0.19 -0.25 -0.16 -0.15 p-value 0.00 0.50 0.35 0.14 0.00 0.03 0.29 Trend and Direction VC↓ NT↓ NT↓ NT↓ VC↓ PT↓ NT↓ Map ID Well ID # County 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 100 101 102 103 104 105 106 107 108 109 110 111 112 113 N-0051 WN0018 C-0018 C-0094 C-0123 C-0128 C-0607 D-0094 D-0160 D-0254 D-0424 D-0667 N-0046 N-0051 N-0121 P-0016 P-0017 P-0172 P-0242 P-0270 P-0373 P-0408 P-0416 P-0427 P-0450 P-0469 P-0474 P-0510 SJ0005 SJ0263 SJ0317 SJ0413 SJ0516 304830081481201 305627081473101 303939081312601 301018081415101 300450081482801 295357081294301 302724081244801 303518081275001 301537081441901 302227081435001 303658081422601 301522081331301 302115082232201 300834081421301 Nassau Nassau Clay Clay Clay Clay Clay Duval Duval Duval Duval Duval Nassau Nassau Nassau Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam Putnam St. Johns St. Johns St. Johns St. Johns St. Johns Camden, Ga Camden, Ga Nassau Clay Clay St. Johns Duval Nassau Duval Duval Nassau Duval Baker Clay Trend Slope p-value Trend and Type (ft/y) Direction data not suitable for the analysis M -0.02 0.84 NT↓ M -0.13 0.04 PT↓ M -0.26 0.00 VC↓ M -0.04 0.79 NT↓ M -0.15 0.33 NT↓ M -0.14 0.02 VC↓ M -0.03 0.49 NT↓ M -0.35 0.00 VC↓ M 0.00 0.97 NT M -0.22 0.09 W↓ M -0.29 0.00 VC↓ M -0.23 0.01 VC↓ M -0.08 0.37 NT↓ M 0.17 0.21 NT↑ M -0.17 0.25 NT↓ M 0.03 0.84 NT ↑ M 0.42 0.34 NT ↑ M -0.03 0.78 NT↓ M 0.01 0.74 NT ↑ M -0.08 0.27 NT↓ M -0.04 0.54 NT↓ M -0.08 0.39 NT↓ M 0.01 0.80 NT↑ M 0.02 0.60 NT ↑ M 0.08 0.52 NT ↑ M -0.05 0.56 NT↓ M -0.01 0.81 NT↓ M -0.22 0.01 VC↓ M -0.06 0.15 NT↓ M -0.11 0.07 W↓ M -0.08 0.29 NT↓ M -0.01 0.76 NT↓ M -0.51 0.43 NT↓ M -0.05 0.88 NT↓ M 0.07 0.31 NT ↑ M -0.11 0.14 NT↓ M -0.32 0.00 VC↓ M 0.11 0.01 VC ↑ M -0.04 0.40 NT↓ M 0.01 0.90 NT ↑ M 0.17 0.39 NT ↑ M -0.09 0.41 NT↓ M -0.36 0.00 VC↓ M -0.62 0.08 W↓ M 0.03 0.94 NT ↑ M -0.17 0.38 NT↓ 7 Map ID Well ID # County Trend Slope p-value Trend and Type (ft/y) Direction 114 301817081374902 Duval M -0.19 0.02 VC↓ 115 295713081203401 St. Johns M -0.07 0.18 NT↓ 116 301817081374901 Duval M -0.17 0.02 VC↓ 117 302538081253101 Duval M -0.33 0.00 VC↓ 118 300717081381001 St. Johns M -0.32 0.00 VC↓ 119 300649081485901 Clay M -0.38 0.00 VC↓ 120 301617081421601 Duval M -0.32 0.15 NT↓ 121 292528081383501 Putnam M -0.03 0.00 VC↓ 122 302608081354903 Duval M -0.26 0.06 W↓ 123 302608081354902 Duval M -0.24 0.01 VC↓ 124 302801081375101 Duval M -0.36 0.00 VC↓ 125 302608081354901 Duval M -0.27 0.03 PT↓ 126 301551081415701 Duval M -0.36 0.11 NT↓ 127 301844081403801 Duval M -0.21 0.01 VC↓ 128 302416081522601 Duval M -0.02 0.78 NT↓ 129 302550081331501 Duval M -0.56 0.00 VC↓ 130 302416081522602 Duval M -0.07 0.15 NT↓ 131 304756081311101 Camden, Ga M 0.05 0.73 NT ↑ 132 304512081343601 Camden, Ga M 0.57 0.55 NT ↑ M=Monotonic; P=Piecewise; NA=not available, VC=Very Certain, PT=Probably Trend, W=Warning, NT=No Trend; Table 1.6 Summary of monotonic trends (all downward except underlined Site ID is upward) of SJRWMD annual groundwater level time series. Map IDs are in parentheses. Label Count Site ID A-0001 (53) C-0094 (63) C-0120 (57) C-0607 (66) D-0160 (68) D-0667 (71) N-0046 (72) SJ0005 (88) 302550081331501 (129) Very Certain 21 301817081374902 (114) 292528081383501 (121) 301817081374901 (116) 300450081482801 (104) 302538081253101 (117) 302608081354902 (123) Probably 3 Trend C-0018 (62) P-0001 (58) Warning D-0424 (70) SJ0317 (90) 4 8 295357081294301 (105) 300717081381001 (118) 302801081375101 (124) 303658081422601 (110) 300649081485901 (119) 301844081403801 (127) 302608081354901 (125) 301522081331301 (111) 302608081354903 (122) 2. Cluster Analysis of Long-Term Groundwater Level A statistical cluster analysis was conducted using all three datasets of groundwater level time series: SRWMD wells in Florida, USGS wells in Georgia, and SJRWMD data containing SJRWMD wells and USGS wells in Northeast Florida and Southeast Georgia. The groundwater level data for each well were first normalized by subtracting the mean groundwater level and dividing by the groundwater level standard deviation for the entire period of record (note that the period of record varied from well to well). A total of 102 wells with coincident and continuous, normalized data from 1986-2005 were analyzed. Following is the summary of the results. 