b Statistical Evaluation of Long-Term Groundwater Level in Northeastern Florida and Southern Georgia: Supplemental Report

Supplemental Report Submitted to the St. Johns River Water Management District, Contract
#25325
STATISTICAL EVALUATION OF LONG TERM GROUNDWATER
LEVEL IN NORTHEASTERN FLORIDA AND SOUTHERN GEORGIA
Bin Gao1, Kathleen McKee2, Osvaldo Gargiulo1, and Wendy Graham1, 2
1
2
Agricultural & Biological Engineering, University of Florida, Gainesville, Florida 32611
Water Institute, University of Florida, Gainesville, Florida 32611
Table of Contents
Table of Contents ______________________________________________________________ i
1. Long-Term Groundwater Levels and Trends _____________________________________ 1
1.1 SRWMD Florida Groundwater Trend ______________________________________ 1
3.2 USGS Georgia Groundwater Trend ________________________________________ 2
3.3 SJRWMD Groundwater Trend ____________________________________________ 3
2. Cluster Analysis of Long-Term Groundwater Level _______________________________ 9
2.1 Dendrogram____________________________________________________________ 9
2.2 Two Clusters __________________________________________________________ 10
2.3 Three Clusters _________________________________________________________ 12
2.4 Four Clusters __________________________________________________________ 14
Apendix S1 _________________________________________________________________ S1
Apendix S2 _________________________________________________________________ S2
Apendix S3 _________________________________________________________________ S3
Apendix S4 _________________________________________________________________ S4
i
1. Long-Term Groundwater Levels and Trends
In this supplement report to the final report submitted under Contract #25325, the entire
period of record for historic groundwater levels (upper Floridan) data in the Suwannee River
basin and northeast Florida were analyzed for long-term trends and cluster analysis. In the final
report under the original contract, groundwater level data available prior to 1980 was neglected
since other time series of interest (principally groundwater withdrawal estimates) were not
consistently available before then.
There are 52 SRWMD wells that have more than 20 years of data. All available
groundwater level data, for the entire period of record, were combined into annual time series,
labeled as SRWMD Florida Groundwater, for trend analysis (Section 1.1). Units are feet above
NGVD29.
Groundwater level data from seven wells with more than 20 years of data were obtained
from the USGS for the Georgia region of the study area. All available groundwater level data, for
the entire period of record, were combined into time series, labeled as were labeled as USGS
Georgia Groundwater for trend analysis (Section 1.2). Units were in feet below land surface.
We received an additional set of groundwater level data from the SJRWMD for counties
in northeastern Florida (Clay, Duval, Nassau, Putnam, and St Johns) and southeastern Georgia
(Camden) that are east of the original study area. There were 73 wells with more than a 20 year
data record. All available groundwater level data, for the entire period of record were combined
into time series, labeled as SJRWMD Groundwater, for trend analysis (Section 1.3). Units are
feet above mean sea level.
1.1 SRWMD Florida Groundwater Trend
The 52 SRWMD groundwater wells with more than 20 years of data are located in 11
counties within the study area and each of the counties had at least three groundwater wells
except Gilchrist County which had two (Figure 1.1). The raw data were processed into annual
averages.
Time series analysis was performed to statistically characterize each well time series as
described in the methods section in the final report of contract #25325. LOWESS was used to
determine whether the dataset contained monotonic or piecewise trends. Trend detections were
conducted with the nonparametric statistical test (Mann-Kendall) on the residuals transformed
using autocorrelation filtration (Appendix S1). Analysis was performed based on annual data to
determine if long-term systematic trends existed. Therefore seasonality analysis was not
performed. Finally, trends in historic groundwater levels were determined based on p-values and
slopes (Table 1.1). A total of 13 wells were identified with either very certain (6), probably
trending (1), or warning (6) monotonic trends, and all trends were downward (Figure 1.1 and
Table 1.2). This is different from the results in the final report submitted under Contract
#25325, which presented the trend analysis of SRWMD groundwater level data between 1980
and 2007. The trend analysis for this shorter data record only showed 8 trending wells with one
very certain, two probable, and six warning trends.
1
Figure 1.1 Map of 52 SRWMD groundwater wells utilized for trend analysis and classification
of trends. All trends are downwards.
1.2 USGS Georgia Groundwater Trend
Seven wells in the Georgia study area had data records longer than 20 years. These
groundwater wells were located in six counties within the state of Georgia (Figure 1.1). The raw
data were processed by calculating annual averages. The same statistical analysis described
above was conducted on this dataset (Appendix S2). Trends in the data were determined based
on the p-value and the slope (Table 1.3). A total of 5 wells were identified with very certain (3)
probably trending (1), or warning (1) monotonic trends, and all the trends were downward
(Figure 1.2 and Table 1.4). This is similar to the results in the final report submitted under
Contract #25325, which presented the trend analysis for USGS Georgia groundwater level data
for the period between 1980 and 2007. The trend analysis for the shorter data record showed 4
trending wells at the same locations.
2
Figure 1.2 Map of 7 USGS groundwater wells used for trend analysis and classification of trends
in Georgia. All trends are downwards.
1.3 SJRWMD Groundwater Trend
After initial data analysis for the study area was completed, the St. Johns Water
Management District (SJRWMD) requested trend analyses for additional groundwater levels in
northeastern Florida (Clay, Duval, Nassau, Putnam, and St Johns Counties) and southeastern
Georgia (Camden County) outside the previously defined study area. (Figure 1.3). The same
statistical analysis was conducted on this dataset (Appendix S3). There were 73 additional wells
with more than a 20 year time period, after omitting those that were already represented by the
SRWMD groundwater level dataset. Trends in the data were determined based on the p-value
and the slope (Table 1.5). A total of 28 wells were identified with very certain (21), probably
trending (3), or warning (4) monotonic trends (Figure 1.3, Table 1.4). Of these trends, all were
downward except one well with an upward trending slope in St. Johns County (ID
295357081294301). Figure 1.3 shows the distribution of the trending wells in the study area.
This is different from the results in the final report submitted under Contract #25325, which
presented the trend analysis for SJRWMD groundwater level data between 1980 and 2007. The
trend analysis for the shorter time record showed 17 trending wells: seven were identified as
very certain trending, four as probably trending, and six as having a warning trend.
3
Figure 1.3 Map of 73 SJRWMD groundwater wells used for trend analyses and classification of
trends. All trends are downward except #105 which trends upward. Map IDs listed in Table 1.5.
