Y
u
OP
H
βi
{0, . . . , 9}
i
UUI
βi 10 ,
i=−3
%
float
%=
double
RI
HI
O
U
Jj
unsigned int
double
Xe
_K O
O
HI
^
O
HI
NS
JX
float
[ bI
V
JU
IX
NI
N[L
[X
HI
OL
OI
HI
X
double
SP
[X
Z
R aL
ZN
[JIX
I
NX
O
O
P
Ll
VJ e X
J OP
RX Q
J[I ZJL
P
XO NO
U I
Oc NZ
ZIS IS
JI
XO
JX JL O P
^
R
O
HI
JX
G [NS bI Oc
HP
UI J ZIS
P
V
J
d
ZNL
ZIS
U
MP
RI
R
cb
iT
i
_
JX
R
O
cS HI
N OL
I
Oc
XO
J[I
RX
VJ e
I
NX
R
_
NL W
aI
X
[
Z UI
&
#
% ,
&
(
D< #
4
N HI
I
HI
RI
KI
JI
S
I
O V
S OP
Y f XS
KH
L
O KP e
HX [X RI
O U K
O ZL P
N HI J P [X
I O U
ZNIS S hP RP
Q
JI ^ S O P
OI dI JX o
J R JK H J P
V K P OI
X
[ bI c UU NQI
N _
S P JL KX
L I UUI
R
e
O ZLSS O HI
HI P
NL e bP ( UP
[ Oc & ,
N OL %
IX &
#
m I UP _ + r
"
S O HP
S P O HI
JP
S OL NL e
N OL [
I X
JX JL O P
V
& S
&
+
A
& - #
)
"
+"
E #
&
IS
[
cZ U
P
IS
cN b
I
ZNIS
JI
J OP
QJX
V
[ bI
N
S
V
bL
O
SS HP
L
MIS U
&N
& +
& +
&
|
?
( IS
I
Y UI
XO
JI
NZ
N
b MI
HX
O
S HI
OP X
JL H
[I
P c U JV
_O
V b RP [
Y O QS O P N bI
I X L
NX N OI e S e
JQ P
I
UX O HI P
n
JK `P RI JKX
Q KP O
R [X RP
QS PP U QS O P
O ZL J
X JP o
N OI e ^ O X
[I
O N I c U
HI I t
_Y
_ r
RI
K P NIX O
[X YI HI
UX
U
O
JZL P XS N OI
JO J
^ O P V
Q
O [
HI N bI
S
R JP
QS PP L
O O
NL e
I
O
HI
RI
KP
[X
U
ZJL
bI
9: 8 #
,
;< &(& =
345
6 &/
#
&
7 0
1
& ""
# . 2
3
N O Oc
V ZIS
I
[L
OL
R
[X
f
P [X O
KX P
OI U
O Oc
S HI ZIS
I h
O
L JX
Ne R
IX
JU _ N
V IS
[ bI ZI
NS K O
^ MI P
cU
J \P _
KI O HI
O
N HI QLX
I U
NX L
I e
bL
[V O H
KH
NZ
aZL
X
OL
unsigned int
O
float
int
float
JX
JP
OI
NQIS
O
int
ZI
P
J HX
_ R
double
e
Oc ^
X
aL
NZZ
I [X
MNI OI _
c _S
VS
S OH
I _ cX P
V e Y QL
J UP P X
US
NZ X O H II
X
K O J n [S
KX P OI P I
MJI
XU
Z MVX U
Z U I N[L
KX P NJX I
X
JL O P
S QI [
^
b
OP
d I VLS P
HI MNI
L l O JX o
X
J O P S HI UI R
S
Q _ SS UI
ZJL O N
P
I
N O Y HI XS
I L O UP
O
ZNIS
KP
JI Oc O r
ZIS J HX
XO
OJL P
N
cJ O
X
P
Y UUL JX Q
S
OL
R
NX
double
float
MX
VU
I
L
c
MX
VU
IS
O
HX
NX O
I
[V
KH
N UX
NQI
O
J HX
JX
_
I RI
fahrenheit.C
82.4
10
[JIX
82.4
X
double
Z
NJ RI
[L
Jj
[
X
L
HI
.
double
SP
V
VS
`I
^
82.4
double
MX
V
J y X U X Z UP NI U
c U V U XK JX
O X SI JL O P
HI Y UUL
S QIS
Oc S L e ^ L
O
ZIS
e
H S HI
O
HI
QP I
N HI Y O
Ll
Jo L
X
J OP
JX X Oc
Q
R [I U ZIS
_ c NX
JZL P
# NI
JO
Y @ I
V
I
N
e
"
I r N
[ bI
I
N
HX NZI R
MI SK OL
Oc
O JL PP XS
ZIS
S HI
X JP ?
[I X NX NZ (& JX
Z
O P aL +
R
H P
[I [X & O J _ NK P O P &
I QN
NX
UX IX @
IS
JL O P J U _
V
X V Y
_ U [
JKI P
JX N bI N HI
S I
J OP
R ^
SXS
[LS
d JQ P
HI
O
[
UP
R
28
NS
[ bI
V
NQ
NZ
O
"
= 5/16
0.0824
R
e
cb
float
double
fahrenheit.C
float celsius
28
int
unsigned int float
JX
ZIS
$
?
. @ (&
+
B &
) &
""
" @
& + '
@
?
(& & #
+
&
&
&
float
NL e
O
JU
KP
[X
O
F
%
>
& #
( %
A
+
+
$
1
π
JX
i
c U J[I
aI L O
KI NZI
ZO X
JL P NS OL
S P XS
O JL
HX
O JP
O OI
HI N
QX
[L U
V R Oc
VS U ZIS
_
L Y
NZI O P
X H
NS OL O HI
S
X
JX [I
R XSS
L
NX KX P
I OP
X M
MX IS O PP
UX P JX
bUI
R
NL e NZ
J P IKI
NQ OI J RI
X KIS
U ^
JL
HI
L
NS
[ bI
RI
JI
OP
H
OY P
&
$ ?
"" (
&
& +
% + & &
(& @
)
? &
(#
(& ! + '
& &+
#
)
% % , &(
?
&
(& "
+ &
& #
& @
@ ' /C
CC
+
)
&
@ @
'
%
10
7
L
RP J
MS P ^ c U
JL P
L S dHP
MNI
[X
Y S `I
S
HP JIS
KH I
_
S HX S
J JP
NL KI
I RP
MS
J[X P JL PP
N RI L
^ MNI
^&
V
JU
HI
JP
OL
WX
NH
JI
%
VS P
!
S TI U
.
(
# &
" & &
#
@ (
&
G
MNI
J OP
Q
NQ RI
IIS
JKL
J HI
2=
& [X
Oc
JI
O WX J P
HI N
J
II P JI H \I
KO
OI
S RP NQI HI JL P
P
_O
X
^]
R
Oc MS PP V b _Y]
ZI JL P OJ
L I
O I O
HX
[X
X O [Z UL XS `I
UY UL c
S I VL [S P
VS J RP ZV O X O
O O S `I
N OL HI c b ^
I NZ
NZ L
NL W
IS QN
aI
JI X
X
[S
JX O P
[
Z
R [Z
_ UI
KL c U ^
[ VK f d
ZV S O N HI RI
Y OI L I NQI
hg XS IS
O P O JL
HN HI
TI
X e N e NL e S U
K O X O VS P
JL P K O S HP NX
X JL P
J U X [S I
V U X OP
NZX
[ bI ^ O `I
NS
S P RI
N
UP GHX O HX QIIS
`I O O
Y
7
8
IS
I
int celsius
KP
NZ
N OL
82.4
RI
UU
Y Pe
IS N WL ^
P
[ S O HP
Zc U _
N
I iT
Z UX i
KI NZ
L
O M
HI P
S RI
RI Y
KN UX O
L
X
OJL P ?
(& +
&
&
JP @
=
+
XO
J O HP
X`
V bL
O
Y HL
cL
V
je
XS
U O HI
R LS N
L IS
U V
MI J O U
JX P
L Q
HX O NZ
MI N HI NL
X N QX
ZL
[V b [L
K H UI V
O
N UX [ O ZVS
O
NQI OY HX
MX I
V U HX NL e
NI Y R
JX
JX
P
QI O H J P
JX O ZV
HI O
NX R Oc MX
I ZIS VI U
L
O
N HI
e
I
NL e JX ^
IS R
WUL
V
X
PX O
J OP
bUI
Q
ZJL
NL e
P
OJ
S
NI f k V
[ bI
VLS P
NS
h
JX
2 2
π
& +#
IS
JI
cL
V
JKX
N
I
NZ
J HI
d
XO
KL
O
V R JLS P
I ^
S OL J j
ZI XK e
KX P _O
mI UP KL
[
NZ R ZV
L XO
KISS JL O P
S
NLS Y
^
OP
H
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
NS
NX
I
MNI
c
XS e
JL O
_[
NL O e [VZ
Z UX
82
XR
A,
KX
SP
S dHP
^ O
P
JP
VS
OP Q
JL O P X
a
O In
HI J R
pq
V
X
MX [N bI
UX P L
bUI e
R RI
QS PP K P
O [X
JP U
OL RP
Q
s S OP
RP pq o
QS P
O
bI RP
NL e _ QS O P
I S
O cX
HI _ r
RI JX
KP X
[X N OV
U X
ZJL US
P L
_S O V U
X JL O P
_c
JX S P
tR S OH
P
R k
QS PP cVL
O
NZX
Fixed versus floating point.
^
6
X
NL e
X
UU
X
N OI e
O
HI
RI
KP
[X
U
ZJL
+
NZX
NLS
[
X
JX
aI
I Z
J P _ UI
NO
S O HP c L
N V
IS O
ZI NL {
_ KS O NQ
JP X
KI [ p
N O P JLS
IS
NI L
MIS [I
S N UX
L
NQI
[I J
L P
e
VNL ZV O
^ r
ZNI
|
K a
VLS P I n
R
R ZL
QS PP J P
O ON
NL e I
N
O ZIS
HI JI
Ne
X XO
K O
JL O P JL P
X SP
U
Y
I
MJI
&
#
"
%
#
&
#
%
$
$
I
JL
O
HI
HX
O J
_ R
O
MX HI
V U MX
I VU
SP I
S N
LS JX
QI
[X S P
UU
O MNI
HX c
O UP
OP [
N HX OI P
^ R
c RU
X IG
Y UUL HX
S MI
JX NX
c IU
JP X
N OI cS R
IS JII
J OP J
P
Q
KL \I
[V JKL O P
Z
XO ^ ]
JL O P S ^ ]z
O
XS o HX
O
QIS
N UX
HI
#
"
!
O
$ &
&
'
( # ( #
& " )
& # %
& # !
$ &
* (
! , & - $ $ %
)
%
$ . &
$
&%
d ^ r XO
N OI e
I
KJL
O
HI
R
RI
S RP
KP
X
[X
MJX R
U
ZJL
OX
P
QI
_O
SP
I
MJI
KS UL
I
Pe
cN U
O
I
S HI
UX
I
OI
R
Rk
QS PP
I
O
MJI
NX
JI
O
L
V HL
~}O
Q
NL
H
O
J
HI
L
YO
O
Ve
JL
U
V
}c U
J
[ bI
II
NS
RI
R
o
S
X
JX
JP
R
S HI
#
(& % "
#
% % $
$ &
!
# &
^
_
d
Jy
an
I
R
ZJL
P
ON
I
NZ
IS
JI
XO
JL O P
M L bP
VS
S RP
X
MJX R
XO
QIS
L
Xe
YO
L
L
MNI
I
NX
_I
Y HL
I
N HI
2.5 Floating point numbers
int
82.4
82.4
7
.
82.4 = 824 10−1 ,
0.0824 = 824 10−4 .
fahrenheit.C
2.5.1 The types float and double
float
double
pqq
x
wv
t /= i
HX
O
float
i
O [I
JKL J `
P
MNI L R
OI e
R JKL
OL MNI
S
O
HI JL P
Oc kJ
ZI P ^
O
HI
a[ P
L I
e aI R
O N
HI Z
L ISS
O
N HI JL P
X
S HI
MI
Y
HX
YI
JX
MNL P
bI
L
QI
K
J HX
HI
O cH
HI
O
e
_
N HI
YI
Oc
Oc
P
I
int celsius
O
U
JP
NQ OI
X
U
JX
J HX
X
NI
JQI
N[L
RI
Jn
I
R
OL
bI
I
NX
ZIS
N
[ bI
V
JO
ZJL
i
1/(i − 1)!
float
^ ZI
c
Q
Ll
X
J OP
OP
OP
H
p
bUI
o
HX
L
HX
RL
XR
QLL
QI
P
O
HI
S
JKL
N UI
V
L
e
JL O P
[X
NZ
aZL
OY
O
OS j
XO
I
[S
II
{X
JX O
J P J OP
QI
O J UP O
HX
S
_ ] r OS I p Y HP
JP
S O HP KI S z P ^ cX
OI
R
OY U
G
ON
I
OP
H [X
O JS P
HX
O OL
JKL
bI
JX O P a I
S
L ZJ UX
NZI I P
JX R
SR SP
L Y HL
e
Oc O
ZIS HI
a[ P
I
aI R
NZ
ISS
LP
J
JX
X RI
e += t /= i
float
JL ^
dX
Q HP
XSS O
L
KX P
OP
MI
NI
NX
NS OL
X
NZI
LO
J[I
QJ P
S
KXS
[I
NX
HI
unsigned int
Oc
RI _ ZI
Jn
I O HI
YR
MX
HP VNI U
K
JL H I
I [JX
SP SP
OP
unsigned int
VK ^ r I
N UX d NS n
_
HI
Pe NIS OS
O V YX
HI
LN J O UP O
SH
JQ PP Q P
X MVX U [I
J UP I K
S J HX
OI P S
NQI O HI P
[
ZNX
_J
P
a[ P
I
R
KL
[
ZLS
OI P
aI
NZ
ISS
JL P
S
_J
P
OI
QNX
LU
NZI
JX
SR
QI
O
JKL
MNI
OI
R
OL
O
N HI
IS
ZI
KO
P
MI
1/i!