2.1 Dendrogram An agglomerative heirarchical cluster analysis (AHCA) was performed on the normalized groundwater level time series. The dendrogram (i.e., cluster tree) of the cluster structure is shown in Figure 2.1. The roots of the tree are different clusters and the leaves represent individual observations of groundwater levels. The cluster height is the value of the criterion associated with the agglomerative algorithm. The data can be separated into different clusters depending on chosen height. In this study, we clustered the data into 2, 3, and 4 clusters (Appendix S4). Figure 2.1 Dendrogram formed by agglomerative heirarchical cluster analysis (AHCA). 9 2.2 Two Clusters The data separate into 2 clusters when a large height was used (>15) (Figure 2.2). The normalized groundwater level data were averaged for each cluster and plotted together in Figure 2.2A. The time series of cluster 1 and 2 show significant differences in their patterns. The averaged and normalized groundwater level in cluster 2 are all negative suggesting that most of the groundwater levels in this cluster were lower in the selected time period (i.e., 1986-2005) than in the earlier period of record available. Figure 2.2B shows the spatial location of the wells in each cluster. In the two-cluster analysis results, most of the wells fall into cluster 1 and are predominantly located in the southern part of the study area. Fewer wells (14) fall into cluster 2 and are located in Georgia (4), and Duval (8) and Clay (2) County Florida. Almost all the wells (13) in cluster 2 have a relatively large slope with a groundwater level decline rate larger than 0.15 ft/year (slope between -0.17 and -0.89) except one well in Duval County (Map ID 106, Well ID 302724081244801, slope -0.04 ft/year, no trend). The 2-cluster analysis in the final report submitted under Contract #25325 included 100 identical wells the groundwater level data were normalized using statistics from a shorter time period (i.e., 1986-2005). The cluster results are qutie different between the two analyses. When the shorter period of record was used the wells generally separated in clusters that were either had predominantly moderate to large negative slopes (74) and those with predominantly positive or very small negative slopes (26). 10 Cluster 1 Two Clusters Cluster 2 1.5 1 0.5 0 -0.51985 1990 1995 2000 2005 2010 -1 -1.5 -2 (A) (B) Figure 2.2 2-Cluster Plot and Map. (A) Averages of normalized groundwater levels for clusters 1 (blue) and 2 (red). (B) Spatial distribution of the groundwater wells for clusters 1 (blue) and 2 (red). 11 1.3 Three Clusters The data separate into 3 clusters when a smaller height was used (between 14 to 15) (Figure 2.3). The normalized groundwater level data were averaged for each cluster and plotted together in Figure 2.3A. Figure 2.3B shows spatial location of the wells in each cluster. Most of the wells fall into cluster 1, are predominantly located in the southern part of the study area, and generally coincide with those in cluster 1 in the two cluster analysis. Few wells fall into cluster 2, most of these have upward slopes, and one of them has a very certain upward trend (295357081294301). Cluster 3 also has fewer wells than cluster 1 and these wells are located in Georgia (4), and Duval (8) and Clay (2) County Florida, coinciding with those in Cluster 2 of the two cluster analysis. Almost all the wells in cluster 3 have a relatively steep slope with a groundwater level decline rate bigger than 0.15 ft/year (slope between -0.17 and -0.89) except one well in Duval County (Map ID 106, Well ID 302724081244801, slope -0.04 ft/year, no trend). The 3-cluster analysis in the final report submitted under Contract #25325 included 100 identical wells but the groundwater level data were normalized using statistics from a shorter time period (i.e., 1986-2005). The 3- cluster results from both analyses are very similar with respect to distributions of wells in each of the three clusters. 12 Cluster 1 Cluster 2 Cluster 3 Three Clusters 3 2 1 0 1985 -1 1990 1995 -2 2000 2005 2010 (A) (B) Figure 2.3 3-Cluster Plot and Map. (A) Averages of normalized groundwater levels for clusters 1 (blue), 2 (red), and 3(yellow). (B) Spatial distribution of the groundwater wells for clusters 1 (blue), 2 (red), and 3 (yellow). 