Table 1.1 Mann-Kendall trend analysis, with trend direction, of Florida annual groundwater
levels from SRWMD.
Site ID
County
-111811001
-092307001
-081926001
-081703001
-072215001
-072132001
-061734001
-061629001
-061114001
-052033002
-051933001
-051819001
-051428004
-051311001
Alachua
Clay
Alachua
Alachua
Bradford
Bradford
Colombia
Columbia
Lafayette
Union
Union
Columbia
Suwannee
Suwannee
SJRWMD
Site ID
A-0004
C-0009
A-0056
A-0002
B-0011
B-0012
CO0008
NA
NA
NA
U-0004
CO0005
NA
NA
Trend
Slope
p-value
Trend & Direction
Type
(ft/y)
M
-0.118
0.527
NT ↓
M
-0.164
0.075
W ↓
M
-0.104
0.253
NT ↓
M
-0.062
0.123
NT ↓
M
-0.188
0.004
VC ↓
M
-0.099
0.175
NT ↓
M
-0.053
0.156
NT ↓
M
-0.062
0.187
NT ↓
M
-0.160
0.090
W ↓
data not suitable for the analysis
M
-0.135
0.020
VC↓
M
-0.104
0.130
NT ↓
M
-0.223
0.088
W ↓
M
-0.175
0.054
W ↓
4
Site ID
County
-041923001
-041705001
-041625001
-041329001
-041223004
-041014001
-032012001
-031908001
-031601003
-031232001
-031105006
-031012001
-021934001
-021902001
-021805001
-021624001
-021516001
-021335001
-012029001
-012003001
-011727001
-011534001
-011511001
-011035001
+010719001
+011316001
+011422007
+011608001
+021002001
+021125001
+021432001
Union
Columbia
Columbia
Suwannee
Suwannee
Lafayette
Baker
Baker
Columbia
Suwannee
Suwannee
Lafayette
Baker
Baker
Columbia
Columbia
Suwannee
Suwannee
Baker
Baker
Columbia
Hamilton
Hamilton
Madison
Madison
Hamilton
Hamilton
Hamilton
Madison
Hamilton
Hamilton
SJRWMD
Site ID
U-0001
CO0010
CO0011
NA
NA
NA
BA0011
BA0015
NA
NA
NA
NA
BA0024
BA0005
CO0007
NA
NA
SW0078
BA0018
BA0009
CO0117
H-0071
NA
NA
NA
NA
H-0072
NA
NA
NA
H-0073
-102006001
Alachua
A-0019
-101722001
Alachua
A-0068
-091938002
Alachua
A-0075
-091607001
Gilchrist
GI0065
-091420001
Gilchrist
NA
-062102001
Bradford
B-0010
+021211001
Hamilton
NA
M=Monotonic; P=Piecewise; NA=not
NT=No Trend;
Trend
Type
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Slope
p-value
Trend & Direction
(ft/y)
-0.176
0.014
VC ↓
-0.119
0.164
NT ↓
-0.211
0.253
NT ↓
-0.118
0.245
NT ↓
-0.098
0.287
NT ↓
-0.165
0.200
NT ↓
-0.125
0.270
NT ↓
-0.108
0.006
VC ↓
-0.191
0.342
NT ↓
-0.150
0.093
W ↓
-0.072
0.433
NT ↓
-0.198
0.016
VC ↓
-0.282
0.187
NT ↓
-0.258
0.199
NT ↓
-0.214
0.042
PT ↓
-0.156
0.215
NT ↓
-0.159
0.111
NT ↓
-0.173
0.161
NT ↓
-0.181
0.014
VC ↓
-0.117
0.294
NT ↓
-0.147
0.103
NT ↓
-0.113
0.403
NT ↓
-0.183
0.152
NT ↓
-0.196
0.125
NT ↓
-0.125
0.094
W ↓
-0.074
0.282
NT ↓
-0.135
0.264
NT ↓
-0.133
0.191
NT ↓
-0.041
0.570
NT ↓
-0.086
0.316
NT ↓
-0.088
0.316
NT ↓
0.707
0.175
NT ↑
P
-0.017
0.958
NT ↓
0.640
0.052
W↑
P
-0.238
0.197
NT ↓
1.021
0.265
NT ↑
P
-0.170
0.112
NT ↓
1.379
0.014
VC ↑
P
-0.478
0.161
NT ↓
0.186
0.291
NT ↑
P
-0.098
0.284
NT ↓
0.277
0.119
NT ↑
P
-0.050
0.535
NT ↓
0.227
0.392
NT ↑
P
-0.345
0.115
NT ↓
available, VC=Very Certain, PT=Probably Trend, W=Warning,
5
Table 1.2 Summary of monotonic trends (all downward) of SRWMD Florida annual
groundwater level time series.
Label
Count
Site ID
-072215001 -041923001
-051933001 -031908001
Very Certain
6
-031012001 -012029001
Probably Trend
1
-021805001
-092307001 -061114001
-051428004 -051311001
Warning
6
-031232001 +010719001
Table 1.3 Mann-Kendall trend analysis, with trend direction, of Georgia annual groundwater
levels from USGS.
Slope
Site ID
County
Trend Type
p Value Trend & Direction
(ft/y)
312712082593301 Tift
M
-0.888
0.000 VC ↓
310706082155101 Ware
M
-0.186
0.050 PT ↓
304942082213801 Charlton
M
-0.339
0.099 W ↓
313146083491601 Worth
M
-0.651
0.000 VC ↓
310813083260301 Cook
M
-0.342
0.000 VC ↓
-0.324
0.243 NT ↓
314330084005402 Worth
P
0.244
0.201 NT ↑
0.440
0.010 W↑
304949083165301 Lowndes P
-0.063
0.721 NT ↓
M=Monotonic; P=Piecewise; NA=not available, VC=Very Certain, PT=Probably Trend, W=Warning,
NT=No Trend;
Table 1.4 Summary of monotonic trends (all downward) of USGS Georgia annual groundwater
level time series.
Label
Count
Site ID
Very Certain
3
310813083260301 312712082593301 313146083491601
Probably Trend
1
310706082155101
Warning
1
304942082213801
Table 1.5 Mann-Kendall trend analysis, with trend direction, of Florida annual groundwater
levels from SJRWMD. Map IDs are used in Figure 1.3.