JL O P
XO
J[I
P
bUI
MX
VU
I
&
OL
O
HI
NL
JQ PP
X
U
MX
VU
^I
Jj
XO
int
Z UI
[
SP
OP
HI
MX
VU
NI
JX
QI
L
e
O
N HI
I
UI
MJX
O
Ll
X
J OP
Q
JZL P
JO
V
[ bI
N
O
IS
JI
O
H
HI
Ne
X
K
JL O P
X
U
NZX
O
Xo
N OI e ZNX
SO
O ^
HI
RI
KP
[X
U
ZJL
P
Or
NX
I
O
U
SX U
NZX ^
O
XS
I
Le
[LS Y UUL
O I
QJI R
NI c b
X O
U HI
NL e UI
_ [ N OOI
X
NL
Jj
S OP _
&( U
N OI P
X
U
JKL
S
SP
SO
L
JX e
^
HI
`I
L UL
O
O
SO
c[X
ZV
O
G
HP
UP
`
S OP
X
L
VL
_[
NQ
NZ
cL
VN
VJ
J HI
& +
+ " _ L e
Y UUL
S o I
NX O R
J OP c b
Q X
&
+
A
$
OP %
H O
HI &
UI "
+
N OOI S
NL o
NX O
r J OP
d YQ
HI P
U O
N OI P O H
X HI
U
#
%
+"
HXS X &
U
LU _ r
e
O JX
S HI R
I JX
^
. "
(
+
Program 10:
kO
VN R
JP
QI
OL
MX
VU
X
JL O P
L
e
O
HI
aI J
P
_ S NZIS O
L
HI
S `I
Z UX _ X
KI J UU
aI P
OI
VSK U NQX
P U
MI L
c U NZI
L JX
MNI S
R
O NX
HI I
Oc I
ZI MJI
OV
X
c UU
JKL
MNI
OI
R
OL
fahrenheit.C
9 * celsius / 5 + 32
QSI
R
I
QI
^ R
je
O
N HI
I
NX
I
YO
JL
NIX
IS
O
MX
VU
IS
J HX
O
aI
OP N
O ZSI
N HI S
P
X O NIL e JL P
S RR I S
N P
O Sn P
N HI O [
IS R Z U
V M PP K PP
J O UP S RI c O U
NZX
Q
M X c b JI
VU
O
I
S HI
KNNL o m P
I
OL IS XS R
O JZL
HI
X J RP
NZ Q
aZL OL
P O
[X S HI
JL O P OI ^
Z
^ NL e GHI
J
[ I
MX
VU
X
OI
J RP
OL
N OI P
X
_ r JL O P
JX
R _
J HI
t
JX
NZI
_Y
euler.C
unsigned int
L
XO
XO
JL O P
JI
HI
0
[
ZV
S dHP ^
[ JP
NZX
O
VK P
N UX
aI
X UI ZJ UX
SR SP
OL Y
d
h
e
[
KL
HI
VS dH
X
S OI
double
HI
std :: cout < < " Approximating the Euler constant ...\ n ";
// steps 1 ,... , n
for ( unsigned int i = 1; i < 10; ++ i ) {
ZV
O
LK f
O
.1
E
O N
HI ZL
NQ
X
O
int main ()
{
// values for term i , initialized for i = 0
float t = 1.0 f ;
// 1/ i!
float e = 1.0 f ;
// i - th approximation of e
NL e L l
X
a[ P J O P
I Q
aI R ZJL
NZ OJ P
ISS V
JL P [
S N bI
L
MNI Oc
Z
O IS
HI I o
Oc I
ZIS XS U
L
\I
JX K O
JL P
R
^]
^ ]
Ys
HX
X
L
OI P
Y
O
O
HI
JP
OI
NQI
L
Y
^
NZ
N
IS
I
J HX
O
N OI P
XS
U ^
L
e N WL
Oc aI
ZI X
[
Z
_ UI
ULL
`
O
S HI S P
X X
[I M X
XS UP
U R
N OI P
SX U
L U
e P
Oc N OI
ZI _ X U
U
N OI P
J OP X
S
Q LU
O e
HI Oc
M X ZI
VU
I
NL
JI
float
_
# include < iostream >
I
∞
X
1
= 2.71828 . . .
i!
i=0
NZ
// Program : euler .C
// Approximate Euler ’s constant e.
[
[
NQ
X
10e
NZ
N
JI
+
123e-9
1.23
int
K
UI
VS O
S
I
V
JX r JI
KI R ISK
L JP L
e
e
R
QS PP o QS RP
P
O
[I O
NZ JX NL e
I JP
KI Q [
RI
OL
R
cb ^ r _ Y
JX d
HI
L aI N HI
I
ZO
JL P JZL X JI &
L
U
O e
NL X UP O
HI
NZX [
C O [X
Xo c
N OI e
bI
I
O O HI
HI
[
N e UI Z Oc
X N OOI _
UP
K
`I
JL O P
J
X NL P
U
ZNX r
S o
O X P [I
S U JX
O L JP
HI X Q
V
S
I
1.23e-7
Jj
O
Y
HI
MX
VU
I
L
e
O
_
HI
UP
N OI
X
S UP
L
b
JX O P
I
R
cS b
KX
J UP
Q U JX
O N OI P
HI
^
N e XS R
X ^ U
K
JL O P
NX
X
I
U
MX
RI
UP
KP
R
[X
U
MX
VU
I
U
N OI P
RI
Jn
XS
I
_ U
R
Vb
cb
O
d
aI
S P JZL
J JI
L
_J O X O P
P U
NL NZX
N RI O
[X
OL c
X bI
ML L
P
R [
JKL OOI P
VS e ^ R
JL P d
Y VS H
_
OP
H
e
N
_
HI
O JP
HI
aI OI
NQI
JZL
JI NZX
X O P JX O
U
NZX R
O O HI
o
RI N e
Jn X
I JKL O P
XS R X
U
_ ZNX
Pe O
O cb
HI
aI
ZJL _ Y
JI
N HI
X OP I
U S
NZX P
S O P O HI
S
[SS P J P o
J P QI
^ Q r Rr
RI
KP
[X
J UP
OI
NQI
O
0
9
1.0
VJ
[V
JP
X
K
JL O P
NS
[ bI
V
JZL P
JO
Q
Ll
X
J OP
Y HL
S dL
JP
.
Oc
e
N OI P
SX U
L
ZIS
JX
KL
ZU
KX P
OI
R
[
I
N[L
I
NX
R
`I P
JP
O N OI
HI Q
S UP X U
L O Oc
ZIS
VJ ee _
RX O HI
J[I L l
X
X O J OP
NX U Q
O P ZJL
H P
[I OJ
OP V
K
Oc [
ZIS N bI
J P Oc
ZIS
iT
i NX
^ I
%
+ '
_
JX
R
S O HP
S OI
KL
Z UI
[
double
S
MNI
QIS
V
KP
c_ `U
Z S
O YL
HI
NS n IS
Opq HL
V
N OI X UR
N
S U
_ [S IX
X cR
^ c QI
N{ O
L X
NQ QL
X L
[ pq X R
NZZ
IS RL aL
V
IS
J HI
S HP
JKL
[
V
UU
Ve
c UU
Il
QI R
NR
IX
JU
V
[ bI
N
_J
X
[I
cU
O
HI
V
N UI
JKL
S
JX O
O
1.
Y
HX
SO
O
O
0.1
E
double
1.23e-7
K HL
KX
I
c[NX
P L
V
e
float
S
O JL P NZ
HX
L
NQ
O
X
[X
K O
c O U JL P
S O H NL e
^ P O
HI
V
N UI
JKL
S
JX O
YO
X
aI
123
MX
VU
I
SP
JP
Literals of type float and double.
int unsigned int
1.23 10−7
double
f
F
double
e += t /= i ;
// compact form of t = t / i ; e = e + t
std :: cout < < " Value after term " < < i < < " : " < < e < < "\n ";
}
}
return 0;
Approximating the Euler constant ...
Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806( poten
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828
e += (t /= i)
1/i!
i
e
2.5.2 Mixed expressions, conversions, and promotions
float celsius
float
]
pq
p
pq
x
wv
HI
O
(unsigned int)(1.6f)
^
QI
ON
IS
I
O
XO
JI
NZ
IS
NIX
J HI
O
bUI
JQX P
X
I
JX o
R
−1
float
2.5.3 Explicit conversions
unsigned int
Program 11:
^
KI P
KO
X
_Y
OL
HI
ZV
JP
I
VS O
X
Oc
_
X
cL
V
HX
^] X O
^ ]
^ s JKL
S dHP MNIS
LP
HX J
Z
JZI [X
S c
NL e SX U
L
aI
X QL
N
[ Le
Z UI
JP [
O
O HI
HI
RI N[L
KN UX I
X JQI
NI
JL O P X
S U
X O OL
OI O
HI
J[I S UI
O S
GI
U NX
IU
_ ZIS X
II c R
J`
\I YL
K
JL O P O
X
NI
JQI
10308
[P
NZ Q H
I O
L
NZZ OOc N e
L N UX aI
X
K H QI X
J
O V [Z UI
HI
SS P [ QI
V N bI O
I ^
O
L
HI
LV
e
HL
O
S UI
ZV
Y
O
OP
HX
MNI
cS
P
^
[
Z UI
I
NZ
KX
L
UU
NQ
O
X
HX
[
O
^ ` [O O
O
S HP
J HI O HX
XS
K HI S
[JIX
`
S
SK ` O
Y HI
VS
HI NI
O
N HI OL
Y OO
L
Ll
X
J OP
Q
JZL P
JO
V
[ bI
NS
&
#
O
N HI P
[ p NI RPg
p JI
ZNI KI
NL e ^
d
[S HI
N
S O HP ZL
N
XS O QX
SP
JP
I RI
R
O
HI
NNKL
I
KO
RP
NI g
JI
^ KI
N{
L
NQ
X
S O HP
je
O J GHI
N HI
IS X
V Ll
J O UP JX
OP
Q
MX QZL
VU J
I P
SP JO
JP V
O [N bI
HI
MX S P
V U JKL
NI
JX MNI
QI OI
L R
e OL
O JX
HI
NX O J P
QI OI
O NQI
Oc _
ZI O
Y N HI
I Xe
QI JKL O P
O
S O HP X U
MX NZX
V U SO
I P
L SR
O P
NY HI NKX
S P RI
I ^ R
int i = -1.6 f;
^
NZ
R
JKL
O
O P MNI
H
O S
J HI JL P
S
NIX V P
IS J
ON RI
I J
NZ I n
IS
JI ^ J R
j
XO
bUI O HI
N
M X ZI
VU M
I LP
VS
r aI
X
[
Z
_ UI
SO
N HP
V _
UI
JP
P
X OP
Um P
IS
Y
OP _
H
Y
^
double
int main ()
{
// Input
float n1 ;
std :: cout < < " First number
std :: cin > > n1 ;
float n2 ;
std :: cout < < " Second number
std :: cin > > n2 ;
. #
JKX
I
−1.6
Pe
_Y
Oc
JP
J[L
[
KL
I
NX
ZIS
N
[ bI
P
G
MX
VU
IS
NX
I
JKL
MNI
OI
J HI
&
i
cU
_ &S
P
OJ
V
ZJL
Q
JX
MX
VU
^I
Jj
S O HP RI
UX JZI
N OOI J RI
KXS Y O
_ I cX
O _ r
HI JKL & "
MNIS
JL P O HI
S P NL
VJ JQ P
P
RI X
J n MX U
I VU
^ R I
c
J HX
N UUI
O
[X
Yo
OP
H
IS O P
Nb
L
J `I
JP
JX
P
[
Z UI
J[I
XO
JL O P
MX
VU
I
X
double
MX ZJX
VU
I
JL X
cL V H
VN QJI
P
Z UX N OI
NL O e _ M X U
[ [V
MX P K
H
O N UX
HI
aI NQI
NZ O
ISS J HX
JL P NL e
JP
NQ OI
X
U
Oc
ZIS
^
j
cL e
V
NZ
JP
O
O
HI
N UX
QIS
O
cS UU
V
VS
OL
HI
[LS
X
NI
JQI
U
J
L
MX
VU
HL NI
UIS JX
^
J j QI
_
JKL S O P
NO P
XS P
_O [ZLS
L S
MNI bP
NL UI
OL
VJ NI
N
N RI ZIS
Y L l JI
S XO
NX VS
I S
SS UI I b
O
L Le
eJX Y
SS P P
V OH
I
k N[L
O I
N HI O
I J HX
NZ
IS JL
JI I
X O I UI
bUI
J[I
MX O
VU Vb
IS
O
O
O
O
O
J j HI
X
M
X S
U V VI U
Oc
N
ZI [ JX
S P N[X
_ c QIL
O e
HI
NI HP ^
NX
cK H
L
NX e
OP
H
[I
O
KP
Oc
ZIS
Ne
L
[
O
HI
XS UI
NI
JQI
S
JL P
aI
NZ
IS
JL P J P
L
QIS M U
O MJ P
I
M X QL
V U NZI
X
OI JX
_ R SR
JX L
c e
L Oc
NZI ZIS
JX
LR
e
Oc JX
ZI R
S
JX
aI
NZ
IS
_
}
P
n
1.79769e+308
J
// Program : diff . C
// Check subtraction of two floating point numbers
# include < iostream >
=? ";
=? ";
float d ;
std :: cout < < " Their difference =? ";
std :: cin > > d;