13 2.4 Four Clusters The data separate into 4 clusters when a smaller height was used (between 10 to 14) (Figure 2.4). The normalized groundwater level data were averaged for each cluster and plotted together in Figure 2.4A. Figure 2.4B shows spatial location of the wells in each cluster. Most of the wells fall into clusters 1 and 2, are predominantly located in the southern part of the study area, and generally coincide with those in cluster 1 in the two and three cluster analyses. Most of the wells in cluster 3 have upward slopes and one of them has a very certain upward trend (295357081294301). All cluster 4 wells in this section are located in Georgia (4), Clay (2) and Duval (8) County Florida, coinciding with those in cluster 2 of the two cluster analysis and cluster 3 of the 3 cluster analysis. Almost all the wells in cluster 4 have a relatively steep slope with a groundwater level decline rate bigger than 0.15 ft/year (slope between -0.17 and -0.89) except one well in Duval County (Map ID 106, Well ID 302724081244801, slope -0.04 ft/year, no trend). The 4-cluster analysis in the final report submitted under Contract #25325 included 100 identical wells but the groundwater level data were normalized using statistics from a shorter time period (i.e., 1986-2005). The 4- cluster results from both analyses are very similar with respect to distributions of wells in each of the four clusters. 14 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Four Clusters 3 2 1 0 1985 -1 1990 1995 2000 2005 2010 -2 -3 (A) (B) Figure 2.4 4-Cluster Results. (A) Averages of normalized groundwater levels for clusters 1 (blue), 2 (red), 3 (yellow) and 4 (green). (B) Spatial distribution of the groundwater wells for clusters 1 (blue), 2 (red), 3 (yellow), and 4 (green). 15 Appendix S1: SRWMD Florida Groundwater Level Trend Following is a summary of the trend detection plots of SJRWMD groundwater level data. Annual average groundwater level data in feet above NGVD 1929 were labeled as “data” (yaxes) and plotted against record year (x-axes). Data 40 45 50 FL 1. GW Alachua -111811001 Figure Station: -111811001 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 40 45 Data 50 FL GW Alachua -102006001 Trend Piecewise Analysis - Aggregation mode = Year new.xls - Data Set: ID -102006001 Linear Regression Man-Kendall Regression 1975 1980 1985 1990 1995 2000 Year S1-1 2005 42 36 38 40 Data 44 46 48 Trend Piecewise Analysis - Aggregation mode = Year FL GW Alachua -101722001 FGW.xls - Data Set: ID -101722001 Linea r Regression Man-Kendall Regression 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 80 82 Data 84 86 88 FL GW Clay -92307001 Figure 1. Station: -92307001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year S1-2 2005 58 52 54 56 Data 60 62 64 FL Analysis GW Alachua -91938002 Trend Piecewise - Aggregation mode = Year new.xls - Data Set: ID -91938002 Linear Regression Man-Kendall Regression 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 40 45 50 Data 55 60 Trend Piecewise Analysis - Aggregation FL GW Gilchrist -91607001mode = Year FGW.xls - Data Set: ID -91607001 Linea r Regression Man-Kendall Regression 1975 1980 1985 1990 1995 2000 Year S1-3 2005 8 6 Data 10 12 Trend Piecewise Analysis - Aggregation mode = Year FL GW Gilchrist -91420001 FGW.xls - Data Set: ID -91420001 Linea r Regression Man-Kendall Regression 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 42 40 38 Data 44 46 FL GW -81926001& Data Figure 1. Alachua Station: -81926001 Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-4 2005 33 31 32 Data 34 35 36 FL GW Alachua-81703001 -81703001& Data Figure 1. Station: Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 82 80 78 Data 84 86 FL GWFigure Bradford -72215001, p-Value = 0.004, VC 1. Station: -72215001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year S1-5 2005 62 58 60 Data 64 66 Figure 1. Station: -72132001 & Data FL GW Bradford -72132001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 58 56 54 Data 60 62 Trend Piecewise Analysis - Aggregation FL GW Bradford -62102001mode = Year FGW.xls - Data Set: ID -62102001 Linea r Regression Man-Kendall Regression 1975 1980 1985 1990 1995 2000 Year S1-6 2005 34 32 33 Data 35 36 FLGW GW1.Columbia Lafayette -61114001& Data FL -61734001 Figure Station: -61734001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 22 20 Data 24 FL GW1.Columbia -61629001& Data Figure Station: -61629001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year S1-7 2005 60 62 64 Data 66 68 FL GW Columbia -61734001 Figure 1. Station: -61114001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 54 52 50 Data 56 58 FL GW Hamilton p-Value = Figure 1.