Map ID
Well ID #
County
53
54
55
56
57
58
59
A-0001
A-0005
A-0071
BA0019
C-0120
P-0001
P-0008
Alachua
Alachua
Alachua
Baker
Clay
Putnam
Putnam
Trend
Type
M
M
M
M
M
M
M
6
Slope
(ft/y)
-0.49
-0.07
-0.14
-0.19
-0.25
-0.16
-0.15
p-value
0.00
0.50
0.35
0.14
0.00
0.03
0.29
Trend and
Direction
VC↓
NT↓
NT↓
NT↓
VC↓
PT↓
NT↓
Map ID
Well ID #
County
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
100
101
102
103
104
105
106
107
108
109
110
111
112
113
N-0051
WN0018
C-0018
C-0094
C-0123
C-0128
C-0607
D-0094
D-0160
D-0254
D-0424
D-0667
N-0046
N-0051
N-0121
P-0016
P-0017
P-0172
P-0242
P-0270
P-0373
P-0408
P-0416
P-0427
P-0450
P-0469
P-0474
P-0510
SJ0005
SJ0263
SJ0317
SJ0413
SJ0516
304830081481201
305627081473101
303939081312601
301018081415101
300450081482801
295357081294301
302724081244801
303518081275001
301537081441901
302227081435001
303658081422601
301522081331301
302115082232201
300834081421301
Nassau
Nassau
Clay
Clay
Clay
Clay
Clay
Duval
Duval
Duval
Duval
Duval
Nassau
Nassau
Nassau
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
Putnam
St. Johns
St. Johns
St. Johns
St. Johns
St. Johns
Camden, Ga
Camden, Ga
Nassau
Clay
Clay
St. Johns
Duval
Nassau
Duval
Duval
Nassau
Duval
Baker
Clay
Trend
Slope
p-value
Trend and
Type
(ft/y)
Direction
data not suitable for the analysis
M
-0.02
0.84
NT↓
M
-0.13
0.04
PT↓
M
-0.26
0.00
VC↓
M
-0.04
0.79
NT↓
M
-0.15
0.33
NT↓
M
-0.14
0.02
VC↓
M
-0.03
0.49
NT↓
M
-0.35
0.00
VC↓
M
0.00
0.97
NT
M
-0.22
0.09
W↓
M
-0.29
0.00
VC↓
M
-0.23
0.01
VC↓
M
-0.08
0.37
NT↓
M
0.17
0.21
NT↑
M
-0.17
0.25
NT↓
M
0.03
0.84
NT ↑
M
0.42
0.34
NT ↑
M
-0.03
0.78
NT↓
M
0.01
0.74
NT ↑
M
-0.08
0.27
NT↓
M
-0.04
0.54
NT↓
M
-0.08
0.39
NT↓
M
0.01
0.80
NT↑
M
0.02
0.60
NT ↑
M
0.08
0.52
NT ↑
M
-0.05
0.56
NT↓
M
-0.01
0.81
NT↓
M
-0.22
0.01
VC↓
M
-0.06
0.15
NT↓
M
-0.11
0.07
W↓
M
-0.08
0.29
NT↓
M
-0.01
0.76
NT↓
M
-0.51
0.43
NT↓
M
-0.05
0.88
NT↓
M
0.07
0.31
NT ↑
M
-0.11
0.14
NT↓
M
-0.32
0.00
VC↓
M
0.11
0.01
VC ↑
M
-0.04
0.40
NT↓
M
0.01
0.90
NT ↑
M
0.17
0.39
NT ↑
M
-0.09
0.41
NT↓
M
-0.36
0.00
VC↓
M
-0.62
0.08
W↓
M
0.03
0.94
NT ↑
M
-0.17
0.38
NT↓
7
Map ID
Well ID #
County
Trend
Slope
p-value
Trend and
Type
(ft/y)
Direction
114
301817081374902
Duval
M
-0.19
0.02
VC↓
115
295713081203401
St. Johns
M
-0.07
0.18
NT↓
116
301817081374901
Duval
M
-0.17
0.02
VC↓
117
302538081253101
Duval
M
-0.33
0.00
VC↓
118
300717081381001
St. Johns
M
-0.32
0.00
VC↓
119
300649081485901
Clay
M
-0.38
0.00
VC↓
120
301617081421601
Duval
M
-0.32
0.15
NT↓
121
292528081383501
Putnam
M
-0.03
0.00
VC↓
122
302608081354903
Duval
M
-0.26
0.06
W↓
123
302608081354902
Duval
M
-0.24
0.01
VC↓
124
302801081375101
Duval
M
-0.36
0.00
VC↓
125
302608081354901
Duval
M
-0.27
0.03
PT↓
126
301551081415701
Duval
M
-0.36
0.11
NT↓
127
301844081403801
Duval
M
-0.21
0.01
VC↓
128
302416081522601
Duval
M
-0.02
0.78
NT↓
129
302550081331501
Duval
M
-0.56
0.00
VC↓
130
302416081522602
Duval
M
-0.07
0.15
NT↓
131
304756081311101
Camden, Ga
M
0.05
0.73
NT ↑
132
304512081343601
Camden, Ga
M
0.57
0.55
NT ↑
M=Monotonic; P=Piecewise; NA=not available, VC=Very Certain, PT=Probably Trend, W=Warning,
NT=No Trend;
Table 1.6 Summary of monotonic trends (all downward except underlined Site ID is upward) of
SJRWMD annual groundwater level time series. Map IDs are in parentheses.
Label
Count Site ID
A-0001 (53)
C-0094 (63)
C-0120 (57)
C-0607 (66)
D-0160 (68)
D-0667 (71)
N-0046 (72)
SJ0005 (88)
302550081331501
(129)
Very
Certain
21
301817081374902
(114)
292528081383501
(121)
301817081374901
(116)
300450081482801
(104)
302538081253101
(117)
302608081354902
(123)
Probably
3
Trend
C-0018 (62)
P-0001 (58)
Warning
D-0424 (70)
SJ0317 (90)
4
8
295357081294301
(105)
300717081381001
(118)
302801081375101
(124)
303658081422601
(110)
300649081485901
(119)
301844081403801
(127)
302608081354901
(125)
301522081331301
(111)
302608081354903
(122)
2. Cluster Analysis of Long-Term Groundwater Level
A statistical cluster analysis was conducted using all three datasets of groundwater level
time series: SRWMD wells in Florida, USGS wells in Georgia, and SJRWMD data containing
SJRWMD wells and USGS wells in Northeast Florida and Southeast Georgia. The groundwater
level data for each well were first normalized by subtracting the mean groundwater level and
dividing by the groundwater level standard deviation for the entire period of record (note that the
period of record varied from well to well). A total of 102 wells with coincident and continuous,
normalized data from 1986-2005 were analyzed. Following is the summary of the results.