// Computation and output
std :: cout < < " Computed difference - input difference = "
< < n1 - n2 - d < < " .\ n" ;
return 0;
XO
VKL
bUI
OP
H
IR
r
JX o
OI P
OP
JH
H
SP
JP
L
N OO
V
I
MJI
Y
kY
Oc
SO
ZIS
N
[ bI
V
JO
ZJL
Q
Ll
X
J OP
N WL
VR
&( I
OL
L
MNI
S
V NL
Sb
I VJ
L O N RI
e
_Y YL l
P ^
J OH d
L S HP
f SP
HL
S UI bI
h
J P VKXS
I
Y O bI O HI
JII MX
^ VU
NI
JX
QI
L
IX e
K
J HP
NQ OI
X
U
Oc
ZI
SP
X
%
+
Oc
ZI ^
HI
_
HI
OP
H
O
I
OI
S OU
JL
cU
V
IS
K ON
NNKL
ZV
[
OL
KL
Xe
UP
X
JL O P
S
NZI
c[X
Oc
O
KL P
[I
NX
ZIS
JP
NQ OI
X
U
NL W
L
NZI
d JX
RI
Jn
I
R
OL
bI
N[L
I
JQI
NI
X
U
O
J HX
O
HI
SP
SP S
P Oc
L
e ZI
Oc
Z
I ^
P
M P OL #
UI
VS dH
QI
^ _X
R
[VS JKL
O
^ J GHI KL
JKL MNSI
[
I VS ZLS
JX O P JLS P KX K OI P
UU H
J N
YP Le
HP [ \I
JK H K O
L JL P
JP
NL e ^^ ]t
[X ]O
JL O P O HX
NZ
QIS L
O [L
S UL JL O P
^ O S
Jj P
X
NZX N OI
O
VK P [VS
N UX I
_
R
O OL
HI
MX JL RI
VU
NI OI
JX NKI
QI JX O
L P
e NZ
double
(
P
x
JX e
JL R
R
UP
float
MX
VU
I
HX
N O MX
VJL VI U
SR
OL
Y RL
J O HI
OL Oc
O ZI
J HI
aI
J OP
OI
NQI
O
O
JP
OI
NQ
X
JX U
R
Ll
X
J OP
JII
Y bI
S
NL
NQI
SP
N UX
float
T x =
+
N HI
MNIS
JL P
S
J TL
float
A %
XR
UUI
MNIS
NL W
aI
JZL X
S R [Z
UI
OL _
O
O HI
Y HI JKL
I
U NI
J U MS
`
Y L JL P
J L
e
? JX
L
J
$ JI
&% QX
O P
& MI
IS
NNKL
float
x
MX
aI O
NZ
ISS
JL P
SP
[ bI
J TL
−2
float
KX
L
SX U
Z
V
unsigned int
float
double
double
+
HI
KXS
d
_
int
int(-1.6f)
MX
VU
NI
IS
V
J O UP
QN
Le
[
O
HI
HI
_
O
a
J
double
JL P
S
aI
NZ
IS
O
b
JX O P
L
dL
L
JX
N
I
U
K PP Oc _ c U
NX O ZI
P
KL _
O P J Pe JKX O
H MNI O
[I S S HP
O LP
K P J UX [X
Oc X N OOI S `I
JI
ZI Y UUL
Y S Oc SI
ZI OL
O P OL
V HL JKL S HX NZI
X L
O
O MNI N UX N e
HI O
NQI [JX
RI X
J
VN OL MVX U MVX U P
I NI N OI
L L
Q
e e JX X U
RI JX QI KL
Jn c ^
J P NX
[
ZV
Q OP
XO
JX H
JL O P
[
I
aI O
L
NO KP
MNI
X Oc
X
MNX ZI
Ll
X P N RP
X
bUI I
J OP
KO
Q
UP c U
`I J
ZJL
J P OL P
P
O
c
int
^
R
SP
JX
r
d cZ U
HI Y
JQI N
NI OI P
X O
S U HI
cJ a I
aX O NZ
IS
L S
eJX JL P
aI
ZU
K PP
O
JKL
^
MNIS
JL P
[
P
int i = -1.6f;
o
S
bool
double
float
Oc
float
X
S P
I
N HI
_ ZI
JX
Y
double
aI O N WL NKL
NZ NKI NIS
ISS
X O ZJL
JL P J P
J RP
KL f Q
[ JKL
ZU
KX P MNIS
OI JL P
Rh
Oc L
ZJI e
X
^ [IS OL
O
_ HI
PO Oc
S
J P ZI
I KISS XS o
NX J P
c
OL
NZX
JI
O
S HI
mI P S P r
_ J RI
UP I n
`I
JP ^ R
O
HI
KXS
R
t
2.5.4 Value range
std :: numeric_limits < double >:: max ()
1.79769
pq
t
pq
x
wv
i=0
:
"
6
^ QI
,e
xi = (xn+1 − 1)/(x − 1)
7
)
x
x=1
s
i−i< p
p
1.1
e
x>0
0.1
L
{∞}
J
JL
mNI
2
1
u
bi
i−i+1
SP
_
P
S
OI
[
cS
N
[ bI
V
(2, p, e
i
_Y
,e
x
i
H
K HP
1.25
NL e
aI
X
[
Z UI
SP
Jj
NL
J O N RI
ZJL
Q
)
I
OL
RI
O PP
U
KP
[X
MI
ZLS
Q
MJI P
XO
MNI
JKL
/
^
P
Q
OL
O
HI
Ll
X
J OP
[
Q
S dHP
LS XS b
[I
I O JXS
Ll
X
J O P O HX
^ Q O
J j ZJL O HI
P J
X OJ NL
J bP V
[X
NX
cS [N bI mI UP
cS cSS J R
OI OI V
_ [ [S [N bI
O VS S
HI I NX
RI J R I
K P P NSL f
[X NZ
J U X OI
V K OP R
cb
[ bI NKIX aI
NS
I
ZL
@ JJI
JX &' O h
_ ^
R
[JIX
NX J
P
JI Q
L O
ON HX
I O
NZ O
I HI
c
MI
HX
1.1
QS P _ O
JX
R
O HI ^
i
R
e
JL P
L
Ll
X
J OP
S
JI
P
JO XO
V _ bUI
[ bI YXS
NS
_ YI
JX
UP
R SU
OS JII
HP
aI aI
Z UX .K O
J P JLS
S
I
O V
S HI JI
NO O
JX _ c U
NI
QI N
NL
bI S
HX NX
MNL P I
L [X
RI
N {e J P
L
NQ JKL
X
[ p MNI
p JO
ZJL
β=2
HI
O
O
O
I
K
cS O U
V
N Ob
X
KO
Ne
L
[
NNKL
&
c OU
JI
NZX
Z
X
JKX
NS HL
VX
V
k
1
β
RP
&
HX
(β − 1)β−i βe = 1 −
O
i=0
i−i
X
{0, 1}
NL e
X
UU
G
i=0
-
,
,
p−1
X
(2, p, e
3
S
aI
JZX
c
u
HX
S O P S O P
O QJL
HI P
XO
QJL
%
`I
XS +
L N HI
I
Y[I
JX
HX J OI |e
O R N
KS UL L
RL
NI VS O V
Y b
UI
L UL
HL
K
X ` JKX HI
O J JK `
Ll L P
X
J O P O QVNL
NKL
Q N
I
JZL P K J[I
O
c
JO SU XO
V V NX U
[ bI NX O b O P
NS
H
K
J P ^ O [I O
_ YK P
JQI VJ dL I
NI
X N RI
^ U S [VS
JX O KL O
J
YR
VK U
_ c H RI
Computing the floating point representation.
x
JP
OI OL
S O P JX
@ NL
&
' [X U
A mI P
+ R
Jb
& NX P
c
Z
[V
J
NS n V
O [
KL N bI
OL
O
O
(β − 1).(β − 1) . . . (β − 1) βe =
<
bi−i 2i−i =
$
x
5
di := bi−i
"
−∞
4
i=0
i−i
X
J bP
NX
HI
bi
53
bi 2 i =
d
0
p
-
Y
O
HI
JL O
I
SP
QIS
N UX
UI
HP
+
^
[
Ne
L
N
S
OL
bUI
I
K
cS O U
V
N Ob
X
KO
NNKL
X
I
NX
Y HL
JP
Q
O
HX
O
O
HI
VX
O
NS HL
VJ
Z UI
[
X
aI
JX
SP
I
N I
_
X
an
I
aI R
JZL
JI
O
N WL
O
O PP
[X
m I UP
JR
V
[ bI
N
SP
MJI
NL
ZLS
S UUI
O
[X
S HI
e
"
^
bi 2 i ,
; "
1.25 = 1 2−2 + 1 20 .
d Sd
HI HP
JL SS P
cU P
RP [N UX P
NI g
JI OL
KI O HI
SP
Jb
O NX P
HX c
OY aI
I
JZX
HX S
M I JL P
OL L
X Xe
Y UUL J
X
X N OV
UJ U X
J
I VU
QX
OP [
MI N bI
XS
YZL
NIS S RP
VK
L SS
e I
S JR
JP P
KI K \I
JL O P
JKX
^ ]
^ ]
bI ^0
HX
MI
I
1.0 . . . 0 β = β ,
e
i
Pn
N O bP
NX
c UP
KS UL
I
OL
NX
i=−∞
∞
X
$
i=i
i
X
x=
#3
6
5
R
# i i
x
SP Jo
O L OI
GP J HI O GI
O V HX O
H
J HI
[ bI O
N
L c[X N OI RI
e
_ Y ( bI J[
P
I
I &
O
,
QI % _ S HI
O & Vb
( # S O [X U
P S UI
JX L J n JX O
P
R ^ e S OI R
J P N UX
KI QIS
SP O
MX
Jn VU
IS
POI L
r
^
_ e
d JX
HIJ
V R
_
[ bI NL e
N Y
JX
&
x=
#
"
d0 .d1 . . . dp−1 βe .
0.1 100 0.01 101
M X P S dHP
J UI
LO O P
e _ c U [Z
O
IS UP
J HI Pe
NL O HI O HX
[X J b O
m I UP NX P u
N R c I aI
NZ
IS JZX
JI S
LP XO J JL O P L S e
YP
P
S HX JX e
OJ P X
HP
O JL R
O [LS c U
HI
X O Pe
Y UUL S
X JP
b Q
N UI P
JX JKX n JX
XS R
_
e
! "
d0 = 0
0
% ,
&
^
}
V
1.0 10
−1
JX
HI
,...,e
(
O
R
)
P
UUI
u
+
A ?
O o ( HI &
@ +
_ r &
&
@
u
'
O o HI + S P
X
% Jn
OI P
S
_&r V
Sb
I
LO
u e
_
O o RI
HI J n
I
R
c
"" b
Le
A VNJ
+ V
2.5.5 Floating point number systems
aI
JZL
JI
_
J OOI
XS
KX
SP
HI
Oo
( "
u
&
,
Y
1.1
1.0
0.1
- input difference = 2.23517e -08.
S dHP J
SP j
S
V KL
[VZ
JIK P J O
P
O Q
OL O
aI HI
Z UX J bP
J P NX
c
O aI
HI
SS P
JZX
V S
Y I JL P
OP L
H
O e
HI
RI _
K P UI
[X VS O
JU
V XSS
[ bI V
NS
[I
NL e
S
JX P
R [Z
UP
_ K Oc P
JX
O
X R HX
ULU O
O
N HI ^
NI
[
O
HI
NL e
i
e {e
d0 d1 . . . dp−1
O P SI
H N
O
K OP
^ VNL
S
d I
HI U
Y RL MIS
J OL
S
P O
RI HI
Y
0.1
Y bI
N
JKX
β = 10
J HI
P
V
YI
VJ
NL e
X
UU
_
JX
R
u
NL e NL
e &
[ IX & JU ^ r
V
[ bI
NS
N
I
NZ
IS
JI
OI
R
cb
S O HP
S
cS
OI
[
JKL
S
SP
SO
L
& [
Xe
& NS bI
UU
r
O
e
O
p
1.1
:
4
3 2
NS
[ bI
V
^ IP
^
O
HI
JL
IS
Y
_
"
J#
HI
L
NS
[ bI
V
P
I
S HI
|
1.5
1.0
0.5
- input difference = 0.
9 8
{0, . . . , β − 1}
1
1
&
u
di β−i βe ,
JO
ZJL
Q
,e
&
e
R
1
*
SK P
I V
LU _ cU
a J [NS bI
NI NL
SK P [X J P o
I m UP
X ZNX
^ r JL O P O P
VK
S UL N UX
IS
aI J O HI
X V
K
c OU [
O N bI
J HI _
V Vb
[ bI O
NS UI
SO
L J
Xe L
S b OY
L
V U NNL
OI c
XS
L
{−1, 1} di
s
e
[JI
L
u
d
JX
First number
=?
Second number
=?
Their difference =?
Computed difference
* ()
e
V
J HI
[
S P N bI
O S _
HI P
A O
+ HI
(
& ^ & _ &O
S HI
I
V
JI
KI
N
[ bI
Ll
X
J OP
First number
=?
Second number
=?
Their difference =?
Computed difference
%&'
β
)
S o NZ
II I
GI
ZP
KX
U
Yc U
N
OI P
X
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
N
JP
Oc
N HI
d I
Y
(β, p, e
$
NL I
I S
S UL
I
,e
#
"
"
(β, p, e
HX
V
J HI
O
i=0
p−1
X
OY
NL W
aI
d
N HI _ X
I
[
NZ
Z
IS _ UI
VS
JI
JP
XO
JL O P JX Q
S bX
L J RP I
e
JX J[X
V c
[ bI L _
N O
N HI O
bI Y J HI
KL cXS V
[IS ^ [ bI
N
s
!
S
e IO
S O HP SP
O
L
s
MX X bL
VU V
IS
O
[X S O HP
N UUI J
YL
O
J HX ^ r
β
e
2
1.5
e
βe+1 < βe+1 .