-51933001, Station: -51933001 & 0.020, Data VC VC Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-8 2000 2005 42 38 40 Data 44 46 FL GW 1. Columbia -51819001 & Data Figure Station: -51819001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 15 20 Data 25 30 FL GW 1. Suwannee -51428004& Data Figure Station: -51428004 Linea r regression Mann-Kendall Slope 1985 1990 1995 2000 Year S1-9 2005 20 15 Data 25 FL GW Suwannee -51311001 Figure 1. Station: -51311001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 56 54 52 Data 58 60 62 FL GW Union -41923001, = 0.014, VC Figure 1. Station:p-Value -41923001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-10 2000 2005 FL GW Columbia -41705001 48 42 44 46 Data 50 52 Figure 1. Station: -41705001 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 30 35 Data 40 45 FLFigure GW Columbia -41625001 1. Station: -41625001 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 Year S1-11 2005 26 20 22 24 Data 28 30 32 Figure 1. Station: -41329001 & Data FL GW Suwannee -41329001 Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 26 24 22 Data 28 30 FL GW1.Suwannee -41223004& Data Figure Station: -41223004 Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-12 2005 35 40 Data 45 50 FL GW Lafayette Figure 1. Station:-41014001 -41014001 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 48 50 52 Data 54 56 FL GW1.Baker -32012001 Figure Station: -32012001 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-13 2005 55 45 50 Data 60 FL GW Baker -31908001, = 0.006, VC Figure 1. Station:p-Value -31908001 & Data Linea r regression Mann-Kendall Slope 1960 1970 1980 1990 2000 Year Data = annual average groundwater level in feet above NGVD 1929 50 55 Data 60 65 Figure 1. Columbia Station: -31601003 & Data FL GW -31601003 Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-14 2005 24 26 28 Data 30 32 34 FL GW Suwannee Figure 1. Station: -31232001 -31232001 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 28 26 24 22 Data 30 32 FL GW Suwannee -31105006 Figure 1. Station: -31105006 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-15 2005 64 58 60 62 Data 66 68 70 FL GW Lafayette p-Value&=Data 0.016, VC Figure 1. -31012001, Station: -31012001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 54 52 50 48 Data 56 58 FL GW1.Baker -21934001 Figure Station: -21934001 & Data Linear regression Mann-Kendall Slope 1990 1995 2000 Year S1-16 2005 52 48 50 Data 54 56 FL GW Baker -21902001 Figure 1. Station: -21902001 & Data Linear regression Mann-Kendall Slope 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 52 50 48 46 Data 54 56 58 FLFigure GW Columbia 1. Station: -21805001 -21805001 & Data Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-17 2005 56 48 50 52 54 Data 58 60 62 FL GW Columbia -21624001 Figure 1. Station: -21624001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 54 52 50 48 46 Data 56 58 60 FL GW1.Suwannee -21516001& Data Figure Station: -21516001 Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-18 2000 2005 Figure 1. Station: -21335001 & Data 35 40 Data 45 50 FL GW Suwannee -21335001 Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 46 48 50 Data 52 54 FL GW Baker -12029001, = 0.014, VC Figure 1. Station: p-Value -12029001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-19 2000 2005 50 46 48 Data 52 54 FL GW Figure 1. Baker Station:-12003001 -12003001 & Data Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 52 50 48 Data 54 56 58 FL GW 1. Columbia -11727001 & Data Figure Station: -11727001 Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-20 2005 54 48 50 52 Data 56 58 60 Figure Station: -11534001 & Data FL GW 1. Hamilton Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 55 50 Data 60 FL GW 1. Hamilton Figure Station:-11511001 -11511001 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 Year S1-21 2005 45 50 Data 55 60 Figure Station:-11035001 -11035001 & Data FL GW 1. Madison Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 68 70 72 Data 74 76 78 FL GW 1. Madison Figure Station:+10719001 10719001 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-22 2000 2005 40 36 38 Data 42 44 46 1. Station:+11316001 11316001 & Data FLFigure GW Hamilton Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 46 44 42 40 Data 48 50 52 1. Station:+11422007 11422007 & Data FLFigure GW Hamilton Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year S1-23 2005 60 