2.1 Dendrogram
An agglomerative heirarchical cluster analysis (AHCA) was performed on the normalized
groundwater level time series. The dendrogram (i.e., cluster tree) of the cluster structure is shown
in Figure 2.1. The roots of the tree are different clusters and the leaves represent individual
observations of groundwater levels. The cluster height is the value of the criterion associated
with the agglomerative algorithm. The data can be separated into different clusters depending on
chosen height. In this study, we clustered the data into 2, 3, and 4 clusters (Appendix S4).
Figure 2.1 Dendrogram formed by agglomerative heirarchical cluster analysis (AHCA).
9
2.2 Two Clusters
The data separate into 2 clusters when a large height was used (>15) (Figure 2.2). The
normalized groundwater level data were averaged for each cluster and plotted together in Figure
2.2A. The time series of cluster 1 and 2 show significant differences in their patterns. The
averaged and normalized groundwater level in cluster 2 are all negative suggesting that most of
the groundwater levels in this cluster were lower in the selected time period (i.e., 1986-2005)
than in the earlier period of record available. Figure 2.2B shows the spatial location of the wells
in each cluster. In the two-cluster analysis results, most of the wells fall into cluster 1 and are
predominantly located in the southern part of the study area. Fewer wells (14) fall into cluster 2
and are located in Georgia (4), and Duval (8) and Clay (2) County Florida. Almost all the wells
(13) in cluster 2 have a relatively large slope with a groundwater level decline rate larger than
0.15 ft/year (slope between -0.17 and -0.89) except one well in Duval County (Map ID 106, Well
ID 302724081244801, slope -0.04 ft/year, no trend).
The 2-cluster analysis in the final report submitted under Contract #25325 included 100
identical wells the groundwater level data were normalized using statistics from a shorter time
period (i.e., 1986-2005). The cluster results are qutie different between the two analyses. When
the shorter period of record was used the wells generally separated in clusters that were either
had predominantly moderate to large negative slopes (74) and those with predominantly positive
or very small negative slopes (26).
10
Cluster 1
Two Clusters
Cluster 2
1.5
1
0.5
0
-0.51985
1990
1995
2000
2005
2010
-1
-1.5
-2
(A)
(B)
Figure 2.2 2-Cluster Plot and Map. (A) Averages of normalized groundwater levels for clusters
1 (blue) and 2 (red). (B) Spatial distribution of the groundwater wells for clusters 1 (blue)
and 2 (red).
11
1.3 Three Clusters
The data separate into 3 clusters when a smaller height was used (between 14 to 15)
(Figure 2.3). The normalized groundwater level data were averaged for each cluster and plotted
together in Figure 2.3A. Figure 2.3B shows spatial location of the wells in each cluster. Most of
the wells fall into cluster 1, are predominantly located in the southern part of the study area, and
generally coincide with those in cluster 1 in the two cluster analysis. Few wells fall into cluster 2,
most of these have upward slopes, and one of them has a very certain upward trend
(295357081294301). Cluster 3 also has fewer wells than cluster 1 and these wells are located in
Georgia (4), and Duval (8) and Clay (2) County Florida, coinciding with those in Cluster 2 of the
two cluster analysis. Almost all the wells in cluster 3 have a relatively steep slope with a
groundwater level decline rate bigger than 0.15 ft/year (slope between -0.17 and -0.89) except
one well in Duval County (Map ID 106, Well ID 302724081244801, slope -0.04 ft/year, no
trend).
The 3-cluster analysis in the final report submitted under Contract #25325 included 100
identical wells but the groundwater level data were normalized using statistics from a shorter
time period (i.e., 1986-2005). The 3- cluster results from both analyses are very similar with
respect to distributions of wells in each of the three clusters.
12
Cluster 1
Cluster 2
Cluster 3
Three Clusters
3
2
1
0
1985
-1
1990
1995
-2
2000
2005
2010
(A)
(B)
Figure 2.3 3-Cluster Plot and Map. (A) Averages of normalized groundwater levels for clusters
1 (blue), 2 (red), and 3(yellow). (B) Spatial distribution of the groundwater wells for clusters
1 (blue), 2 (red), and 3 (yellow).
13
2.4 Four Clusters
The data separate into 4 clusters when a smaller height was used (between 10 to 14)
(Figure 2.4). The normalized groundwater level data were averaged for each cluster and plotted
together in Figure 2.4A. Figure 2.4B shows spatial location of the wells in each cluster. Most of
the wells fall into clusters 1 and 2, are predominantly located in the southern part of the study
area, and generally coincide with those in cluster 1 in the two and three cluster analyses. Most of
the wells in cluster 3 have upward slopes and one of them has a very certain upward trend
(295357081294301). All cluster 4 wells in this section are located in Georgia (4), Clay (2) and
Duval (8) County Florida, coinciding with those in cluster 2 of the two cluster analysis and
cluster 3 of the 3 cluster analysis. Almost all the wells in cluster 4 have a relatively steep slope
with a groundwater level decline rate bigger than 0.15 ft/year (slope between -0.17 and -0.89)
except one well in Duval County (Map ID 106, Well ID 302724081244801, slope -0.04 ft/year,
no trend).
The 4-cluster analysis in the final report submitted under Contract #25325 included 100
identical wells but the groundwater level data were normalized using statistics from a shorter
time period (i.e., 1986-2005). The 4- cluster results from both analyses are very similar with
respect to distributions of wells in each of the four clusters.
14
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Four Clusters
3
2
1
0
1985
-1
1990
1995
2000
2005
2010
-2
-3
(A)
(B)
Figure 2.4 4-Cluster Results. (A) Averages of normalized groundwater levels for clusters 1
(blue), 2 (red), 3 (yellow) and 4 (green). (B) Spatial distribution of the groundwater wells for
clusters 1 (blue), 2 (red), 3 (yellow), and 4 (green).
15
Appendix S1: SRWMD Florida Groundwater Level Trend
Following is a summary of the trend detection plots of SJRWMD groundwater level data.