0.1
i.
x
d0 = 0
di 2−i 2i .
e
x<2
pq
z
pq
x
wv
KI
U
SI RL ^
J
L
cO
IP
U
R
a
65, 535
Y
L
77.1
5
6
6
5
"
6
6
6
$
6
bi−p+1 = 0
<
x
"
Y
`I
SP
[X
I
NL
NNI
HI
R
P
JKX n
O
R
QS PP
^ O
Jy
I
^
X
P
JL O P
[X
aL
NZZ
S O HP
X
X
U
_ cU
N OV
^Q
X
Vb
S HX
je
JX
[X
KS UL
OL
U
MX ^ O P
VU
O I d
J HI
N HI
V
I
J P XS
[ bI OL JL
N
O SP
HI O
L l O HX
S HX X X
J J OP S
L Q
J n ZL [X U
JP U
OI P J O V b
J bP V VJ O
NX [ X
cN N bI ML
I S P
NZ cS RX
IS OI bUI
JI
[ NNI
X O J P NL
JL O P NJ OI S P
^ X
c UU [X
VS RI
I JP
R
c b JKL
a MNI
KI J O P
kU Q
UP O
`I HI
_
R
RI
KP I
_
cL
V
cU
aI
NO
I
[I
N
[ bI
V
J
N HI
Vb
SO
L
[I
L
O
_
^
'
HX
HX
O
O
O
OP
KI P
J HI
JZI
Z
JKX
Y HL
O
O
I HI
^ O
V
S HI
J #P
"
+
#
SP
Y
OP
H
MX
VU
I
O UP J P
cZ U OI
NQI
[V
JP
NKL
d [ NI
HI Z UI
ZJL _ cK O U
P O HI
S O P NIS S RP
O V cZ UX
HX U
O S OP I R
O
HI NKL
KL NI I G
[V K O _ UU
Z cU P
OI S O
R RP IS RL
MX Z UX J
VU c IS I O
P XS R HX
Z
&
ZJI
kY
^ J HI
X
aI
65, 535
$
$5
O
J bP GHX
NX O
c SP
aI O
HI
JZX NNI
S
JL P YNL
I
[X
`I
JP
850
%&
"
$"
:
"
:
$"
:
I
N HI
OL
X
MX
VU Sd
I H
JL NNI P
c U NL
MNI JKX
c
L
KS UL e
I VNKL
OL SI
J
L
O
bI
Nf
I
S dH Z
Y P NX P
I
VL Rh
U cb
R
bI O
X HI
KKI [V
ZX O O UP
bUI Z UP
XK
V b JL O P
Y
aI O
X OP
K H
c OU
NL e _ SL
a
KI
M X QI U
VU S
I O
65, 535
NK P ^
LS
L
e
_ Or
O
HI
S RP
Z
c UX
VJ e
K
JL O P
X _
U
Oc P
Q
J RP
P JX o
pp R
L
O
NS HI
_
X
NKKL
JL e
cJ c U
p
L ]
O Yf
OL I
N
RI P
OI J Rh
KO V
O [
HI N bI
Vb S
Q VL
VN R L O
JP
e
NQ X UU
I
QV LX l
N UX J O P
S OI Q
S ZL
^ O JP
JO
V
[ bI
NS
NX
I
X
Ig
K OI
R
cb
S O HP
Vb
_Q
OP
e
77.1
"
2i−p+1
:
<
p
"
"
$
Y
IXS
SP
^
65, 535
65, 535
$
$
#
p−1
"
5
x
"
JX
Y je
I
NX
JI
L
XO
bUI
N OL
I
NZ
IS
JI
O
NX
_ IX
P J
SO U
JP V
X [
N OV N bI
X aI
U
OL X
X KO
ZN cXS U
aZL
X
P
[X J bP
OI NX
c
OP
c b LX l
O J OP
HI Q
,e
"
p
:
"
"
_
i−p
:
$
#"
I
(2, p, e
x
$"
$
bi , i
$
5
0.1
i=i−p+1
i
X
"
UU
R
QS PP
O
O
I
NX
d
Y
R LO
Y RL J
J X
_ N N OV
IS X
V YU
J O UP cXS
JQ P L
Xe
O NZ
J HI aZL
V
P
[ bI [X
N JO
P
Q
Y
OP
H
NL
SS UI
S
JQ P
L
JV
N OL
N HI
bi 2i = bi .bi−1 . . . 2i ,
4
#3
HI
X
S OI
KX
x = bi .bi−1 . . . bi−p+1 2i =
"
$
!
i=−∞
i−p
X
#
bi 2 i
$
$ 5
double
2i−p+1
2i−p+1
"
5
"
"
i=−∞
i−p
X
"
5
x−x=
"
SP
i=−∞
i
X
"
5
!
5
J
V
P
L cK `U G
KVK L HUI P
NN
I NII g J RP R NKSL P
S X L
L a
Y Oe _ nr I Oe
NX P JNX
I OS I
L HL R
Le V V
O UR P
N HI J P OI
S
MJI X U L
U [I
NS RL NJX e N
P
XS IS RP
Y S VK P
I bI UI
^ UU X NL e
R
[ P O HI
OOI
R a
O KI
HX
OS q U
V q]
KH s
Vb Vb
QS Q o
NL e
VKL Y
U
IXS R HP
KH
c UP O P
MI
HX
_
0.1
<
"
5
|U
JN OI
X
O
MI P
c_ U
Y
I
VKL
N UR
VJL
VR
Z
OL
O
J HI
V
[ bI
N
x
L l ZJL
X P
V \ J O P OJ
Z Q V
ZLS ZL
I J P [ bI
N
O JO J
HX V P
O
S P [N bI O HI
S
cS
ZLS
&
OI
OP
MI P [
JX OL
R
HXS ^
Relative error.
"
"
x=
:
"
bi−p+1 = 1
"
)
5
cX
Y
1.00011
4
"
S dHP
NO
V
^
1.1
x = 0.1
5
"
,e
"
^
=1
=0
=0
=0
=1
=1
=0
^ O
(2, p, e
[X
O
NL e
x
bi i −1
x = 2(x − b0 )
aI
R
QS PP JZX
O S
LP
_ J
L
=:x
0
1 X
bi−1 2i .
2 i=−∞
| {z }
850
100, 000
NK P
LS
L
Oe
P
)
^
c
HI
J bP
NX
O
bi−1 2i−1 = b0 +
ZJL
P
0
NO
V
I
NL e
OI
65, 535
1
NL e S P
_Y
JX
R
KXS
OL
QIS
HI
N UX
YQ
O
OP
H
X RI
J UP
cU
cS b
I
NZX
X
OI
I
S O HP
HX
O NK P
HI SL
% L
e
+ I ON
X
K
! # OI
OL R
"
S P S O HP
NNKL c b
I X
_K O [ R
JX J O P
OP
R Q
O O
HX
O HI
O Vb
HI
NNI _ Q
NL V b
O
JL X
O
cU O
HI
S
HX
Z X
ZJI [I
S
Y OP
[I
J HI
ZJL
P
S O HP J O
P
M X QL
VU V
I O
O
O
pq
0
pq
x
wv
s
N bI
I
VR
KI
R
JKX
IS
KXS
O
O I
O MJI
HI
J
J bP P
NX OI
c NQI
I
QI
y < 2
JP
Q
X
[IS
,e
Ll
X
J OP
d
ZV
i=−∞
0
X
S HI
OL
KL
OP
H
U
HX
MI
I
N
2k
OP
H
(2, p, e
x = 1.1
p, e
e
b0
b−1
b−2
b−3
b−4
b−5
b−6
[
[
NQL
X
Z UI
[
bi 2 i = b 0 +
^
P
_Y
N UUI
JL P NL
L I
e V
X
cb U
OL
KL
[J b kY
J PP N
J OP
Q P
O Q
HI
aI
JZX
S
JL P
S Y
L
e OP
JX H
R u
S
S
[X
k
c
P
L
MP
S RI
XS
Oc
OP
P
HP
N WL
y
J bP
NX
→
→
→
→
→
→
→
..
.
R
1.1
0.2
0.4
0.8
1.6
1.2
0.4
JX
NZ
J RI
Sd
aI
JZX
x = y + 2k
e
1
O UP
ZU
KX P
JL O P
[V
x = 1.1
b0
O
KX P
c UU
NNKL
I
K ON
IS
V
OU r
Vb
O
HI
=
=
=
=
=
=
[X
1
O
I
QNX _
R
SS UI
L
e
_ N[
S
V _
P Sb O
Q I HI
S O HP VJI [L
S
NL e c O U OS
bI JQ P
aI P
N O JKX n
c XK O
I P OI
S UR R Q RP
P
O cX b O
HI
L e ZZ S P
Y UUL cJ UP _
JP Q L
O
QS S O HI YN HI
I
V X SI P
JI [I
P
KI OI S O P
L JK
e H ^
R P
QS PP VI dHI
^ O OL L
O
N HI
JL
JKX
i=−∞
−1
X
O
OI
cS
p
HI
HX
R
HX
S
P
0.1
0.2
0.4
0.8
0.6
0.2
O
O
1.1
RI
K P MIS
[X Y HL
JU J
V
[ bI J P
NS
O
HI
UP o NZ
`I I
ML P
VS
NL
NZX
NX
J P r QX
OL Z H
J bP O HX
NX
c OP
O
Ll SP
X P
J OP
[
ZL
Q SS
ZJL P
P b
O UI
IG
N
[ bI
V
JO
1.1
N J R GI
O S P YJL
[LS J P QJ b S
P
O O NX II
S HI cJ O
JQ P LX l V HX
O
P J OP [ O
JKX n Q N bI HI
S J
O JZL P NX bP
RP J P
c
QS P O
aI
O V
PO [ _ JZXS
L e NS bI JX
P
Y UUL cS R JL
P L
S
O
OI
e
O [S S HX O HI
HX
JP
O
J n RI
K
OI P P
c U [JX U
S
V
J P J[X
cS [N bI
L
ON JP
I
NZ JX Q
P SP
IS
JI R JKX n Z
NI
X O O L P
R
bUI
QS PP RP
JP
^ O kK O
X J \ HI
P
J bP
NKL
NX KIX N
c
UU I
S
JZL
x
[X
J[L
[
KL
[I
L
ZJL
Q
[ bI
V
J
bi 2 i = b 0 +
HI
OI
OS
MNI
JKL
The Excel 2007 bug.
_ O
cL [J P
V V
OI
RL c
LV
P
J OP N
IX
RI R
K P SO
[X ^ HP
U
NL e N WL
[X a I
^ O X
V [Z UI
O _Y
K
J HX J HI
KIS I
NX MNI
I cL
H V
Q P JI
H
O N OI
HX
O X
[ bI
L l HX
X
J O P MI
X
2
2
2
2
2
2
NZL
HI
P
ZIS
OL
=
=
=
=
=
=
I HI
O
Y UR
NL
V
J
NS
ZP
_Y
OI
P
S O HP JX O HL
V
NZ R O
L
[X
bUI
J`
_ [ NX S P
X I Q
V H VJ [X
JQI X NI UU
V bUI NNL
[ bI N OL ^ S
N I
L NZ S d
e IS HP
RI JI S HX
KP O
[X O HI O
HI
OL U
X I
M
J VU [
bP IS N bX
N
NX
c LS e XSS
JKL L J P
MNIS [IL QJKL
S
JL P O e I
S HI
N P VJI
XO U
`I N OI P KI
Z UX XS U O HX
KI ^
O
O
JL
HI
IS
Oc
2(1.1 − 1)
2(0.2 − 0)
2(0.4 − 0)
2(0.8 − 0)
2(1.6 − 1)
2(1.2 − 1)
S R _ RI
IX
Y
NS OI
Z
[V
KL
float
I
NZ
JP
OL
XS
N
[ bI
V
J
i=−∞
0
X
Oo
HX
JP
NJ OI
X
U
_ cU
O
J HI
V
[ bI
N
SP
JKL
MNI
OI
R
OL
JX
NR
I
NZ
IS
JI
OI
JR
x<2
MNI
L
Ll d
X HI
N | bUI J O P S
I S Q
JKI [J ZL [X U
P J P NI U
OS
N
V O HI OJ NL
KH N V S
SS P ZL [ O
V NQX NS bI HI
I
[S
O ^ [ aNI I U
HX
I O MIS
O
S HX
[I NX
cU I
N
I
KS UL VVS
KI
PI
I X
M
c UU
RX
S OL J
L L
UL
[I OO
LO
J f HI
Xe
KI hP NZL
J OOI
RI bUI
JL O P
K P .[
SP
[X V b
U
J`
X O
M
YL
V U O HI
J
I N
XS
[cX VIS
O
aI J O U
HI
P
ZLS Q
O
HI
I Yf
L NI
AC
O P
N HI Rh
%
"
NZ
x =
NIS
S
( @
<
3
x
x
77.1
)
x
bi = 1
bi 2 i .
2i = 2i−p+1 .
x = x + 2i−p+1
^
0
NS
[ bI
V
KP
JX U
P
HI
MX
VU
I
_ R
O
N RX
e
KO
^
P
_ IK
j
S JL O
[LS V
U
O K H cS
Z UX O HX O P
VZ
NL O e X O UX
S OI
[SS
O
V
HX
Z MX O
NZL V U O
O I HI
o
MNX JKX MVX U
JX P bI NI
SO
N JX
L ZL QI
er
L
O [L OI e
HI
/C OL R
C X
SP
C
KL
J
& #
JX O P
MX I
<D # ^ VI U J RP
4
O
HI
NL e
N
X
M
I
VU
I
Z
L
QI
d
HI
i
bI
L
Oc
P
ZIS
O
HI
MX
VU
NI
JX
QI
L
e
O
HI
NZ O
IS
NK
J
SI RL
N RX
R
iT
JX O
S
P
JQ P
S
OP
H
JI G
YL
N
IX
m I UP
O
HX
O
OS
HP
aI
X
NK O
IS
V
S OU
JP
L
NO
I
NZ
IS
JI
XO
b
Y UI
JKX n
O
RP
Q
P S OP
_
[ S
cZ U L
Z P MI HX
Q OL
O N
HI L
S UX VJ
Y OO ^ J R
L j
R S OH
QS PP P
O
k KXSI
_
O
J HI
NIX
IS
ON
I
NZ
IS
JI
XO
b
J UI
V
[ bI
N
SP
L
b
JX O P
I
R
cS b
ZJ
Y
NR
L I
p=4
ZI
[IS
L
S HI
ZNX
float
S OH
m I UP
R
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
NS
_
X
QJX
YP
[X
&J
e
O NL
IS [X
m UP
ZI I
KX P R
J U LX l
V J OP
[ bI Q
NS ZL
J
^ r J OP
d V
HI
[
MX NS bI
VU _
NI
JX ZVS U
S
QI L
L
e [IS
ZI
XK P
SP JU
V
O
S HI [N bI
I S
O
JKL o
L
I
J OP
e
O QJX
HI
Oc R
ZI KL
[V
Z
J OP
S P YQ
O P
S HI O H
I Ll
O X
J OP
Q
ZJL
P
OJ
V
[ bI
NS
^
J
N RI
S O HP
S
JX O
L
QI
R
Value range.
double
double
NL
J&
JL
%
SP 0
%
+
JX
m I UP
JX
LR
b
JX O P
[X
J WP
X
U
_ cY U
IN
JI
NL
SP
S dH J O
ULS T S P I
I P NX
OL bI IS
O
VKXS L l
X
I
O
N HI P O J O P
HI Q
J RI L l ZL
S X JP
Oc P J O P J O
SP Q V
H ZJL [ bI
Q P OJ P N
H
SP
Vb V JP
O [
O NS bI O
HI
HI
^
IS
I
Y
I
Y L
V
R
P
P
c
J bP
NX
JKX n
S
_ R
VS
O
UP
Y `I
I
X
R
J RP
OI
NQIS
JP
JQ P
U R
S OP V
Z
O
HI
YO
LS
d [
N HI cZ U
IS X
X O JKX
JL O P S
JI
NZ
N
HI
S UR
HL
[V
UX
NL e
JX
X L
U NJ e
I
"
! QX
OP
MI
NI
JQI
O
O
Z
Q
XO
S bI
J RP
JZL
IS
NNKL
R
O
N HI P
x
^
_
(& "
Jj
JX
N
OL
HX
YO
I
QI
O
SP
O
Q
OJ
NIX
J
N
[ bI
V
ZJL
HI
OL
d
NS n
SO
f
J RI Z OI
NL S P
OL
[X m I UP ( "
h
JL & O
I HI
L YO
e
O JL
HI V
YO
JL [NS bI
V S
[ bI V
NS K
H
_
O
^ I O HX
^Q O
O c HI
S HI
I HX
JKL MI
O
JL R S HI
I X
k [
I
aI
ZJL
JI
^ O
S dHP
S
OP _
S O HP NI
J
NI e
NIX NI
IS R
O OL
L l XS
X
J OP O
Q HI
[JIX
P
Ll
X
J OP
HI
RI SI
JP O
X OL
ZN ^
ZaL
d
P HI
[X JV
J OP
[
YQ N bI
[X
N HI
I
"
_ &S
P
O
HI
"
! +
&
%
Y
2−p ,
+
JI
IS
2−p
N
x
JX
0
N
8
@"
x
^
e
F (2, 3, −2, 2)
1.11 22 = 7
[1/4, 7]
L
e
L
_S
d JO
HI V
NZ
I [
ML P N bI
VS ^
JP
I
V
X
U
Oc P
XS
LU
P 2−p
_ JR
P
VK U
J RP
Q
MJI
JI P
c OU
QI
HI
x = 0.