54 56 58 Data 62 64 Figure Station: +11608001 11608001 & Data FL GW 1. Hamilton Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 64 62 60 58 Data 66 68 FL GW1.Madison Figure Station:+21002001 21002001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year S1-24 2000 2005 42 44 46 Data 48 50 52 FLFigure GW Hamilton 1. Station:+21125001 21125001 & Data Linea r regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 44 42 40 38 36 Data 46 48 50 Trend Piecewise Analysis - Aggregation mode = Year FL GW Hamilton +21211001 FGW3.xls - Data Set: ID 21211001 Linea r Regression Man-Kendall Regression 1980 1985 1990 1995 2000 Year S1-25 2005 40 Data 45 50 FL GW Hamilton Figure 1. Station:+21432001 21432001 & Data Linea r regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet above NGVD 1929 S1-26 Appendix S2: USGS Georgia Groundwater Level Trend Following is a summary of the trend detection plots of Georgia groundwater level data. Annual average groundwater level data in feet below land surface were labeled as “data” (yaxes) and plotted against record year (x-axes). -70 -72 Data -68 -66 GA GW – Charlton Sta. 304942082213801 Figure 1. Station:County, 304942082213801 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet referenced to land surface. Negative values indicate groundwater level is below land surface. Trend Analysis - Aggregation mode = Year GA GWPiecewise – Lowndes County, Sta. 304949083165301 304949083165301 -130 -135 -140 Data -125 GGW.xls - Data Set: ID Linear Regression Man-Kendall Regression 1970 1980 1990 2000 Year S2-1 -102 -106 -104 Data -100 -98 GA GW – Ware County, Sta. 310706082155101 Figure 1. Station: 310706082155101 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet referenced to land surface. Negative values indicate groundwater level is below land surface. -175 -180 Data -170 -165 GA GW - Cook County, Sta. 310813083260301 310813083260301 p-Value=0.00 VC Figure 1. Station: & Data Linear regression Mann-Kendall Slope 1970 1980 1990 2000 Year S2-2 -120 -135 -130 -125 Data -115 -110 -105 GA GW – Tift County, Sta. 312712082593301 p-Value=0.00 VC Figure 1. Station: 312712082593301 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet referenced to land surface. Negative values indicate groundwater level is below land surface. -205 -210 -215 Data -200 -195 GA GW – Worth County, Sta. 313146083491601 313146083491601 p-value=0.00 VC Figure 1. Station: & Data Linear regression Mann-Kendall Slope 1980 1990 2000 Year S2-3 -10 -16 -14 -12 Data -8 -6 -4 Trend Piecewise - Aggregation mode = Year GA GW Analysis Worth. 314330084005402 GGW.xls - Data Set: ID 314330084005402 Linear Regression Man-Kendall Regression 1980 1985 1990 1995 2000 2005 Year Data = annual average groundwater level in feet referenced to land surface. Negative values indicate groundwater level is below land surface. S2-4 Appendix S3: SJRWMD Groundwater Level Trend Following is a summary of the trend detection plots of SJRWMD groundwater level data. Annual average groundwater level data in feet below mean sea level were labeled as “data” (yaxes) and plotted against record year (x-axes). Map ID #s refer to Figure 1.3 in the supplemental report. 50 55 Data 60 65 Figure 1. Station: A-0001 & Data Linear regression Mann-Kendall Slope 1960 1970 1980 1990 Year Map ID 53 Data = Annual average groundwater level in feet above mean sea level 68 Data 70 72 74 Figure 1. Station: A-0005 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID 54 S3-1 74 76 Data 78 80 Figure 1. Station: A-0071 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 55 Data = Annual average groundwater level in feet above mean sea level 52 54 Data 56 58 60 Figure 1. Station: BA0019 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 56 S3-2 75 80 Data 85 90 Figure 1. Station: C-0120 & Data Linear regression Mann-Kendall Slope 1960 1970 1980 1990 2000 Year Map ID 57 Data = Annual average groundwater level in feet above mean sea level 78 80 82 Data 84 86 Figure 1. Station: P-0001 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 58 S3-3 74 76 78 Data 80 82 84 Figure 1. Station: P-0008 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year Map ID 59 Data = Annual average groundwater level in feet above mean sea level 41 40 39 38 Data 42 43 44 Figure 1. Station: WN0018 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 Year Map ID 61 S3-4 70 66 68 Data 72 74 Figure 1. Station: C-0018 & Data Linear