Annual average groundwater level data in feet above NGVD 1929 were labeled as “data” (yaxes) and plotted against record year (x-axes).
Data
40
45
50
FL 1.
GW
Alachua
-111811001
Figure
Station:
-111811001
& Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
40
45
Data
50
FL GW
Alachua
-102006001
Trend Piecewise
Analysis
- Aggregation
mode = Year
new.xls - Data Set: ID
-102006001
Linear Regression
Man-Kendall Regression
1975
1980
1985
1990
1995
2000
Year
S1-1
2005
42
36
38
40
Data
44
46
48
Trend Piecewise
Analysis
- Aggregation
mode = Year
FL GW
Alachua
-101722001
FGW.xls - Data Set: ID
-101722001
Linea r Regression
Man-Kendall Regression
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
80
82
Data
84
86
88
FL GW
Clay -92307001
Figure
1. Station:
-92307001 & Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
S1-2
2005
58
52
54
56
Data
60
62
64
FL Analysis
GW Alachua
-91938002
Trend Piecewise
- Aggregation
mode = Year
new.xls - Data Set: ID
-91938002
Linear Regression
Man-Kendall Regression
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
40
45
50
Data
55
60
Trend Piecewise
Analysis
- Aggregation
FL GW
Gilchrist
-91607001mode = Year
FGW.xls - Data Set: ID
-91607001
Linea r Regression
Man-Kendall Regression
1975
1980
1985
1990
1995
2000
Year
S1-3
2005
8
6
Data
10
12
Trend Piecewise
Analysis
- Aggregation
mode = Year
FL GW
Gilchrist
-91420001
FGW.xls - Data Set: ID
-91420001
Linea r Regression
Man-Kendall Regression
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
42
40
38
Data
44
46
FL GW
-81926001& Data
Figure
1. Alachua
Station: -81926001
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-4
2005
33
31
32
Data
34
35
36
FL GW
Alachua-81703001
-81703001& Data
Figure
1. Station:
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
82
80
78
Data
84
86
FL GWFigure
Bradford
-72215001,
p-Value
= 0.004, VC
1. Station:
-72215001
& Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
S1-5
2005
62
58
60
Data
64
66
Figure
1. Station:
-72132001
& Data
FL GW
Bradford
-72132001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
58
56
54
Data
60
62
Trend Piecewise
Analysis
- Aggregation
FL GW
Bradford
-62102001mode = Year
FGW.xls - Data Set: ID
-62102001
Linea r Regression
Man-Kendall Regression
1975
1980
1985
1990
1995
2000
Year
S1-6
2005
34
32
33
Data
35
36
FLGW
GW1.Columbia
Lafayette
-61114001& Data
FL
-61734001
Figure
Station: -61734001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
22
20
Data
24
FL
GW1.Columbia
-61629001& Data
Figure
Station: -61629001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
S1-7
2005
60
62
64
Data
66
68
FL GW
Columbia
-61734001
Figure
1. Station:
-61114001
& Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
54
52
50
Data
56
58
FL GW Hamilton
p-Value =
Figure 1.-51933001,
Station: -51933001
& 0.020,
Data VC
VC
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-8
2000
2005
42
38
40
Data
44
46
FL
GW 1.
Columbia
-51819001 & Data
Figure
Station: -51819001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
15
20
Data
25
30
FL
GW 1.
Suwannee
-51428004& Data
Figure
Station: -51428004
Linea r regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
S1-9
2005
20
15
Data
25
FL
GW Suwannee -51311001
Figure 1. Station: -51311001 & Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
56
54
52
Data
58
60
62
FL GW Union
-41923001,
= 0.014,
VC
Figure
1. Station:p-Value
-41923001
& Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-10
2000
2005
FL GW Columbia -41705001
48
42
44
46
Data
50
52
Figure 1. Station: -41705001 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
30
35
Data
40
45
FLFigure
GW Columbia
-41625001
1. Station: -41625001 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
S1-11
2005
26
20
22
24
Data
28
30
32
Figure
1. Station:
-41329001
& Data
FL GW
Suwannee
-41329001
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
26
24
22
Data
28
30
FL
GW1.Suwannee
-41223004& Data
Figure
Station: -41223004
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-12
2005
35
40
Data
45
50
FL
GW Lafayette
Figure
1. Station:-41014001
-41014001 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
48
50
52
Data
54
56
FL GW1.Baker
-32012001
Figure
Station:
-32012001 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-13
2005
55
45
50
Data
60
FL GW Baker
-31908001,
= 0.006,
VC
Figure
1. Station:p-Value
-31908001
& Data
Linea r regression
Mann-Kendall Slope
1960
1970
1980
1990
2000
Year
Data = annual average groundwater level in feet above NGVD 1929
50
55
Data
60
65
Figure
1. Columbia
Station: -31601003
& Data
FL GW
-31601003
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-14
2005
24
26
28
Data
30
32
34
FL
GW Suwannee
Figure
1. Station: -31232001
-31232001 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
28
26
24
22
Data
30
32
FL GW
Suwannee
-31105006
Figure
1. Station:
-31105006
& Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-15
2005
64
58
60
62
Data
66
68
70
FL GW Lafayette
p-Value&=Data
0.016, VC
Figure 1. -31012001,
Station: -31012001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
54
52
50
48
Data
56
58
FL
GW1.Baker
-21934001
Figure
Station:
-21934001 & Data
Linear regression
Mann-Kendall Slope
1990
1995
2000
Year
S1-16
2005
52
48
50
Data
54
56
FL GW
Baker -21902001
Figure
1. Station:
-21902001 & Data
Linear regression
Mann-Kendall Slope
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
52
50
48
46
Data
54
56
58
FLFigure
GW Columbia
1. Station: -21805001
-21805001 & Data
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-17
2005
56
48
50
52
54
Data
58
60
62
FL GW
Columbia
-21624001
Figure
1. Station:
-21624001
& Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
54
52
50
48
46
Data
56
58
60
FL
GW1.Suwannee
-21516001& Data
Figure
Station: -21516001
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-18
2000
2005
Figure 1. Station: -21335001 & Data
35
40
Data
45
50
FL GW Suwannee -21335001
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
46
48
50
Data
52
54
FL GW Baker
-12029001,
= 0.014,
VC
Figure
1. Station: p-Value
-12029001
& Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-19
2000
2005
50
46
48
Data
52
54
FL GW
Figure
1. Baker
Station:-12003001
-12003001 & Data
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
52
50
48
Data
54
56
58
FL
GW 1.