#
e
OP
H
HX
JL O P
[X
P
ZJL
Y
N HI
S dHP IL
VN
[JIX N
S ZI
O MVLS P
HX
O NI
S P NNL
Y O bI IS
O
YX JII [X P
cX Y O S OI
N e JL
L V YS HL
[
^ [N bI O HX
S
Jy
JO
O P
HX
O O I RI
HI
L NXI _ R
O
N HI
YO
JL
JP V
Q [
O NS bI
HX
O S
P
X
O
[LS
O
[JIX
X
O
HI
^
_
R
RP
JL O P ^
[
J bP
NX
cS
cS
OI
.Y[
YI
JX
O
OL
NZI
NL e
O Jj
KP N
Z
I X
OVS K O
P
_ KI
UVS UP L l
N O JX
X OP
OI Q
S O HP ZJL P
Y JO
OP V
JX H [N bI
a I NX
X P
[ OH
Z UI [I
O
V \ SK PP
Z J
ZLS L
I O
O [NL
HX
O I
RP
VK
JX O U
O
R J HX
O J
HX P
Y O OI
I NQI
HX NX
MI O P
X H
[I
X HL
_ R ZNX S UR
^
_ SO
S HX L
S O
mI P J HI
NIX
" NI
L
Oe
HI
_
J HX
2i
RI
L
HI
N UX
^
e
O
O
O
P
S RP
JX O
KI
L
S
[JIX
O S dH
N
aZL
x
R
O
c
^
0
_
d XS
HIS P
[
[X Z UI
S UUI aI
O X
ZLS [
Z UI
O PP _
MJI JKL
V S _
P
[ bI N RI
N
S P O HI
S|
KL
^ [I
O
L
NZL
NZ
I
KXS
NLS
JL O P
X
U
OL
O
S HI
mI P
L
Y
x x
2i−p+1
X
Q
Y
MNI
7
JP
RP
MS P
JL P
6
LS
^
bI
c HI
NI
NZXS
S HI
O
L
I O
V
X
cS UU
ZX
KI
XR
J UL
Q
O
N HI
IX
U
J UP
I
JI
NX
x
R
x
^
Xe
^ UP
Jj
Xe
_K O
O
N HI
I
SP
5
c[X
MI
NNI
NL
NL e
V[
UX
JKX
J
L
O
HL
U
R
NL e
_
cX
Ne
L
[
YX
QL
I
YI
N[L
x
_ JX
L
MI
NNI
NL
NL e
V[
UX
UX
OP
O
[X
m I UP
R
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
N
S
cS
OI
[
NL
J
x
[S P
XO
_ `I
Vb
O
O
HI
KX
VK U
UX
J
SP
I
d
UX
OP
I
N HI
HX
4
O
O
3
N HI
J HI
O
I
N HI
O
NX
K UI
S O PP
2
x
O UP
ZU
KX P
JL O P
_
UX
JL O P
S
OL
_L
I
SK UL
mNI
c
Z P S RP
N
NK OV O P
I^ V b
JL O P
L
X e _ JX
UU
ZLS O R
O PP HI
MJI N UX
V QIS
[ bI JL O
NS I
S
L P
MNI
O
HI
JP
N OI N
o
MX I
U KX
UU
O
HX
O
SP O
S HI
Y HL RP
J QS O P
J P NX
I
O Jb
HI P
L e cNX
Y UL U ^ r
JP d
Q HI
1.00 2−2 = 1/4
x
[V
}
x
K HL
Arithmetic operations.
2i−p
_
,...,e
R
RP
JL O P
_S
V
N Ob
X
K
JL O P
NW
L
1
KX
VK U
XS
O
[
LU SO
Pe HP
S P ZK P
N OV
MNI _ I
V
x
0
QX
N
^
0
2−p ,
J[ P
HI O
[S P [LS
XO O
`I
JP ^
LV
OP
JP X
S
O VS
HX b
O JX O
QX
ZNX X O P
U
JI QX
L Z
J O bI
I YO
KISS JII
NX
c UP JX
X
ZN R
ZaL O
S HI
P
[X [X
bUI S UUI
cJ b O
ZLS
NL P
O
[X MJI P
m I UP NL
R
L l [X U
X mP
J OP I
J
Q VR
ZJL
P [
J O N bI
V ^
[ bI V
NS
Y [N bI
S
OP
H
x
^
NL e
UX
|x − x
^|/x
N {I
I
G MI
NI
S P NNL
O X
I
N HI
N
|x − x
^|
|x|
X O ZJL P
bUI J O
Ll V
X
J O P [N bI
S
Q cS
JZL P OI
J O _ Y[
V
I
[ bI X
N Z
^ r cZS U
L
[NI
VJL
J RP
QN
V
UI
S
Vo
KH
XS
Q
JL O P
P S
OJ NX
V I
[ bI JL
N cU
^ JP X
Z
S dHP S O HI Z UP
KX
X e cS bUI
S UP OI
Pe Y[ O Pe
S P I HI
OL JKL L l
L S JX O
N UX N RI P P
Q
QI _ ZJL
NL ^ I P P
^ JO
OL
LS PeP V
O [
[X S HX N bI
^ UU S P J
O
aI NIX
JZL IS
JI OOL
J OP
O JP
HI
X Xe
Y UUL K O
I X
NR Ll
JX JX
OP
QI Q
ZJL
x
^
JI
Ll
X
J OP
O Ll
HI X
NX J O P
OP Q
H
[I ZJL P
O
KL P OJ
V
NZI
X [N bI
JL O P S
S SP
L I
MNI cXS
O JP
S HI
I O HI
O NL
L ck
N e XS
IX
JU O
V SI HI
[ bI NX
NS NI
.
I
P X
O e JV U
N HI
IS [
V NS bI
S OU _ Y
JP I
L S
NO P
I
NZ c[Z U
IS
JI NZI
X O NL e
bUI
[
{e
ZNIS
ON
N
JP
VL
x
I
IS
NIX
J
x
p=4
1.111 2−2
+ 1.011 2−1 .
1.111 2−2
+ 10.110 2−2 .
100.101 2−2 .
1.00101 20 .
1.001 20 .
2.5.6 The IEEE standard 754
float
float
double
x
float
F (2, 24, −126, 127)
double
F (2, 53, −1022, 1023)
ppq
pq
x
wv
5
3
$
$
QP
MJI
X
n
n
1
Jn
I
R
RI
SP
Hn
NL e
n
_
O HX & SO %
_ P &
@
2p
OL
n
p
_
i
OP ^
H
N
[ Z J\
O I P
HI KS
Y O JL PP KI
S O HP
JL
^
NIX J J bP
NX
IS
c
O N RI aI
JKX
O JZX
RP HI S
RX j JL P
S OI
S S HX
JX JX O
R N RX S
R JP
Q
zs P
_
_ S r O JKX n
L HI O
Ne
L
(bp , bp−1 , . . . , b0) = (1, 0, . . . , 0, 1)
2p + 1
2p
_
I
O
^
JX
G
HX
bI
R
IS
OU V \
Z
X ZLS
O YI
HI
[X Y I
O
KX P JX
U O
_ c U OL
P X
S OP R
R
O
HI
YO
L
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
NS
V
N HI
O
U
UP
Adding numbers of different sizes.
2p
1
YO
N UU
I
UX
JL O P
X
LU
NZI
X
NS OL
^
o
\I
K
X
N RI
K
JV O
^
OI
NZ e
I
SK P
JL P
[L
S
cS
_
^
c
d
O
HX
M L bP
VS
_
JX
YR
I
L
SS UI
P
RI
J UP
IS ^
NX
IS
L
Y[I
Y OO
L
QV
aI
J HI
L l [L
X O
J O P MX P
Q OI
ZJL O HI
P
JO [
V cb
[ bI NS n
N
O
S
Y HL
JP
Q
O
HI
VJ
N RI
cJ U
P
QN
ZL
bUI
[
N dH
VL
Q
V HL
YO
I
XSS
V
[I
X
J bP
NX
O JL O P
I _
NX
I [V
Y O OU
P
JL Z UP
K
X
NIX JL O P
IS _
O NL
MX
V U RP
IS MS
P
o JL P
[JIX S
P
JP O
HIN
Q
O I
HX N
O ZIS
O JI
HI
NO XO
V b
I UI
MX MX
VU VU
I I
SP
&
HX Y Ue cX OL JP
O
HI
Y O bI N O
V
JII I
MX
O VU
HI ^ I
[r j
e
N HI
k
d
IP
V
IS
N HI
ZLSS
P
Oc
ZIS
OU
R
I
S
N UUI JKL PP
O
J HX _
JX
^ J RP
S
[X
P
J O HP
S OH
NP
JX
QI
NX
I
aI
X
KO
Y
NZ
L
NX e
OP
H
[I
OP
LK
NZI
X
JL O P
S
L
MNI
O
HI
O JX
bUI
S
NO
K OP
XS
XS
I
NX
SO
J[I
VN
I
N HI
IS
L _
JX e V b
c O
X O HI
R
RP j
JL O P
_S S
V JX O
N Ob
X N RX
K R
^
V
zs NKX
RL cK
_
R
O UP
ZU
KX P
JL O P
S
[V
JX
O
_ cU
JP
OI
NQI
X
R
RP
JL O P
S
_S
V
N Ob
X
K
JL O P
S
JI
V
I
S
J TL
bI
HI
L
O
O
R
SP
P
SO
NL IL
MNI
P
X
S O HP I e
KXS OL
YI XSS
I V
JKX [I
O
XS HX
L U OO
aI HI
X N UX
K
cN O U QIS
I O
ZNIS aI
JI JZL
JI
XO O
UJ U S P
P
OI o
NQIS V[
K
L Hr
X e HP
Sb Q
L N HI
VU
OI J O HX
MX
VU O
I HI
X
NK
ZNIS
J
SI RL
N RX
K
_
i
S
JX O
HI
iT
d
^
_
IS
I
NI
JQI
I
NX
I
N HI
MNI
I
Y L
O
X
^ U
_
P
J[ P
K UX
R
^
P
_
V
NL
O
S UI
S `I
OO
UP
QI
O
O
JI
S
I ^I
MJI
J\
Pe KI P
[X I
O V
HI X
U
[X Oc P
OP S P
KX S
U JI
_ cY U S
P
YI O P
LV MI
OL
^ UR O
HI
J OP
IS P
NNI O
NLS
_Y
YI
JL
IS
KXS
[LS
^
I
NZ
R
c
KL
N[L
[I
J[L
[
c UX
O L
SX V O
JP JP
Y
Q UI
NZ HP
I KH
SK P
JL P b
J S OP
V NL e
[ bI
N [X
JI
IS
I
N OL
I
VS
NX
IS
V
S
I
KH VP
S O U aI MX
L N J UI
Y O e ZISS _ O
L JL P V b
L l S SO
X
J O P NX N O UUP
I
I
Q
NJ OV
ZJL
P
O
RP
KL
NI g
J
I
[V
Z
O
XO
MX
JL O P JX V U
S
IS
R _S
NL e
JP
I
KI
V
JP
X
U
N OI
Oc P
VS
[I
JP
X RP
Q
OI
N
O ^
IS
N HI
V
I d SU
UX N HI O
JL O P I NX
X NLI e NI
L U _ VJL
NZI S OI
X J O RI
NS OL P ^ R
Q Y
O d
HI L
V
N
d [I
S HI N[L
JQ P c
P KI U
JKX n ^ J U
j
N R RI
I I
VN _ R
IS P
t] S O bP
L
S O bP e
P .N [I
n I
bS P JKX KX N[L
O R UU c
SP O
YX U O HX
JP
cXS JX
NL
J HI [X
KI mI UP
J OP R
II J bP
J R cNX
L
L
aI O X l
J OP
ZU
K PP QZ
c O U JL P
JO
S bI V
N OL [
I N bI
R S
cS
d OI
HI
aI _ [
JZL O HI
JI NS n
NO O
I R
VN Q PP
IS P L O
JX O e
L S HI
O
N HI JQ P
J P [X
U
Oc P
JP
^Q
bP
SO
JP
II
RI
R
LN e
O
S HI
X
O P
VK P MJI
N UX O
HI
L l NL e
X
J OP
[V
Q UX
O
JZL P JL P
O L
KL O e
[ X HI
ZV
X O bL
JL O P M I
S P QV
P
aI J RI U
X IP
KO _
NL c L
J V
L [
O cX
Y
a JL
X
JK O N RI
ISS
Y HL
VS
V OL
X
c UU OI U
YU
RI
ZJI HI
O
S R N HI
bUI
_
MX
VU
IS
_
JX ^
JX R
L
O
N HI
ZLSS
O NZX
_ P
O
N HI
I
NL e
_I
OL
S OP
I
JL O P
JX
SR
N HX
Q
NL e
N
I
NZ
IS
JI
J OP
X
XO
JI
NZ
N HI
JL
S O HP S O bP
L Q NL e N WL
OI MIS P
S O P V RL
O
HX
bUI
J OP b
S OP
NZ
^
I
bL
SK P
O
H
JL P
KXS
J
IS
V
YO
ZLSS [
N bI
L
P S
bUI _
N[L
O
I
MX S HI
aI
VU
IS J P
_ Q
ZJL
J
X Pn
JI
JKX
O
JL R N
MX
I I R
VU
IS
bP V
S O P NIS P
VKL
J
U
II z
R
]