regression Mann-Kendall Slope 1970 1980 1990 2000 Year Map ID 62 Data = Annual average groundwater level in feet above mean sea level 34 32 30 28 Data 36 38 Figure 1. Station: C-0094 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 2005 Year Map ID 63 S3-5 64 66 Data 68 70 Figure 1. Station: C-0123 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 64 Data = Annual average groundwater level in feet above mean sea level 66 68 Data 70 72 Figure 1. Station: C-0128 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 65 S3-6 70 66 68 Data 72 74 Figure 1. Station: C-0607 & Data Linear regression Mann-Kendall Slope 1970 1980 1990 2000 Year Map ID 66 Data = Annual average groundwater level in feet above mean sea level 29 30 31 Data 32 33 34 Figure 1. Station: D-0094 & Data Linear regression Mann-Kendall Slope 1970 1975 1980 1985 1990 1995 Year Map ID 67 S3-7 25 30 35 Data 40 45 50 Figure 1. Station: D-0160 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 68 Data = Annual average groundwater level in feet above mean sea level 52 50 48 Data 54 56 58 Figure 1. Station: D-0254 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 69 S3-8 30 24 26 28 Data 32 34 36 Figure 1. Station: D-0424 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 70 Data = Annual average groundwater level in feet above mean sea level 45 40 35 Data 50 55 Figure 1. Station: D-0667 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 71 S3-9 26 22 24 Data 28 30 Figure 1. Station: N-0046 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year Map ID 72 Data = Annual average groundwater level in feet above mean sea level 39 38 37 36 Data 40 41 42 Figure 1. Station: N-0051 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 Year Map ID 73 S3-10 32 26 28 30 Data 34 36 38 Figure 1. Station: N-0121 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 74 Data = Annual average groundwater level in feet above mean sea level 74 72 Data 76 Figure 1. Station: P-0016 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year Map ID 75 S3-11 68 64 66 Data 70 Figure 1. Station: P-0017 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year Map ID 76 Data = Annual average groundwater level in feet above mean sea level 5 10 Data 15 20 Figure 1. Station: P-0172 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 77 S3-12 26 27 28 Data 29 30 31 Figure 1. Station: P-0242 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 Year Map ID 78 Data = Annual average groundwater level in feet above mean sea level 18.0 17.5 17.0 16.5 Data 18.5 19.0 19.5 Station: FigureP-0270 1. SJRWMD-ext-6-24II.xls Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID: 79 S3-13 20 21 22 Data 23 24 Station: FigureP-0373 1. SJRWMD-ext-6-24II.xls Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year Map ID: 80 Data = Annual average groundwater level in feet above mean sea level 19 18 17 Data 20 21 Figure 1. Station: P-0408 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 81 S3-14 19 20 21 Data 22 23 Figure 1. Station: P-0416 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year Map ID 82 Data = Annual average groundwater level in feet above mean sea level 11 10 9 Data 12 13 Figure 1. Station: P-0427 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 2010 Year Map ID 83 S3-15 20 18 19 Data 21 Figure 1. Station: P-0450 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 2010 Year Map ID 84 Data = Annual average groundwater level in feet above mean sea level 17.5 17.0 16.5 16.0 Data 18.0 18.5 Figure 1. Station: P-0469 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 Year Map ID 85 S3-16 16 14 15 Data 17 18 Figure 1. Station: P-0474 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 Year Map ID 86 Data = Annual average groundwater level in feet above mean sea level 48 47 Data 49 50 Figure 1. Station: P-0510 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 87 S3-17 28 30 32 Data 34 36 38 Figure 1. Station: SJ0005 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 88 Data = Annual average groundwater level in feet above mean sea level 10 12 Data 14 16 Figure 1. Station: SJ0263 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 89 S3-18 18 12 14 16 Data 20 22 24 Figure 1. Station: SJ0317 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 90 Data = Annual average groundwater level in feet above mean sea level 24 23 22 Data 25 26 27 Figure 1. Station: SJ0413 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 