Columbia
-11727001 & Data
Figure
Station: -11727001
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-20
2005
54
48
50
52
Data
56
58
60
Figure
Station: -11534001 & Data
FL
GW 1.
Hamilton
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
55
50
Data
60
FL
GW 1.
Hamilton
Figure
Station:-11511001
-11511001 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
S1-21
2005
45
50
Data
55
60
Figure
Station:-11035001
-11035001 & Data
FL
GW 1.
Madison
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
68
70
72
Data
74
76
78
FL
GW 1.
Madison
Figure
Station:+10719001
10719001 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-22
2000
2005
40
36
38
Data
42
44
46
1. Station:+11316001
11316001 & Data
FLFigure
GW Hamilton
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
46
44
42
40
Data
48
50
52
1. Station:+11422007
11422007 & Data
FLFigure
GW Hamilton
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
S1-23
2005
60
54
56
58
Data
62
64
Figure
Station: +11608001
11608001 & Data
FL
GW 1.
Hamilton
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
64
62
60
58
Data
66
68
FL
GW1.Madison
Figure
Station:+21002001
21002001 & Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
S1-24
2000
2005
42
44
46
Data
48
50
52
FLFigure
GW Hamilton
1. Station:+21125001
21125001 & Data
Linea r regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
44
42
40
38
36
Data
46
48
50
Trend Piecewise
Analysis
- Aggregation
mode = Year
FL GW
Hamilton
+21211001
FGW3.xls - Data Set: ID
21211001
Linea r Regression
Man-Kendall Regression
1980
1985
1990
1995
2000
Year
S1-25
2005
40
Data
45
50
FL
GW Hamilton
Figure
1. Station:+21432001
21432001 & Data
Linea r regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet above NGVD 1929
S1-26
Appendix S2: USGS Georgia Groundwater Level Trend
Following is a summary of the trend detection plots of Georgia groundwater level data.
Annual average groundwater level data in feet below land surface were labeled as “data” (yaxes) and plotted against record year (x-axes).
-70
-72
Data
-68
-66
GA GW
– Charlton
Sta. 304942082213801
Figure
1. Station:County,
304942082213801
& Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet referenced to land surface. Negative values
indicate groundwater level is below land surface.
Trend
Analysis
- Aggregation
mode = Year
GA
GWPiecewise
– Lowndes
County,
Sta. 304949083165301
304949083165301
-130
-135
-140
Data
-125
GGW.xls - Data Set: ID
Linear Regression
Man-Kendall Regression
1970
1980
1990
2000
Year
S2-1
-102
-106
-104
Data
-100
-98
GA GW
– Ware
County,
Sta. 310706082155101
Figure
1. Station:
310706082155101
& Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet referenced to land surface. Negative values
indicate groundwater level is below land surface.
-175
-180
Data
-170
-165
GA GW - Cook
County,
Sta. 310813083260301
310813083260301 p-Value=0.00
VC
Figure
1. Station:
& Data
Linear regression
Mann-Kendall Slope
1970
1980
1990
2000
Year
S2-2
-120
-135
-130
-125
Data
-115
-110
-105
GA GW – Tift
County,
Sta. 312712082593301
p-Value=0.00
VC
Figure
1. Station:
312712082593301
& Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet referenced to land surface. Negative values
indicate groundwater level is below land surface.
-205
-210
-215
Data
-200
-195
GA GW – Worth
County,
Sta. 313146083491601
313146083491601 p-value=0.00
VC
Figure
1. Station:
& Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
Year
S2-3
-10
-16
-14
-12
Data
-8
-6
-4
Trend Piecewise
- Aggregation mode = Year
GA GW Analysis
Worth. 314330084005402
GGW.xls - Data Set: ID
314330084005402
Linear Regression
Man-Kendall Regression
1980
1985
1990
1995
2000
2005
Year
Data = annual average groundwater level in feet referenced to land surface. Negative values
indicate groundwater level is below land surface.
S2-4
Appendix S3: SJRWMD Groundwater Level Trend
Following is a summary of the trend detection plots of SJRWMD groundwater level data.
Annual average groundwater level data in feet below mean sea level were labeled as “data” (yaxes) and plotted against record year (x-axes). Map ID #s refer to Figure 1.3 in the supplemental
report.
50
55
Data
60
65
Figure 1. Station: A-0001 & Data
Linear regression
Mann-Kendall Slope
1960
1970
1980
1990
Year
Map ID 53
Data = Annual average groundwater level in feet above mean sea level
68
Data
70
72
74
Figure 1. Station: A-0005 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID 54
S3-1
74
76
Data
78
80
Figure 1. Station: A-0071 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 55
Data = Annual average groundwater level in feet above mean sea level
52
54
Data
56
58
60
Figure 1. Station: BA0019 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 56
S3-2
75
80
Data
85
90
Figure 1. Station: C-0120 & Data
Linear regression
Mann-Kendall Slope
1960
1970
1980
1990
2000
Year
Map ID 57
Data = Annual average groundwater level in feet above mean sea level
78
80
82
Data
84
86
Figure 1. Station: P-0001 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 58
S3-3
74
76
78
Data
80
82
84
Figure 1. Station: P-0008 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
Map ID 59
Data = Annual average groundwater level in feet above mean sea level
41
40
39
38
Data
42
43
44
Figure 1. Station: WN0018 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
Year
Map ID 61
S3-4
70
66
68
Data
72
74
Figure 1. Station: C-0018 & Data
Linear regression
Mann-Kendall Slope
1970
1980
1990
2000
Year
Map ID 62
Data = Annual average groundwater level in feet above mean sea level
34
32
30
28
Data
36
38
Figure 1. Station: C-0094 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
2005
Year
Map ID 63
S3-5
64
66
Data
68
70
Figure 1. Station: C-0123 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 64
Data = Annual average groundwater level in feet above mean sea level
66
68
Data
70
72
Figure 1. Station: C-0128 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 65
S3-6
70
66
68
Data
72
74
Figure 1. Station: C-0607 & Data
Linear regression
Mann-Kendall Slope
1970
1980
1990
2000
Year
Map ID 66
Data = Annual average groundwater level in feet above mean sea level
29
30
31
Data
32
33
34
Figure 1. Station: D-0094 & Data
Linear regression
Mann-Kendall Slope
1970
1975
1980
1985
1990
