2.2 Integers
!"$#%'&)(*"$&+',.-/102(354"7698,:,;)1<2/=>&),@?A'(B(*>CDE-/"0"
@C1,GFH"ICJ="&K"MLN"0PO!Q
RS8"TM8(U-WV018X1=>O10>?YZW(U1=>,@[\0"],^8_,:&K.`;"0P(3Y"0
ab',@[\0:cJ8X0PCJ="&K"0PdXef"0PC5<g<_(3[+K2h1i!j)j+k1l
Ec58X00"TI01>CJ"I,@BK
m &@CnCJS=>,@8Xo-YCJ="[+C"CJ>C],:&K,@pqTM"C
int
BI,^r)"0PC]E-gE',@[+01'(fM[\<241"0PC1?%0">Csint
TM1=>,@Bt>(3p unsigned
Qvu8X[wLxY(Y(y
(*z0>H&K8XL{,^8D"t'(3[Kd
',^A0>Y,:&<w>,@r=]z|PTI0">C1C18XIC.8Xt"0]4"8,:&v,@pqTK>C5Q_u8X[DL}@(B(~'(CJ8][+E-/10PC",E-g,:&K
(3Y<g@,',@8XIC]8c,:&K>C5.,@pPTM>C1?E-)$0""(U',^z-W,^8_,:&YC5&K8XL{,:&K1Y0.t!'([y>C]=S41
0"rTI0">CJ"I,^z-DYH,:&Kg=18X<9TI[K,^"0K
C9<2"<w8X0>p/Q
1NX)/Sx/X5WY5N / 1Ng¡/ )NA"AK15)2¢/"^""
G
%"£^/"¤!J/¢AX)^ )¡¥¡]¢ 1""¥¦ 5 /^"/ 1¡>~§} ¨"X!©S^X]ª¢/1« 1¢A¬9 /G®¯X££P°¡
®¯9/£¯
±"1"¦/J )"/ /"¡
³
´
¶
µ
=
9²
±N1""}"£¡^/
5
+ 32.
// Program : fahrenheit.C
// Convert temperatures from Celsius to Fahrenheit.
# include < iostream >
·¸
º
¹
»
³¼
>³ ³
³´
³µ
³¶
³¸·
int main ()
{
// Input
std :: cout < < " Temperature in degrees Celsius =? ";
int celsius ;
std :: cin > > celsius ;
// Computation and output
std :: cout < < celsius < < " degrees Celsius are "
< < 9 * celsius / 5 + 32 < < " degrees Fahrenheit .\ n";
return 0;
³
³¹
}
Program 4:
@®X¿^^ZX)À /2/XJ
®¯X££P°¡ X)^ )>
TI0"8SCr½c5'&01"I&K"@,Q:¾
X¿ /D) /ÀX®]ÁPÂâ/"""W}"£¡^/"¤GX¿°G££X1À /
15 degrees Celsius are 59 degrees Fahrenheit.
E
$
Ex
§ /~X)^ ) ^¢//¨""¢b°G /"b /}S ^"^^X.51]"!~9£/"xÁ+ÁPÂX®\^ %/X5
x
xS)1¨")"¢I¥1°}®¯¨1 X /1©5£ 5XÀX®f /5¡ /]1^¨S ^"^^X
9 * celsius / 5 + 32
£/ÁPÂE§x /S/"^^¡Xb¨"X'J/E / /nq^z/"^X/ ¤ ¤ ¤J/¢
¤°G /1
%©J5¯q¬\£¡GX®MM
ª§} /%®¯//¢\5]"!5£ K 9X/5X 32
®M /.0>celsius
@,:&<2>,@=,@pPTM>C
celsius
int
_
¤ J/¢
5N¢/"¨"nJ£+£¡1J£ X® s!M
¤°G¡ n /"¡}©5£/"}]]
¢ ¯51£¡b5/+q"!"ª±9"¨15nJ£)£¡^32
/
1J£X®MM
¨"X/^r X®I^int
/"/¨"NX®M¢/X¡®X
¤
int
0 9
° /1^G /«/%¢/X¡ª9 r / ¬M §} ©J£¡ GX®y¢ 1¨"nJ£ £¡SJ£/¥ /¢/"¨"¡nJ£//9¬K1
1/1^"!^"¢ ¬D /.^ !/"/¨"AX® ¢/0X¡^".§} /1.5./_£¡¡15£®¯;/"5^¡©b¡!"XS"X
¨>JX1©JJ£/
¬!n°G¡^/
¤)¬ )x^ ¡x¡G¨"XAMX^ S ^"^^X_¬ /£¡}®^X ^ / 5^
−9
-9
^)¬/^J¨SXK15
1¨1X"
!# !$ &% J/¢^ £¡^1J£
Literals of type int.