Year Map ID 91 S3-19 16 14 15 Data 17 Figure 1. Station: SJ0516 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 2010 Year Map ID 92 Data = Annual average groundwater level in feet above mean sea level 38 36 34 32 Data 40 42 Figure 1. Station: 304830081481201 & Data Linear regression Mann-Kendall Slope 1994 1996 1998 2000 2002 2004 2006 Year Map ID: 100 S3-20 34 36 38 Data 40 42 Figure 1. Station: 305627081473101 & Data Linear regression Mann-Kendall Slope 1994 1996 1998 2000 2002 2004 2006 Year Map ID: 101 Data = Annual average groundwater level in feet above mean sea level 4 2 0 -2 Data 6 8 10 Figure 1. Station: 303939081312601 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 Year Map ID 102 S3-21 24 26 28 Data 30 32 Figure 1. Station: 301018081415101 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year Map ID 103 Data = Annual average groundwater level in feet above mean sea level 44 42 40 Data 46 48 50 Figure 1. Station: 300450081482801 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 Year Map ID 104 S3-22 30 26 28 Data 32 34 Figure 1. Station: 295357081294301 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID 105 Data = Annual average groundwater level in feet above mean sea level 34 32 30 Data 36 38 Figure 1. Station: 302724081244801 & Data Linear regression Mann-Kendall Slope 1980 1990 2000 2010 Year Map ID 106 S3-23 19 20 Data 21 22 Figure 1. Station: 303518081275001 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 Year Map ID 107 Data = Annual average groundwater level in feet above mean sea level 30 32 34 Data 36 38 40 Figure 1. Station: 301537081441901 & Data Linear regression Mann-Kendall Slope 1990 1995 2000 2005 Year Map ID 108 S3-24 38 34 36 Data 40 Figure 1. Station: 302227081435001 & Data Linear regression Mann-Kendall Slope 1990 1995 2000 2005 Year Map ID 109 Data = Annual average groundwater level in feet above mean sea level 30 35 40 Data 45 50 55 Figure 1. Station: 303658081422601 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 Year Map ID 110 S3-25 40 35 Data 45 Figure 1. Station: 301522081331301 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year Map ID 111 Data = Annual average groundwater level in feet above mean sea level 52 50 48 46 Data 54 56 Figure 1. Station: 302115082232201 & Data Linear regression Mann-Kendall Slope 1996 1998 2000 2002 2004 2006 2008 Year Map ID 112 S3-26 26 20 22 24 Data 28 30 32 Figure 1. Station: 300834081421301 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID 113 Data = Annual average groundwater level in feet above mean sea level 36 34 32 Data 38 40 Figure 1. Station: 301817081374902 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year Map ID 114 S3-27 26 28 Data 30 32 Figure 1. Station: 295713081203401 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID 115 Data = Annual average groundwater level in feet above mean sea level 32 34 Data 36 38 Figure 1. Station: 301817081374901 & Data Linear regression Mann-Kendall Slope 1975 1980 1985 1990 1995 2000 Year Map ID 116 S3-28 45 40 Data 50 55 Figure 1. Station: 302538081253101 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 Year Map ID 117 Data = Annual average groundwater level in feet above mean sea level 30 25 Data 35 Figure 1. Station: 300717081381001 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID 118 S3-29 45 35 40 Data 50 55 60 Figure 1. Station: 300649081485901 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 Year Map ID 119 Data = Annual average groundwater level in feet above mean sea level 25 30 35 Data 40 45 50 Figure 1. Station: 301617081421601 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 120 S3-30 18 16 17 Data 19 Figure 1. Station: 292528081383501 & Data Linear regression Mann-Kendall Slope 1940 1950 1960 1970 1980 1990 2000 Year Map ID 121 Data = Annual average groundwater level in feet above mean sea level 35 40 Data 45 50 Figure 1. Station: 302608081354903 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 122 S3-31 35 40 Data 45 50 Figure 1. Station: 302608081354902 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 123 Data = Annual average groundwater level in feet above mean sea level 45 40 35 Data 50 55 Figure 1. Station: 302801081375101 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 Year Map ID 124 S3-32 35 40 Data 45 50 Figure 1. Station: 302608081354901 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 125 