bI
RI S bP
X
R _ O
KKL
NL e
O
O aI HI
[
HIS
[L
RX
J P ZJL
OI
^ Q JI
YR
Jj O
OP
OL S HX
X O pp
V HL
_ U
O
O aI RP NKI
HI
aI JZL MS P JX O
JI JL P P
ZJL
L
^
JI O c b ZNI
X
X
O VS dH
O
_ YZL JLS P
O NI Y
S HI L
I e H
L O KP
NZI HI NX H
X S bX I
JL O P I IXS
S
NX VVS o cS UP
I
aI cX UU JII
X _
_K O r OL
VJ RL bI
SS UI JL aI
O X
O K ^ KO
HIc J HX
NL W
X UI QI J
R O HI S P
OL S
JX J P JX O
L Q P _ KI
MNI JKX n
[V
NL
_ R O UP
VJ V b Z U
P
N RI JL O KX O
LJ P
YL l c U
JX
J P O HI
R
Q
Xe
K
VS O
I
R
NL e
N
I
NZ
IS
JI
J OP
O JN P
IK
ZI JXS
KX P P
JU QO
V HI
[ bI OL
NS X O
JU
V
J[I
[
JL O P N bI
I L
e
X R S bP
bL ^ O
_ MJI d
P S HI
VK U aII
J RP N
O
Q X
^ MX
VU
IS
NX
I
JP
S HI
x * x - y * y
Z
n
X
1
aI
R NI
SX SK
JP P
I
Q UI NL e
L UL cVL
ZN
VJ Y OL
J N
JP
P
Q X OI
N OH N
VL ZNL
Q QX
H
O [
J HI O
V O HX
[ bI KL
NS
[V
Z
V S OI
i=1
L
i=0
p
X
Ig
^ KO
J
OP
H
L
OP
O
O
bI
X
OL
aI
MI
HX
MX
VU
IS
HI
βp
c
Hn =
S HX
Y
J
JKX
NS
[ bI
V
JI
NX
O
2p + 1 =
IXS
R
RP
JL O P
X
Q
U S OP
LO _
e
O
HI
X S
R JP
RP L
JL O P ON
S P NI
ZIS
JI
K HL o X O
S b
JI Y UI
RP
I
e
O
p
JX
N UX
S UUP
h dHI
O QJI
HI
SS UI NI
S XU
JQ P ZJ HI
P L
JKX n J[I
O JL
R
QS PP N HI
O I
L S
e P
O O
HIS HX
XO
[X R
N UI U J RP
J Q
V Ll
[ bI JX O
N P
J P o QZ
L
L JP
NV J O
aI V
X [
[ NS bI
Z UI L
e
"" RP
S O P NI g
JI
RP S O
QS P m P
O IS
r
N
S O HP VSI
OI
N HI
_[
P
2.5.7 Computing with floating point numbers
bI
dL
NQI
MJ P O
KI S HI
cL m P
V I
O RP
HX NI
O JI g
OS
H
S P _ KI
JP O
L HI
JX O N[L
NX I
OP N R
XS
KX nP O
U SK P
Z P
J HI O
L HI
J[I II
JL K g
^ O
UI
VS O
JKL
S
P
_
N RI
O
HI
NZ
L
bUI
^
[
JKL
HI
f`
HX
S
cS
N
[ bI
V
JO
ZJL
Q
Ll
X
J OP
JL
MNIS
I
JL P O
L O HX
e
RI S HX
K P UI
[X XS
U SO
MX J P
VU Q
IS P
n
UP JKX
`I O
R
QP
OL O P
O
N HI P
J bP S
NX P
c K
S HL
L l JI
X ^
J OP
Q d
ZJL HI
P S
NO X
I N[I
NZ
IS V
JI UI
X
XO Z
LJ O P ZIS UP
OL
O
HI _
JKL
!=
O LK
S HI
V [VZ
[L J O P
e Q
O NX
HIN
I [JL
NZK P J P
L K
KXS V
U
L [NS bI
e
O ^
HI L
NS n N W
O
J u
X _
N OV O HI
X
JU
V O
H
[ bI 0
NS
d
KISS
c
HX
O
NL e
JX
O
^ t] NL ^ IL
^ ] r MNI
_
KL
[
ZNX
S
JL P
S
L
JL O P
dp−1 = 0
e
J HX
O
R
HX
MIS
JII
IG
0
L
S OI
S HI
J y NIX
O JI
HI
L L OJ
O
N HI I
S
Y HL
NX
_ R c UP
O
HI MNI
j c
aI
S L
O
JX O _ K P
XS
N RX L
R VN
sz aI
X
QV [
NX Z
JX Y UI
IS OI O P
H
O O
HX HI
YO
RI
YI K P
UUP [X U
^
IS
I
JI
_O
S JX
[ bI
N
NZ
N
2046 = 211 − 2
64
XS
Z
[V
KL
euler.C
NL e
NS
[ bI
V
[
P
X OP
UN ^
ZL
NQ
X
_
O
V
J
double
8
J UR
YL
V HL
P
X
Z
_ UI
VNL
JP
[
aI
N WL
IS
KXS
QI
HI OO X O J O HI
[X N HI _ JL P I
NX
O IS
KX P V V IS
Z
c UU S O U OL N O
I
NNKL L e NNX o NZ
I [LS I JISI
K ON
Lr
IS KL O MNI X O
V
b
S O U [ JX J UI
Y ZV R V
X O VJ [
N bI
ON P JL O P
H S N RI _
IS J
JX
P YL l
ZI M L S R
O
KO U ^
S HI
OLN MJ P
P X
I Q MJI
[I
UX LX l
O P J O S O H HL
MI P _ P S U
NNI Q JL R
NL ZJL I NL e
P
OJ [ P O HI
V Q H NIS
O
[ bI bI V
NS
OI L O U
NX [ JX e
I Z OI c
KS UL R NX
I OL O P
OL bI H
U
O I P [I O
HI MI K P
O
O L
HX NZI
32
u
^
VL
JL
cJ U
II
OS j
^
OJ
NZX
I
YO
L
Ll
X
J OP
Q
ZJL
[
^
c
J[X
_ R
S O HP
SP
NO
V
JI P
I RI
Jj
[X
1.1
J[ P
aI
X
KO
Ll
X
J OP
Q
ZJL
P
O
KL
[
ZV
XO
JL O P
S
KL
P
XO X
J `I NZI
J P OOc
JQI QL
NI L
X XR
U
NZ
d aZL
HI
QL [X P
X
L U JL O P
e
S O HP L e
S O
I HI
K
JL O P V
S P N UI
OL JKL
S
ZJL JX O
P
O ^ O
VL
O I
KL MNI
[ O
J[L S HI UI
S
ZP _ S
X Oe L
S UU
[I
JX NKX
R I
OL
NZ S HX
L OL
MP
RI bI
float
6
3
$
IS
KL
RI
P
J UP ^
IS
NL e
Sf
X
I he
QV
Q
O [VZ
P
[ X OO
NZL JL P
JX O Y S
O
QV O HP
P
RI L l
J UP X
I J OP
O Q
HX ZL
O JP
J
c[X V O
NX U
IX [N bI
S
cR ^ _
bI
L
M L bP
VS
OL
[LS
R
O S GI
S O HP NX O
Y
ZJL O
P OP
^ O H
O
HI
NS n
JX O
J OU
IS
Requirements for the arithmetic operations.
HI
S O U I
N e MNI
L
V
[N
O
e
Pe
UP
Floating Point Arithmetic Guideline 1:
#:
O
JL O
I
L
XS UI
X
X
X
V
N
254 = 28 − 2
"
'
_ Oc
V
I
cL
V
1
< 4
(
'
$
$5
"
1.1
32
(x + y) * (x - y)
==
2
p
bi 2 i ,
p+1
2p + 2
.
Hn
n
HX
L
P
bI
HI
O
O
KX P
c UU
[X
[X
c[X
JP
ML
MJ UP
Q
Ll
X
J OP
Q
ZJL
P
JO
V
[ bI
NS
ISS
JL P
S
aI
ZN
Z UI
[
cS
MNI
MJI
X
NS O n
_ O
Vb
O
O
c HI
NX
I
[L
O
MX P
OI
R
cb
X
c
N O bP
NX
NX O
p
]
pp
x
wv
[S
Y[I
pp
c[XS
II
NS OI
[I
X
NZX
I
S HI
d
2p − 2
4ac
O
2−p |d|
Q
S RP ^
I O
NZ JX
IS KI
JI L
XO e
bUI OL _
SX mNI
L
Ll ^
X
J OP
ON
HI
J HX
O
^
|d − d|
L
JI
NX
b2
cb
JL O P
S
HX
p
1
O
c bU
X
N RI
JKL
O
YQ O
JL
V
[ bI
NS
P
J RRP
XR
P
RI
P
J UP
^I
VQ
JKL
I
L
NV
S
OL
R
SR
VS
O
MI P
cU
X
NZX
[
r
KL o
_ [S
JP
KI
O
c HI
NX
I
V
R
SR
NS n
^ O
d
N HI
I
NL e
_I
J[X
[
V
O
S UU
S HI
[X
Z
VR
OL
I
L
S
RI
HX
HI
X
QI
N UX
O
O
O
S RP
R
OP
cU
r
XS e
^ O
S O|
L
[I _
ZJL
P
_O
O
S HI
mI P
X
MI
NQX
R
R NI Pg
R
SS UI R JL O PP JI
KI
L
e RL bI
Y HL JIS Y O
L JII
J[X O
c JK HX O HI
N[L QI NZX
IS O O P
V HI XS U
V
[ NZX
J[X O [JX
S R XS UP
NX V O R
I [ HI
_N
VS dH
R
ZNX
[
G
cH ^
SR
NX IS RL dHX
I
X O _ S OP
R HI O
RI NL e
Y HI
V R NX
Xb
ZN
S n RS YK `
O V NX
O [ SR
HI
V
J P bI
HX [
N OI MI NZ
S L
[I L M P
X RP bX S RI
OI c RU X
MX
[V
VU
I d KH
L N HI
bI
e
O IXS N OI O
HIS L
V J X
S Z
[ S P aNZL
OL P
bI [Z [X P
KL k UI JL O P
[V S | L
Z
OI O HI e
N R N UX ^
YQL
S NQI
S
J[X
[
LK o V
Y
I
N HI
SP
O
S
JKL
JL
NK HI
O
XS HI
JX O
_Y O
I
QI
N UI
V
P
NL e
Hn
c
b2
%
R NL "
d
X
Floating Point Arithmetic Guideline 2:
JX
^
d
X UI
Xb
YK `
NX
SR
V
[S
NX O
SO
OL
X
O
S
J[X
[
V
UP
`I bI
JP X
VS
I
N[L
JX
2p
ML |
R
S
NI b
MI
HI
R
OL _
_O P
O
S HI
V
[S
cXS O
O
S HI
X
^ [I ^
RI
R c
=
V
NR
X
OP
KI
X
LO
VS
O
_ O
NO
XS
JKL
Jj
X
γ = 0.57721666 . . .
n = 108
I
V
O
P
JL
J[I
Vl ^
JI
KI
O
S HI
JQ P
P
JKX n
LR
e
O
HI
NZX
X OP
US
OL
JP
HI
N O MVX U
P I
Vb L
OI O e
HI
d NZX
S HI
V XS O P
U
[ V
J[X [
S R YNQL
NO S
IX
o
OI KL
RJ [
P NZX
O XO
HI P
JI M I
cU
Sr
L R Y UL
e
O cU
S HI _
V XU
Y UL
[ J
[X P
JL O P Q O
S HI
HX
MIS [X
S UU
OP V
UU
X [
QLL J[X
S
R R
O
JU
n−γ<
JQ P SI
P JI
JKX n X O
O bUI
R
QS PP LX l
O JO
Xo P
Q
L UU ZL
e JP
O JO
HI
V
[I
V [N bI ^
X _
U
OL V b
O
J Pr
S OP
J bP
NX
NZ
HI
N RI
S
J TL
L
J HI
Z
KI
JKL
OL
2p + 1
NX
O
S OP
YO
NL
LL
SO
NX
I
QP
MJI
HX
JP
S
mP
^I
RP
NI g
HI
K
J HX
ZV
[
S OI
[
Ne
L
VJ
ZN
L UL
`I
cL
VN
[X
O
N HI P
N
I
NZK P
L
SKX
^ U
VS
XS O
Y
I
U
cL U
V
JKX
Q
X
J RRP
Y RL
J
OL
R
bI
I
^ KO
S
JP
Q
O
HI
O
x
L
wv
NNKL
J
pp
t
pp
H
K HP
JKX
L
P K OP
[X I
JL O P O HX
O
O
HI
NYL e
NX
RS
V
[
RP
JR
L
O
K
J HX
_ YQI
X
aL
NZZ
JX
VS O
I
S
O cN O V
HI
Y O bL [V
LS O Z
V MNX H O
HI
[S JX P NI
JX S K
O NP
R JX ZL
VL S KX
O R S
ZV II ^ U
SO Y
O HX c GH
HI Y O J
^[ I L
_ O
QI
^ O O HX
d OS
HI
NZ V HL
L U
NQ J R
X L
[ O
[X
`I
JX
c
S RP
Y HL NJII g
J
KI
bI _ N
Y UL P
Q
KL O H
1
< Hn −
2(n + 1)
S
−b
SP
7
O
ax2 + bx + c = 0,
S HX
r1,2 =
U
J U`
YL
J
I
Cancellation.