1995
Year
Map ID 67
S3-7
25
30
35
Data
40
45
50
Figure 1. Station: D-0160 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 68
Data = Annual average groundwater level in feet above mean sea level
52
50
48
Data
54
56
58
Figure 1. Station: D-0254 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 69
S3-8
30
24
26
28
Data
32
34
36
Figure 1. Station: D-0424 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 70
Data = Annual average groundwater level in feet above mean sea level
45
40
35
Data
50
55
Figure 1. Station: D-0667 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 71
S3-9
26
22
24
Data
28
30
Figure 1. Station: N-0046 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
Map ID 72
Data = Annual average groundwater level in feet above mean sea level
39
38
37
36
Data
40
41
42
Figure 1. Station: N-0051 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
Year
Map ID 73
S3-10
32
26
28
30
Data
34
36
38
Figure 1. Station: N-0121 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 74
Data = Annual average groundwater level in feet above mean sea level
74
72
Data
76
Figure 1. Station: P-0016 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
Map ID 75
S3-11
68
64
66
Data
70
Figure 1. Station: P-0017 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
Map ID 76
Data = Annual average groundwater level in feet above mean sea level
5
10
Data
15
20
Figure 1. Station: P-0172 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 77
S3-12
26
27
28
Data
29
30
31
Figure 1. Station: P-0242 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
Year
Map ID 78
Data = Annual average groundwater level in feet above mean sea level
18.0
17.5
17.0
16.5
Data
18.5
19.0
19.5
Station:
FigureP-0270
1. SJRWMD-ext-6-24II.xls
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID: 79
S3-13
20
21
22
Data
23
24
Station:
FigureP-0373
1. SJRWMD-ext-6-24II.xls
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
Map ID: 80
Data = Annual average groundwater level in feet above mean sea level
19
18
17
Data
20
21
Figure 1. Station: P-0408 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 81
S3-14
19
20
21
Data
22
23
Figure 1. Station: P-0416 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
Map ID 82
Data = Annual average groundwater level in feet above mean sea level
11
10
9
Data
12
13
Figure 1. Station: P-0427 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
2010
Year
Map ID 83
S3-15
20
18
19
Data
21
Figure 1. Station: P-0450 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
2010
Year
Map ID 84
Data = Annual average groundwater level in feet above mean sea level
17.5
17.0
16.5
16.0
Data
18.0
18.5
Figure 1. Station: P-0469 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
Map ID 85
S3-16
16
14
15
Data
17
18
Figure 1. Station: P-0474 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
Map ID 86
Data = Annual average groundwater level in feet above mean sea level
48
47
Data
49
50
Figure 1. Station: P-0510 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 87
S3-17
28
30
32
Data
34
36
38
Figure 1. Station: SJ0005 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 88
Data = Annual average groundwater level in feet above mean sea level
10
12
Data
14
16
Figure 1. Station: SJ0263 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 89
S3-18
18
12
14
16
Data
20
22
24
Figure 1. Station: SJ0317 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 90
Data = Annual average groundwater level in feet above mean sea level
24
23
22
Data
25
26
27
Figure 1. Station: SJ0413 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
Year
Map ID 91
S3-19
16
14
15
Data
17
Figure 1. Station: SJ0516 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
2010
Year
Map ID 92
Data = Annual average groundwater level in feet above mean sea level
38
36
34
32
Data
40
42
Figure 1. Station: 304830081481201 & Data
Linear regression
Mann-Kendall Slope
1994
1996
1998
2000
2002
2004
2006
Year
Map ID: 100
S3-20
34
36
38
Data
40
42
Figure 1. Station: 305627081473101 & Data
Linear regression
Mann-Kendall Slope
1994
1996
1998
2000
2002
2004
2006
Year
Map ID: 101
Data = Annual average groundwater level in feet above mean sea level
4
2
0
-2
Data
6
8
10
Figure 1. Station: 303939081312601 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
Year
Map ID 102
S3-21
24
26
28
Data
30
32
Figure 1. Station: 301018081415101 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
Map ID 103
Data = Annual average groundwater level in feet above mean sea level
44
42
40
Data
46
48
50
Figure 1. Station: 300450081482801 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
Year
Map ID 104
S3-22
30
26
28
Data
32
34
Figure 1. Station: 295357081294301 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID 105
Data = Annual average groundwater level in feet above mean sea level
34
32
30
Data
36
38
Figure 1. Station: 302724081244801 & Data
Linear regression
Mann-Kendall Slope
1980
1990
2000
2010
Year
Map ID 106
S3-23
19
20
Data
21
22
Figure 1. Station: 303518081275001 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
Year
Map ID 107
Data = Annual average groundwater level in feet above mean sea level
30
32
34
Data
36
38
40
Figure 1. Station: 301537081441901 & Data
Linear regression
Mann-Kendall Slope
1990
1995
2000
2005
Year
Map ID 108
S3-24
38
34
36
Data
40
Figure 1. Station: 302227081435001 & Data
Linear regression
Mann-Kendall Slope
1990
1995
2000
2005
Year
Map ID 109
Data = Annual average groundwater level in feet above mean sea level
30
35
40
Data
45
50
55
Figure 1. Station: 303658081422601 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
Year
Map ID 110
S3-25
40
35
Data
45
Figure 1. Station: 301522081331301 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
Map ID 111
Data = Annual average groundwater level in feet above mean sea level
52
50
48
46
Data
54
56
Figure 1. Station: 302115082232201 & Data
Linear regression
Mann-Kendall Slope
1996
1998
2000
2002
2004
2006
2008
Year
Map ID 112
S3-26
26
20
22
24
Data
28
30
32
Figure 1. Station: 300834081421301 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID 113
Data = Annual average groundwater level in feet above mean sea level
36
34
32
Data
38
40