Data = Annual average groundwater level in feet above mean sea level 35 30 25 Data 40 45 50 Figure 1. Station: 301551081415701 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 126 S3-33 35 25 30 Data 40 Figure 1. Station: 301844081403801 & Data Linear regression Mann-Kendall Slope 1950 1960 1970 1980 1990 2000 2010 Year Map ID 127 Data = Annual average groundwater level in feet above mean sea level 38 40 Data 42 44 Figure 1. Station: 302416081522601 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 128 S3-34 30 25 Data 35 Figure 1. Station: 302550081331501 & Data Linear regression Mann-Kendall Slope 1985 1990 1995 2000 2005 Year Map ID 129 Data = Annual average groundwater level in feet above mean sea level 40 42 Data 44 46 Figure 1. Station: 302416081522602 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 2010 Year Map ID 130 S3-35 32 26 28 30 Data 34 36 38 Figure 1. Station: 304756081311101 & Data Linear regression Mann-Kendall Slope 1980 1985 1990 1995 2000 2005 Year Map ID: 131 Data = Annual average groundwater level in feet above mean sea level 25 20 15 Data 30 35 Figure 1. Station: 304512081343601 & Data Linear regression Mann-Kendall Slope 1994 1996 1998 2000 2002 2004 2006 Year Map ID: 132 S3-36 Appendix S4: Groundwater Stations Cluster Assignments Following is a summary of 102 Groundwater level stations in Florida and Georgia and which clusters they were assigned to in the agglomerative heirarchical cluster analysis (AHCA). Map Number refers to mapped station locations in report Figures 9.2, 9.3 and 9.4. Groundwater level stations and cluster assignments. Map Number 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Source SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD Station ID Significant -111811001 -092307001 -081926001 -081703001 -072215001 -072132001 -061734001 -061629001 -061114001 -051933001 -051819001 -051428004 -051311001 -041923001 -041705001 -041625001 -041329001 -041223004 -041014001 -032012001 -031908001 -031601003 -031232001 -031105006 -031012001 -021934001 -021902001 -021805001 -021624001 -021516001 -021335001 -012029001 -012003001 -011727001 -011534001 -011511001 -011035001 +010719001 +011316001 NT W NT NT VC NT NT NT W NT NT W W VC NT NT NT NT NT NT VC NT W NT VC NT NT PT NT NT NT VC NT NT NT NT NT W NT S4-1 2-Cluster 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3-Cluster 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-Cluster 2 2 2 2 2 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 Map Number 41 42 43 44 45 46 47 48 49 50 51 52 54 55 56 57 58 63 64 65 66 68 69 70 71 74 77 79 81 83 84 87 88 89 90 92 93 94 95 96 97 98 99 102 105 106 108 Source SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD SJRWMD USGS USGS USGS USGS USGS USGS USGS USGS USGS USGS USGS Station ID Significant +011422007 +011608001 +021002001 +021125001 +021432001 -102006001 -101722001 -091938002 -091607001 -091420001 -062102001 +021211001 A-0005 A-0071 BA0019 C-0120 P-0001 C-0094 C-0123 C-0128 C-0607 D-0160 D-0254 D-0424 D-0667 N-0121 P-0172 P-0270 P-0408 P-0427 P-0450 P-0510 SJ0005 SJ0263 SJ0317 SJ0516 312712082593301 310706082155101 304942082213801 313146083491601 310813083260301 314330084005402 304949083165301 303939081312601 295357081294301 302724081244801 301537081441901 NT NT NT NT NT PW PW PW PW PW PW PW NT NT NT VC PT VC NT NT VC VC NT W VC NT NT NT NT NT NT NT VC NT W NT VC PT NT VC VC PW PW NT VC NT NT S4-2 2-Cluster 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 1 1 2 1 3-Cluster 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 3 2 1 2 2 2 2 1 1 1 1 2 3 1 3 3 3 1 2 2 2 3 2 4-Cluster 1 1 1 1 1 2 2 1 1 1 2 1 2 2 1 2 2 1 2 2 2 4 3 1 4 3 1 3 3 3 3 2 1 1 1 3 4 1 4 4 4 1 3 3 3 4 3 Map Source Station ID Significant 2-Cluster 3-Cluster 4-Cluster Number 109 USGS 302227081435001 NT 1 1 1 113 USGS 300834081421301 NT 2 3 4 115 USGS 295713081203401 NT 1 1 1 117 USGS 302538081253101 VC 2 3 4 118 USGS 300717081381001 VC 1 1 1 119 USGS 300649081485901 VC 2 3 4 120 USGS 301617081421601 NT 2 3 4 122 USGS 302608081354903 W 2 3 4 123 USGS 302608081354902 VC 2 3 4 125 USGS 302608081354901 PT 2 3 4 126 USGS 301551081415701 NT 2 3 4 127 USGS 301844081403801 VC 2 3 4 128 USGS 302416081522601 NT 1 2 3 129 USGS 302550081331501 PT 1 1 1 130 USGS 302416081522602 NT 1 1 1 131 USGS 304756081311101 NT 1 2 3 *: VC = Very Certain, PT = Probably Trend, W = Warning, NT = No Trend, PW = Piecewise S4-3
© Copyright 2026 Paperzz