9
2.2.1 Associativity and precedence of operators
§} v1©JJ£ 5^XX®JS/"^X¿A^ £¯5^XDz"'ÀXq©1^ 1¢ ¬ /H'C"CJ8=1r',@YtJ@,@"C
J/¢ TI0"1=SS-/"=S>C X® /W'©X£¡©"¢ZM1q"$@Z^ /^>¤J^^!¨"¯5^¡©¡^"bJ/¢ /1¨""¢/"/¨""
¢/11^]/ /W£XX¨>5£\5"' /"^"ÀZJZS/1^^XZ 5n]/>¤xnX £ /¨"XA £11£¡¤
\5"' /"^( '1"¢I*
) W "©vJ£¡"J¢)X/¨ /"¢ 5^^¨1¯5¡©¡7 ¨"X/ 1¨1XH°G¡ H /WX)^ )
M15x"
"¨SX+
!¡ÁÁ
J££P°N/¨"XA £S"£¡À\5"' /"^( '"1¢ S/"^X/¡ ¢/1g^>©b+q"!^ 1^";q
¬©X/\£J¨"""7§} /b¡9£¡¡g¡n5 /"nq¨""¤y° /1n°}À°¡
° /" °}g]>J
3+4 ² 5
) GJ£^°G¡^
,
¤S©"] /X X .¡¥¡ª/%//¨"£¡>5¥°G /1 /1 /ª]"J/
3 + (4 ² 5)
3G+S4+¤!^5 -r/^¡« ¨>5Xbª^ \q%J¢/¢/¡Xb'C"C58="r',@Bt>¤'^¡¥¢ !"
(3 + 4) + 5 3 + (4 + 5)
/Gnq^1%°G ¡¨z À©q¯J'°}]>JI
§x /G/¡¨"\>b®¯%£1^ª\51! /"^1 ª^ \qª°} \"©G^/P° /(*81=S'(M\51! /"^1"
.¥)% /%x;]¢/15G/¨1¤)^/¨" /°}/£"% 5x5/^1¢_]X%® /"!^£¡À5/
/¡^
'/¡¡©]5 ¢7>Jr D^"]"¬M1>"
0£)¤~^ SnJ£¡°x";^ n/XÃX®xS £¡¨"¡£¡ J¢/¢//
\5"' /"^"xg¨>J^XW5^/x^)N° /1x °}X/£¢n )x^ 1W2
1 1x/x5^%°G¡ n /
°}."^"!^¯J£M/£"x®¯5^¡ /]1¨S/1^^X/"
Arithmetic Evaluation Rule 1: 3
J¢/¢/¡ ©M15^"
/£¡¡ £¨"5¡©M15^ "© ¡X S/"¨1"¢/"/¨" J
§ S/1^^X
}
'©X£¡©"} /9/£¡¡ £¨"5XbM15^ ¤) /¢/¡©4
9 * celsius / 5 + 32
^X2M1q ¤yJ/¢w /bJ¢/¢/¡XDM1q 0££ )1.5^9¬ 5^DMS5*1b@
J7n5 /"nq/¨""¤I /]9 £ ¡ £¨>q¡©M15+
J/¢
"©W&B&K"02/"¨""¢/"/¨"n J
/gJ¢/¢ ¡©]M15
J/¢ 5) gJ£^D"à 5*9b/£¡/ \£¡¨>5 ©9K15^W4"YE-]
^^X X£ 7^ \5 J¢/¢ ¡©À+X 1"7 6 -§x /b]>J/"¤ X).S/"^X ¨"X'J/b^ g£XX¨>5£}\5^"8
9;:4<>=@?BADCFE#GIH;<KJ8<LNM#EPORQTSVUWQXEPOYC[ZMPA2EPO]\<V^;_`<>HOaFbcJedfg=]hjikSlE#<>mcCFE7U[EPORQ>J8<XLM$EPOWQ/E$Uon Oa[mgp,f]d=YhkikS&H;<Vq/E#<
r ADCF?H;<E$Uon Osa[b8Z<k\URtcu^vCYhURCFEPGFQkCDAwGFQ<jZX<XLikx
/"^1
¡;_¨"XAMX¡.z/"^X7¬ /£¡®X
(9 * celsius / 5) + 32 M15J/¢_¡}MSJ/¢/
J/¢
9 * celsius / 5
Arithmetic Evaluation Rule 2:
/nJ¢/¢/¡X
32
.¥ 5^À5^¡ /]1¨GM15^x5£¡"®J^^!¨"¯5 ©J
@;n5^ 1n5¨"1¤"¡ ¢/"y yn5^^1I /q°Ã /^)¬c@S/1^^X
I\5"' /
9 * celsius / 5
^('1"¢I.¥/.x¤! ~¢/X }®X (U@c",ª,^8b0>*&),:¤X 5~"¤X /%
°}N£"®]XE^)¬c@S/1^^X/
5X)M1¢DXXS /1>;§} /NN]¨"X/^! 1 ¨1bX®~ /®UJ¨1 5 /¬\¡\q^W5^¡ /]1¨ 1q5^;¢/1« 1¢v^A¬MA(U@c",J^¨"¯q¡©§x /;z/"^X
G^ S"®¯
9 * celsius / 5
£XX¨"J££¡\51! /"^ '""¢bJ
¤XJ/¢X)X¡\5£!S/"^^¡X9 JE^¬M¥>5¢
(9 * celsius) / 5
J
((9 * celsius ) / 5) + 32
§} /1DnX v^/v°}v "©" À¢/^¨"/^"¢ 1>¤
Identifying the operators in an expression.