Figure 1. Station: 301817081374902 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
Map ID 114
S3-27
26
28
Data
30
32
Figure 1. Station: 295713081203401 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID 115
Data = Annual average groundwater level in feet above mean sea level
32
34
Data
36
38
Figure 1. Station: 301817081374901 & Data
Linear regression
Mann-Kendall Slope
1975
1980
1985
1990
1995
2000
Year
Map ID 116
S3-28
45
40
Data
50
55
Figure 1. Station: 302538081253101 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
Year
Map ID 117
Data = Annual average groundwater level in feet above mean sea level
30
25
Data
35
Figure 1. Station: 300717081381001 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID 118
S3-29
45
35
40
Data
50
55
60
Figure 1. Station: 300649081485901 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
Year
Map ID 119
Data = Annual average groundwater level in feet above mean sea level
25
30
35
Data
40
45
50
Figure 1. Station: 301617081421601 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 120
S3-30
18
16
17
Data
19
Figure 1. Station: 292528081383501 & Data
Linear regression
Mann-Kendall Slope
1940
1950
1960
1970
1980
1990
2000
Year
Map ID 121
Data = Annual average groundwater level in feet above mean sea level
35
40
Data
45
50
Figure 1. Station: 302608081354903 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 122
S3-31
35
40
Data
45
50
Figure 1. Station: 302608081354902 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 123
Data = Annual average groundwater level in feet above mean sea level
45
40
35
Data
50
55
Figure 1. Station: 302801081375101 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
Year
Map ID 124
S3-32
35
40
Data
45
50
Figure 1. Station: 302608081354901 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 125
Data = Annual average groundwater level in feet above mean sea level
35
30
25
Data
40
45
50
Figure 1. Station: 301551081415701 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 126
S3-33
35
25
30
Data
40
Figure 1. Station: 301844081403801 & Data
Linear regression
Mann-Kendall Slope
1950
1960
1970
1980
1990
2000
2010
Year
Map ID 127
Data = Annual average groundwater level in feet above mean sea level
38
40
Data
42
44
Figure 1. Station: 302416081522601 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 128
S3-34
30
25
Data
35
Figure 1. Station: 302550081331501 & Data
Linear regression
Mann-Kendall Slope
1985
1990
1995
2000
2005
Year
Map ID 129
Data = Annual average groundwater level in feet above mean sea level
40
42
Data
44
46
Figure 1. Station: 302416081522602 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
2010
Year
Map ID 130
S3-35
32
26
28
30
Data
34
36
38
Figure 1. Station: 304756081311101 & Data
Linear regression
Mann-Kendall Slope
1980
1985
1990
1995
2000
2005
Year
Map ID: 131
Data = Annual average groundwater level in feet above mean sea level
25
20
15
Data
30
35
Figure 1. Station: 304512081343601 & Data
Linear regression
Mann-Kendall Slope
1994
1996
1998
2000
2002
2004
2006
Year
Map ID: 132
S3-36
Appendix S4: Groundwater Stations Cluster Assignments
Following is a summary of 102 Groundwater level stations in Florida and Georgia and
which clusters they were assigned to in the agglomerative heirarchical cluster analysis (AHCA).
Map Number refers to mapped station locations in report Figures 9.2, 9.3 and 9.4.
Groundwater level stations and cluster assignments.
Map
Number
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Source
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
Station ID
Significant
-111811001
-092307001
-081926001
-081703001
-072215001
-072132001
-061734001
-061629001
-061114001
-051933001
-051819001
-051428004
-051311001
-041923001
-041705001
-041625001
-041329001
-041223004
-041014001
-032012001
-031908001
-031601003
-031232001
-031105006
-031012001
-021934001
-021902001
-021805001
-021624001
-021516001
-021335001
-012029001
-012003001
-011727001
-011534001
-011511001
-011035001
+010719001
+011316001
NT
W
NT
NT
VC
NT
NT
NT
W
NT
NT
W
W
VC
NT
NT
NT
NT
NT
NT
VC
NT
W
NT
VC
NT
NT
PT
NT
NT
NT
VC
NT
NT
NT
NT
NT
W
NT
S4-1
2-Cluster
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3-Cluster
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4-Cluster
2
2
2
2
2
2
1
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
Map
Number
41
42
43
44
45
46
47
48
49
50
51
52
54
55
56
57
58
63
64
65
66
68
69
70
71
74
77
79
81
83
84
87
88
89
90
92
93
94
95
96
97
98
99
102
105
106
108
Source
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
SJRWMD
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
USGS
Station ID
Significant
+011422007
+011608001
+021002001
+021125001
+021432001
-102006001
-101722001
-091938002
-091607001
-091420001
-062102001
+021211001
A-0005
A-0071
BA0019
C-0120
P-0001
C-0094
C-0123
C-0128
C-0607
D-0160
D-0254
D-0424
D-0667
N-0121
P-0172
P-0270
P-0408
P-0427
P-0450
P-0510
SJ0005
SJ0263
SJ0317
SJ0516
312712082593301
310706082155101
304942082213801
313146083491601
310813083260301
314330084005402
304949083165301
303939081312601
295357081294301
302724081244801
301537081441901
NT
NT
NT
NT
NT
PW
PW
PW
PW
PW
PW
PW
NT
NT
NT
VC
PT
VC
NT
NT
VC
VC
NT
W
VC
NT
NT
NT
NT
NT
NT
NT
VC
NT
W
NT
VC
PT
NT
VC
VC
PW
PW
NT
VC
NT
NT
S4-2
2-Cluster
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
1
2
1
2
2
2
1
1
1
1
2
1
3-Cluster
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
2
1
3
2
1
2
2
2
2
1
1
1
1
2
3
1
3
3
3
1
2
2
2
3
2
4-Cluster
1
1
1
1
1
2
2
1
1
1
2
1
2
2
1
2
2
1
2
2
2
4
3
1
4
3
1
3
3
3
3
2
1
1
1
3
4
1
4
4
4
1
3
3
3
4
3
Map
Source
Station ID
Significant 2-Cluster
3-Cluster
4-Cluster
Number
109
USGS 302227081435001
NT
1
1
1
113
USGS 300834081421301
NT
2
3
4
115
USGS 295713081203401
NT
1
1
1
117
USGS 302538081253101
VC
2
3
4
118
USGS 300717081381001
VC
1
1
1
119
USGS 300649081485901
VC
2
3
4
120
USGS 301617081421601
NT
2
3
4
122
USGS 302608081354903
W
2
3
4
123
USGS 302608081354902
VC
2
3
4
125
USGS 302608081354901
PT
2
3
4
126
USGS 301551081415701
NT
2
3
4
127
USGS 301844081403801
VC
2
3
4
128
USGS 302416081522601
NT
1
2
3
129
USGS 302550081331501
PT
1
1
1
130
USGS 302416081522602
NT
1
1
1
131
USGS 304756081311101
NT
1
2
3
*: VC = Very Certain, PT = Probably Trend, W = Warning, NT = No Trend, PW = Piecewise
S4-3