MX
VU
I
_J
YP
d = b2 − 4ac
NQ
X
P
N Ob O
[
X NH L O
HX
K Z
JL O P ISK O e O
P HI LK
JL P
S HX
# [ZV
S
_ % S OI
[X VNL O
N UU
I NZ & SI HI
N
UX I
O M ^ & L
MI P VLS P j LS O
NNI NI e _ Y
NL N JX I
k NL
IS R [ P
QH
OP
O
[X NX N O HI
OI
S
NI I
QV NI NLI e
NX ZIS Y
JX JI JX
dS I OI X O O
HP
O bUI OL
[JIX O HX XS KL
S O
[
HI L l ZV
I N X OI
MJI VIS J O P O
HI
Pe O U Q
ZJL MX
S P L P VI U
e O
V
L
d ^ QI
N UX
1
i
X o HP
UU K
O H
S HI KXSI
JI NI
V NL
N
[ bI S
NS NX
NX I
I
a I [X
X J RI
K P
cN O U KL
I
NZ [
IS ZV
JI J O P
XO QO
bUI HI
r ^[
d SS |
J HI V
O [I
HI
aI
X
KO
MX
VU
I
2p−1 − 1, c = 2p−1 + 1
d 4
b2 = 22p
HI
NS
[ bI
NZ
Y
j
S OP
// Backward sum
float bs = 0;
for ( unsigned int i = n ; i >= 1; - - i)
bs += 1.0 f / i;
d
OJ
Jj
X
# include < iostream >
V
d I
HI OL
NZ mNI
L L
bUI _
Y
[NX
S P UUP
IS bI
Pe YX
O cX
J HI N e
V L
[ bI [
NS
cb
J
O V
HI
Jn [
X NS bI
SU Y
Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686
KS UL
JP
J UP
I
p
JX
R
1 / i
P
I
J HI
N
cO
Y
JI
YO
NZX
Z
X
I
N[L
. &
%
// Output
std :: cout < < " Forward sum = " < < fs < < "\n"
< < " Backward sum = " < < bs < < "\n" ;
return 0;
^
Compute H_n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079
(
+
// Forward sum
float fs = 0;
for ( unsigned int i = 1; i <= n ; ++ i)
fs += 1.0 f / i;
SP
ZJL
HI
RP
NI g
JI
KI
bI
KL
[IS
I
MJI
d
VS O I
JKL
HX R
M I JX
X
NR
L UL I
`X KX U
YU
JX O
c
aI H
I S OP
VK P
JL O P [ P
L NZL
e JX O
O
HI O
ZNL OL
NQ &
X Y
^[ N
OI P
XS
int main ()
{
// Input
std :: cout < < " Compute H_n for n =? ";
unsigned int n;
std :: cin > > n;
e
^
JKX n
c OU
P
QJ P
NI g
S
UI
// Program : harmonic .C
// Compute the n - th harmonic number in two ways .
L
RP
J UP
I
d
^ ]p J HP
Y L NL `e
harmonic.C
1
S
JP
L
_S O
JP
KI
SO
J HP
V
[ bI
N
^
N HI
d
J P SI
V
ZVS S O U
O
NQI
N UX
Program 12:
n
1
,
2n
18.998
Hn
a = 0.
}
b2 − 4ac
.
2a
4ac
^
d
d
d
b = 2p , a =
4ac = 22p − 4
UI
HI
JL
long double
HI
HI
Q
O
e
S
cS
R
}
long double
F (2, 64, −16382, 16384)
S O HP NNKL
S P IS
aI JZL
X S
K R
c O U OL
O O
HI HI
X
J O HP K O P
KI
Q _
[I
NZ
S bI
L
Jj
[P
Q
H
XS O
LU
^
long double
N
[ bI
P
s
^ z
N RX
JX
S
O
HI
MX
VU
NI
JX
QI
L
HX
Oc
KX
e
^
O ZI
O
R N
[ bI
V
J
^
HI
MX
VU
NI
JX
QI
L
O
e
P
JX O P
I
JR
JKL
SP
R
UUI
U
KP
[X
HI
iT
d
i
S
O
J
X
S Oj
N
U RX
N OI P R
XS NZ
U IS
JI NK
Y R S bI P
O P JX
H L
O O
HI N HI
UI
V
N OI O J e
RX
NL J[I
_ XO
JX U
Ll
R X
OS P J O P
P Q
QV ZJL
NX P
O
l
V
OJ
O
O
zs
R
[ N HI
cZ U I
S
bI J P
XS L
cJ VS
JL K
c H
[ X RI e
NL e V
OU
K HL
P
_ KI
V b NL e
O
OP
double
ZJL
Ll
X
J OP
L
NS OI
[I
X
NZX
O
OL
R JL `
Y
c
J P [ VNL
SQ
_S
Z UX
Y HL
NL O e
J
JP _ [
NL e
cL
O K \I V
HI O
Oc JL P JKX
ZI ^ ] I
^ ] [
^ z Z UL
c
^ N I O
I HI
P NZ
L
[JIX NQX
N HI
O
JX
O
N RX
I OI
JX
long double
double
double
O
OP
H
JP
NL e
I
bI
R
JX
cL
YV
NZ R
I
SK P
JL P
L
e
O
HI
j
long double
[P
QH
OS _
P
JX O
float
I
HX
I _
je
RI
aI
J OI
S
c b SI
O
G HI Z OI P
HP
UI i T O
i S HP
S _
O
JX O HI
JX
L
K
J
N RX
R ^ R MNI
S
JL P
Ne
L
VS
V
[
X
c UU
NNKL
OL
IS
JZL
R
S OL
JP
S
Q UI
JP
JX
L
O
R
RI
J
n
V RL
I
bUI
R
OL
NZ
I
bI
X
KS P
NZ
JL P
L
L
[
L
e
O
JL O P
HI
R
The type long double.
MI
VS
Y
Numeric limits.
float double
numeric_limits
bI
J HP
R
bUI
j
OL
RI
MX
VU
NI
JX
QI
X
O
HI
J ` JV
YL
N RI
KP
UI S
K n R JX O
Z UX YQI
R
NL O e P L l
U
S[ X U JX O
^ Y UL U P
Q
cL ZJL
V P
J
OL V O
P
J RI [
N bI
OP S
c e cS
JX
OI
Y R [S
LN J P
NX ` JQI
VJL NIX
_ U
NZ R JX UL
L
bUI YQ
[S O P
O OH
HX
O N HI P
[ P UP
Q [
OH X O P
KL O P
JL
[I S
V ^
JZL S dH
P
S
ZI
Q
Ll
X
J OP
I
N[L
aI
NS bI
Xe
L
^
HX
P
cL
V
O
NL e
JX O
NZL
[
I
j
S OP
N[L
^[
NL O e
Z UX
Kn
KP
XS
ZI
MI
JL
bI
X
K
c OU
[V
JX
R
J`
YL
OL
ML |
S RP
V
N Ob
X
JK O P
YQ O
JL
V
[ bI
NS
L
Xe
U
[LS
I O
V
X
U
L JP O
Z O X HI
JL P N JKX
I
Z UX GHX
OL QS P KI
NL O e S O P
N OI U
[ Y O UX
_ [ O X `I
JL P
HI
JX
S P
VN O H I
R N[L I
Ig
P
S O X O N[L K
J P UI HX I ^ O
I L e O ZNI
Ll
& "
OP
N HI S O HP JX O KS P
LP _
J
P
IXS
L
Q ^
cJ VL ZL N WL KL e
J
VNS
NL VS P
Y V J O S OH _ I
V NP
NL X U
c U [ IXS O HI
OY
H JKX NS bI JL KL
HP JL NX _ [
UI
JI c L Z
OL V O e L V N UI P
NZ U O JKX RI
I c U `I
KP
R NO
K O P VS ZJ O P Z Oc S RI
Y HL OO NI XK P OL
HI QS c UU `I
L l /C N OI P NZ I
X
Z
J O P C ^ S ML O
C
P HI
RI
Q
X MNX
ZJL %
P +
KL X P
OJ "
b
[ UI
V
Z
P
&
N UI
[ %
XO
JL O P
S
Z
JZL P
O
KL
Jn
IS
YO
L
RI
Le
O
L
Pe
Ll
X
J OP
Q
zs
O
S OU
N HI
V
IS
NI
NX
NS
[ bI
V
S HI
JI
R
N RX
JX O
HI
S
j
d
_
S
mI P
VSKS
S bI
JX
Z
HX
MI
MIS U
[SI
HI
P ^
X
ZU
R KX P
O
O JL P
JX
ZJ
V
[I
KL
L
L
S OU
O
e
O
O J HI
HI P
aI N OI
ZI [I
K OI
R
N R X OI P
LV
J KL
J RP [
ZV
QL X O
e JL O P
S
^ NX
I
d Y
J HI N
P
O J OOI
HI
Jn Xb
X K
SU `
V OL
N Ob
X
K
JL O P
N MNX
I XP
MIX S bUI
SU _
P
V
IS
N HI
N I
bX _ I
cN bU
IS
V
J O UP
JQ
NZ
O
mI P ^
HI
J
RJ j ZNL
P O
S
NL e HP NZI
KXS Oc
[L I O
_
X e JKX O HX
_
N O HP KI N O HI
P
U
UX
R
VQ JL O P S RP
NK
P
RI
J UP ) J P
[
^ I "" JX P
HX
Z O
JZI
^
N[X
[
V
JKX
JL P
d N UUI
HI
S RP J O HX
S
[X
[V
KH
SP
N[L
| IS
K O QJX P J P
KI P _ Q P
O n
HI JKX
MJI a I O
X
JP
R
[ QP
O YZ UI S O P
L
HI
V I Oe
X
N R QX N HI
X MI IS
O P N HI V
IK I ^ O U
V SP
X NX
JL O P O P
aI KX nP
X _ U
[ Vb
Z UI O
bI
O P XSS
[ P VN
Q I
OH R
bI O
O O HX
HX
O JKX
O KI
HI
I UUX
V JL O P
X
JL O P HX
S
O ZJZI
HX S
O
ZNX
JP
^
NZ
[N _
L ZI
[L M L P
S OI VS
O KL
HI
NZ [ZV
I XO
M L P JL O P _
VS S
cU _
O
SS UI S HI
S V
Nb
QJ P X O
P K
JKX n JL O P
O V
R H
QS PP cQI U
O
OL X
[
[V Z UP
K H IS n
O NX U
I
I X
NNI c R
NLS NNKX
k cS
O L
HI
[I
KJX NNI
KI NLS
UUX
N
JL O P L e
S HI
V
SP
O
HX
J OP
S
JL
IXS
N HI
d
N Ob ^
X
j e JK
JL O P
Q
O YO
HI JL
L
O V
N HI
[ bI
N
J HX S
R O HX
O O
N HI NXI
I X
[JX U
J PP [LS
O
Q VI
SS UI
S _ XU
JQ P O
HI
P
KJX n N[L
I
O S
RP JQ P
QS P P
O e
JKX P
O
R
QS PP
O
JKX
KI
IX U
KH
L
O
N HI
float b = 16777216.0f ;
float a = 8388607.0f ;
float c = 8388609.0f ;
Y
aI O
NZ
ISS
JL P
S
OL
QI
O
N HI
MJX
O
[S
IS
U
^I
[X J
m I UP y
O
R HI
Ll Z
X UX
J OP O
NL e
Q
ZJL [VS
P I
OJ
V c Rb
[ bI O
N HI
S X
cS V
O
OI NS HL
_
[
NL e
aI
X
[
Z
_ UI
NL
J
// 2^24
// 2^23 - 1
// 2^23 + 1
V RL
S HP
O
R
O
HL _
p = 32
OI
_
JX
double
NNKL
R SI
zs JZL
O
j
e
L
S HX
S UI
JP
J
[
OI
% ZJL
P
& V OJ
o
[ bI
N
S
c
_ r S
JX OI
S
RS _ [
L
[I (&
- "
Z UX A
NL O e &
[S #
L #
+
NI g P %
[ Z UI
&
J[I o
XO
JL O P r
S _
L JX
e
O R
S HI #
I
@
Oc - A "
ZIS ^
& #
d
N HI #
I +
S P -
2.5.8 Details
I
HX
0
O
N RX
JX
HI
S
O
OP
NL e XS U
L
[X O
S O P HI
O j
HI
JL S
I
J JX O
Y P N RX
HP R
YK H 0z
I O
HX
J O HP O
X
X ` YS UUL
V bL
OJ S bX
V I
[ bI
NS
JX _
NL e
J RP L
Y
Mb
H VL P
KY HP NS
I IXS
VS JL
V S
X k
cN UU O
HI
I
NZ RI
IS
JI K P
[X
O U
SP X
O N OI e
N HI
I O
NL e HI
I NNI o
J P NL
S N
e
X OI II
r
S
LR V
e Nb
XO
K
JL O P
_Y
I
QI
O
2−p
N HI
JX
O
P
cL e
V
NX
I
N
cJ O
P
Q
OLN
I
NZ
L
VR
KI
L
S bX
X
UP VK
`I N UX
_
NZX
Jj
NS
R I
^ S
cS
JX
NS
[ bI
V
^
[ bI
V
J
b2 − 4ac
I
I
N[L
OP
H
UI
HP
JL P [LS
Ll O
X Z
J O P O UX
NL e
Q
S
JZL P _ [
OJ O
V HI
Oc
[ bI ZIS
NS
JL
G
float
N RX c O
bI b
VL
S
P
X e O sR
X O OL ^ z QI
O
U
Y
c UU
VS
IS
NX
I
QS P
N OI
X
NJ OI
float b = 16777216.0f ;
float a = 8388607.0f ;
float c = 8388609.0f ;
P
bUI
R
SK P
ZNI
V RL
JX
Q UI
1.1
10
0.1
[J
UUX J RI
JL O P KI
aI S P
X VS
[ VX
Z
Y UI cJ UU
I L
QX JL O
_ MI I
cL OL
V JL
[P ^ I
Q
Y O H N WL
N
aI
OI P X
[
Z
_ UI
JZL
Ne
X
K
JL O P
X
JU
Other floating point number systems.
SP
P
L
d JX O b
HIN P
I I
UX R
O P cN b
MI L
NNI VJ
NL J R
P
L Q
e V
S O HP ZX o
KL J RR
P
[ Q
ZV
XO _ r
JX
JL O P
R
N
[ bI
V
JO
ZJL
Q
O
Ll
X
J OP
IS
NIX
z
O
HI
Le
Y UL U
JP
QS
II
J[ P
cQ U
I
V
MX P
J UI
O
Ig
K
J OP
I
pp
x
wv
d
J HI
pp
JL P
MNX
JX P L
V
LO
e )
O ""
HI
X [LS
bL O
M I UP
KL c `I U
S
^ RI II
O
HI
JKX
KI
UUX
JL O P
^
^
S
aI
JZX
4
NX
UP
KI
JP
S HI
O
Floating Point Arithmetic Guideline 3:
O
JKX
IS
O NNKL
HI
IEEE compliance.
c
HI
O JX
HI
R
NNKL aI
I ZI
NK O K O
IS OL
V
QI
OU O
I O HI
MJI NZ
I
O RP
HLV K
OI
Q YR
cL H N
VN JL
Z UX QNIS
NL O e V U
O
[ ^
K UX
P V
[S O P
OL O
L e c[X
Y UUL IXS
O c UP
HI
j HX
Z
S ZJI
4
`I
cN U
IXS
_
JL
SP
O
HX
O
O
HI
Z UX
NL O e
[LS
d
a, b
NL e ZNI
X NL e
NZ
L [
QNX O HI
Y[ KL
S HL [ZV
I XO
VJ e JL O P
K ^
JL O P
X GH
U P
Oc P UI
NK S O
HP
OP S
KX P II
cN UU [S
I U
IS UP `I P
JL X
QL
O L
HI R
j RI P
X
S JP
JX O JQI
N RX NIX
R _ U
z^ s O P
JKX
1
^=0
d
// 2^24
// 2^23 - 1
// 2^23 + 1
float bb = b * b;
float ac4 = 4.0 f * a * c;
std :: cout < < bb - ac4 < < "\n" ;
4ac
float
ac4
p = 64
β = 10
L
long double
long double
double
std :: cout < < b * b - 4.0 f * a * c < < "\n ";
limits.C
float
&
% "
#
(β, p, e
&
'
#
,e
8 4 &
= #
.
(2, 5, −1, 2)
=
&
&
+
&
?
( &
+
%
8 @
%
4
&A C
# %=
11.1
3=
8
#=
.
@
$
"
@
&
%
#
&
)( $
""
&
&
+
A
'
&
+
Kr
br
r
%
9
"
. !
=
8
.
&
+
#
4
<D
C
C
/C
+
.
&
'- @
+- # & +
& +
&
(& #
%%
# - # - %
& &
@
?
+
( " & # E %
" !C
"
$ A A # $
+ "
"
)
&( & A
+
E
&
!
(& # &
@" %
%
& +
m I UP
R
[X
F (2, 24, −126, 127)
32
=
8
d
$
@
&
&
&
Rr
X
MX
VU
IS
N
I
Z
I
d
VU
OI
MX
VU
I
O
J HX
JX
cJ
NL
N UUI
X
Sb
L
S
[X
S HX
float
F (2, 53, −1022, 1023)
@"
@
&
=
@=
1.3
$
?
(& +
(2, 5, −1, 2)
! "
&
I
NX
N HI
|
m I UP
JR
V
[ bI
N
[X
NL
J RI
Exercise 42
. 4
<D #
1.52
#
& )
! &'
Exercise 46
(β, p, e , e
%
'
&
^
int
&
Exercise 47
O
R
Exercise 44
)
I
N[L
I
c HI
NX
O
O
Exercise 43
0.25
Exercise 45
?
E
(& + & & ( "
@ &
%% #
(& # ""
ZLS
P
O
/C MI P
C
C &
& "
# #
<D # ( 4 &
"
&
#
#
8 4 @"
=
&
%
HX
JX
2.5.9 Goals
+
O
VK P
N UX
S OP
NZX
J RP
JX
_[
_
−∞
+
0
OI
R
OP
H
O
^
j
HX
O S
RL
O J JX O
HI L
JL L O N RX
I K
VK R
J HX N s
J z
_ R J P JKL
O NL
N HI
XO
I [X J P
NX m UP S
I I L
O J R [IS
HI V
# [ ZI
& NS bI XK P
^ JU
V
"
[ bI
NS
J#
.
V
O
N HI P
[ bI
NS
JI
L
KL
e
J RP
O
HI
QVS
NL e
IS
[
aI
JZL
JI
O
MX
VU
IS
Jy
o
Y
XO
KL
NS
[ bI
V
JZL P
JO
Q
Ll
X
J OP
OP
H
JL O P
S
Z
[V
[
Yr
N
OI P
NZ
L
NQ
X
[S
O
HX
O
NZI
NL e
HX
OS
OI
bI
HI
IS
R
cb
O
NK
NZ
[S
cS
ZJL
Q
P
P
JL O P
I
R
O
HX
O
O
HI
Ll
X
J OP
MI
[JI
IG
N zr
P IKL
O QJ
N|
mP
O P VIS
H
[I X
O QI
KP L
V e
P Ll
RI X
J UP J O P
IS Q
.
ZJL
P
JO
V
[ bI
NS
O
HX
O
ML P
UX
S OI
JX
c
L
e
O
HI
N OH
II
WUL
X
J OP
Q
J {L
o
OJ
OI
S
.
[
cS
N
[ bI
V
ZJL
Q
P
Ll
X
J OP
QP
MJI
Yr
NL
Y`
OP
XH
o
O
M X MVX U
VU I
I
_ r o
V b KX bI
O VS
O I
S HI L
e
[X O
S UUI S HI
JO JP
NL Q
b
[X _O P
Um P O
I S HP
S
+ R
[X
! S UI U
O
MX MX
VU VU
^ I IS
SP
P
[
cZ U
O
J HI
I
QX
OP
MI
L
e
O
HI
QIS
N UX
HX
N[X
I
N GI
O
O
S UUI
O
[X
P
N OH
IS
ZI
KO
r
to
L l O HI
X
J OP L l
Q JX O
ZJL P
P Q
J O ZJL
V P
[ bI V OJ
N
S
cS [N bI
OI J
NIX
.[
IS
O
OL
X
QP
MJI
N
IX
JU
V
[ bI
N
_Y
X LK
Jn [
ZV
OI P OI
OL
Q
MI P
O
S HI
&
SI RL
`
IS
I
JL O P
L
Xe
XO
QP
MJI
N
IX
JU
V
[ bI
N
.
OI
JI
NZ
cN
KL
O
HI
J bP
NX
ZV
[
]r
o
I
int unsigned int float
_
_
R MVX
U
X
OI
aI
.
NZ
ISS
JL P
S
JP
ML
MJ UP
Q
O
HI
NX
OP
H
[I
OP
K
Oc
ZIS
JX
p
r
o
Q
JP
[JIX
ZI
^
^^
_
bI
OL
X
V HL
cL
VS
bUI
R
U
O
VK P
N UX
NZX
Jj
Oc
r
Lo
e
JL P
S
aI
NZ
IS
Operational.
S
cS
N
[ bI
JX
0
[S
OJ
V
^
Y
,
/C
C
C
OI
N
S
cS
[ bI
V
[
U
Q
J OP
d [N bI
HI
L ^J
O j
N HI
S ZNX
ZI O P
KX P VK
J U _ N UX
V
S
[ bI X P
NS
J RI
JKX NL
J
L [X
ON
IX mI UP
c UU JV R
bI [
KX ^ N bI
UUI
JR
V
[ bI
NS
V
J
float
double
MNI
JP
OJ
P
.
^
U
P
HP
^^ R
V HL
_O
cL
VS
ZJL
SO
O|
X
MNI
I
NaN
V MVX U
JX
_O U SI
UP KX R
`I UUI
XO R _
JX
J `P
S
R
Q
O NL e o O HI
HIS
J f cNX
V L I
NX O N
X
NI J I OV
LL V NJ
[ I
L O N bI R
eX h c b
J r L
I O HX
QX NX O MNI
OP
YL l
MJI NI J
I P
V N OV Q
J L
[ bI I NZI
N
R X
^
c b JL O P
d L S
HI NZI ^
P X
X RI JL O P J dHI
S
bI Y
O
J HP
N HI
OP
R H I
RI
Jn
I
NR
IS
IS
JI
N
+1
+1
float
UP
S
ZI
P
double
RI
Z UX
P
KP
NL O e K n
[S LX l
.
J OP
Q
JZL
c
S bI
NK
S RI
zs
R
HI
float
β
p
e
e
c[X
P
R
N RX
O
O
r
IS
NX
std::numeric_limits<float>::min()
R
.
RI
[JX
JL
double
J UP
IS
V
J {L P
O
N|
OP
H
[I
OP
K
JX
float
JX
JP
M
JP LU
MJ
O P
HI Q
O
MX HI
V U Oc
NI
JX ZIS
HL
Q
JX
S
O
U
J`
YL
Ll
O X
HI J O P
JP
OI Q
QNX JZL P
U OJ
Oc V
ZIS
[ bI
.
N
Oc
ZIS
J HX
X
NI
JQI
VJ
e
S UI
XO
R
N RI
OX S
QIS JX O
L R
MNI O
X HI
a n JKL
I KI
R
ZJL ZL O
P
JO Xe
V
Ll
[ bI JX
N OP
S
cS Q
OI JZL
MJX
VJ
L
S e S O HI
P I
[
cZ U MVX U
X IS
N bL S P
J O P OL
Q NZL
O
d HI M P
HI N RI
Z
XK NL
N UUI QX [NL
I
L Y[
aI l
e
O J HI P
HI
b
L S UPP
ZNI L J Oc
X [I P
JL O P L X RI
NZI J U
JKX X O Y P
JL P Q
O
J HI X e O HP
S P aI
_ U
RI P KI
KP O Z
RI [X JL O P
Y HL S `I XS U
S
JI
OL S X OV P
I O
X RI N OL JLS P
YU I ^
J
O P NJ OV S j
H
O JX X OI
HI
R
aI
OV P
X IK
JL O P ZJL O P
^ X
U
MX
VU
^I
S
d0 .d1 . . . dp−1 β
JL O P
S
Z
[V
HI
N OH
II
WUL
X
J OP
O
`
X
p
Dispositional.
O
O
YL
r
]r
+∞
c OU
VR
I
OL
HX
KL
I
bI
I J`
YL
XS R
O
[L HX
RIS OO
U HI
NL e j
VS
t
d0 = 0
[LS
S OU
YX
NX
r
J
Special numbers.
^ QI
_
V
IS
K ON
X
aI
zr
int
std::numeric_limits<float>::radix
std::numeric_limits<float>::digits
std::numeric_limits<float>::min_exponent
std::numeric_limits<float>::max_exponent
double
2.5.10 Exercises
6 / 4 * 2.0f - 3
2 + 15.0e7f - 3 / 2.0 * 1.0e8
392593 * 2735.0f - 8192 * 131072 + 1.0
16 * (0.2f + 262144 - 262144.0)
)
float d = 0.1;
0
pp
pp
x
wv
s
%
"
+
=
.
2.5.11 Challenges
'
"
n
)
'( "
&
2
#
$=
! & @ " %
- & & #
"@
&
8
++ ! @
& $ ' "
A + +
+ &
" $
$ A
+
= "
'"
8
$
! @ "
"
|c| > 2
/
"$
& " .
# )
2
$
$
&(
c
%
)
|zn (c)|
&
$ = )
%
>
n
"
$
"
@
&
&+
%
#
&
!
(
$
+
#
#
&
#
&%
*
#
&
%
)
u
@ & ,
( #
!
$
& ""
'@ . )
&
%
"
$ @
+ A " &
>
c
z0 (c) = 0
$
&
( "
A
+
+
&
8
)
.
#
|zn (c)| 2
n
c
0
c
&
libwindow
! "
@
' '
+
& # #
%
) #
% . )( & &
@
# >
. & A
+
"
( "#
&
E
>
% &
+ #
A " & "@
+ #" " @ & %
% & & & $
"
"
& $
#
% ) & % & )
# &
&
# F $ ,
# . %
&
=
=
58
8
|zn (c)| > 2
"
" (
@
" $
@ %
@ +
% A "
+
"
.
&
"
" /
& "
# #
@
+
#
@
" "
@ % (&
% +
% (
&
(& 0
.
zn (c) = zn−1 (c)2 + c,
)
c
n
$ @ #
X
UU
& )
(
&
)& % #
.
& (& )
% "
! @
' &# $ ' "
(
# ! '
% &
%
' &
+
% %
% &
(& & "
" "
' "" & ,
& &
+A % ' "
%
" F ) &'
& %
#
+
A "
&
@"
,
&
&
c=0
&
N
' +
+
+' " @
"
(& &
# #
)( &
& ! &
&
& @
% "
$
&
# "
@ .&
.
& /$
#
"@ 8 $
+ % "
&( "
' ""
'
,
& & !
(
,
E
(
+
z0 (c), z1(c), . . .
)( $
""
Exercise 54
>
Hint:
& B
.
# '
% & "
$
#
"
=
@
$
F
$
@
&( &
&
%
+
% ! "
#
&
#
@
&
%
'
x 0<
!
$
&
#
@
= (
# &
$ "
#
(
? &
(& % , !
+ & "
# & &
& '
( &
@
+
) "
' $
.
& #
& >
#
'" 8 (& % # +
" A = + ' + "#
%
. & & &
&
B @ 8
& float
e
(
$
&
@
&
>
.
float
+
5 8 . "
=
1 1 1
+ − +
3 5 7
1 1 2 1 2 3
+
+
+
3 3 5 3 5 7
$
@ '
1
"@
p e
=
58
4
8
' $ "
@"
& @ %
' !
,e
@
! ! $ " "
# #
&
+ "
#
?
# (& +
) &
% & &
% " #
@
$
(2, p, e
libwindow
&
(
'
(
+
π
"
+
A "
+
%
+
x
$
.
+
E
fpsys.C
@
)
>
(
+
. )
π
. ,e
"
(2, p, e
%
.
#
# $
( %
+
& ! &
"@ @
&
E
% $ +
(
" @ $
%
$ +
(& + &
+ +
+A
E
β=2
RI
% ( . 45 +
&
π
= 1−
4
π
= 1+
2
N Ub
L
SO
I
O
JX Exercise 53
x
%
&+
'
Exercise 52
A
Exercise 51
&C
# (
Exercise 50
x<2
>
#
+
+
%
+
o
zr
+
"
&
)( $
""
)
@"
+
"=
&
zr
o
+ 8
E
for ( float i = 0.1; i != 1.0; i += 0.1)
std :: cout < < i < < "\ n";
"
&
)( $
""
)
@"
+
"=
&
+ 8
E
Exercise 49
+
J[X P (
NXK L RP P N
R Xe
& KX O
# U
# + " &
$ #
@
% ( "$
#
)( &
. $
. % " 1
"
)'
Exercise 48
for ( float i = 0.0 f ; i < 100000000.0 f ; ++ i)
std :: cout < < i < < "\n ";
n > 0.
0
|zn (c)|
2
N
)
Hi all,
This should be a very easy question.
When I check if the points (0.14, 0.22), (0.15, 0.21) and (0.19,0.17) are
collinear, using CGAL::orientation, it returns CGAL::LEFT_TURN, which is
false, because those points are in fact collinear.
]
pq
pp
x
wv
.
$
-
#
"
$
%
"
&+
&
& #
& )
$ + & + " "
) @
#
%
@ &
! !
""
)
)
#
@ ) #
@ +
)
'
)
&
&
CGAL::orientation
&
! @
&
"
+
"
$
A )
&
) &
@=
=
However, if I do the same with the points (14, 22), (15, 21) and (19, 17) I
get the correct answer: CGAL::COLLINEAR.
]]
p
]p
p
x
wv
© Copyright 2026 Paperzz