J]"£¡ 5-
"01"I,xM15ªn>b "©G /;C5<2"I¦)%S)JA £¤ ¨>J]¬M
9¬ 5gK15JG¡
¤ ¬ ) G¨>5vJ£^.¬K;b/ 5^gM15GJ
sZ
) /¨ WX
-5
x]>J'9/x¬M¡ ®¯S^"3¢W-®X4 /¨1X!S>G
\5££¡¤ /xx¨"£>q>¤ J/¢__¨>5^"°G /1
/Y ¬ /%J£^;¡] /1%¨>J"S% ¤ ¥/¬\5¬ £¡.X!¢]¢/>J¢/¢n^X]Gz^+q"!^ 1^"
bn5 /S/"^^¡X_]>J¢ 5¬ £@ ^1J£¡^b /±1J£¡%^"¨1¡X¬M"£P°/z%
1 S./.¨1X ¢/1A5 ^ Sb¨1X ¨S1gS/JA £J¤ /ÀS/1^^X
Y9b¨1£>59 5
-3 - 4
/«/
9/¬M9 5 Y /1N/£1® J/¢2^¢/M1J/¢ S% ¤K°G ¡£; /^"¨"X/¢ X/
¬ 5^ Y - /1N5^M15 ¢/%Xn¬M ]^¡¢ 1S% ¥
. )}¥ / z/"^Xg£¡XX¨>J££ 9\5^"! /"("' "¢
¤ªJ
J
/¨"}°}xXSª¢/+
1"'ª©JJ£/"~9¬M 9¨>J^1"¤'°}}¬M11n5
-(3 - 4)
(-3) - 4 ^) 5}°} P°$ /5 r°}1>
§x /¨"^"¨SG£XX¡¨>J£K\5"' /"^"G5
(( − 3) − 4),
^ /©JJ£/X®M /S/1^^X
¡
§x /%®¯X£¡£q°G¥®X
/£®¯q¡ /]1¡¨S/1^^X/"-3
- 4 −7
Arithmetic Evaluation Rule 3:
G 5^nMS5G
/" x¬ 5n¨"X/!1+q^"
^ /¡¢n]X ¡AM^J'
J/¢ ¥ >© /X /1x ^"¨""¢/"/¨" J
.ªv/^/ YS £¨1¡N %}\5^"! /""5¡
¤K/1¨""¢/"/¨""¨>J2¬K
P ©1^/£"¢I§ygX1N /£XX¨"J£f\5"' /"^"9®¯*(celsius
^/¨z ]\5+¯J5)
££ g*\532
1! /"^ '""¢wz/"^XI¤
°}N5/ £¡.^ /£1%®X 5¬MP©¤¨"X/^¡¢ S/; /NJ£¡"J¢).\5"' /"^('1"¢g\5^^%J}M15 ¢/"
@ /S/5A\£¡¤ /}£>5¢ }9 /£XX¡¨>J£+\51! /"^1
(9 * (celsius + 5)) * 32
§x /±15£x^"¨1¡XW¢ ¡^¨"/^^" /P°oA\5J! /"( '"9X"/1J£Ez/"^Xv!©X£¡©/A5o ¬ ¡^q^{M15^"¤//^/9^ 1¡5¡¡""¤/"¨"1¢ 1 ¨1"J/¢_5^^¨1¯5¡©¡1"
E
$
Ex
2.2.2 Expression trees
@ $J' ¨"XAKX^¡DS/1^^XI¤ /w£XX¡¨>J£\5"' /"^"_¢/1^1]/2 //(/r :£1©1£
M15>¤E J]1£¡2^ ]X/.^ \q5/M>5^°¡^ ¡Ã^nJ££¡"/9¬K1X®%\5"' /"^""v§} /
S ^"^^X ¡g /"$7¨"XAMX^¡^Dz/"^XI¤N¬ /£¡À®X /2 @£1©"£M15^_J/¢ ¡^
M1J/¢ } 55JJ¡S ^"^^X/"
§x /}"¨")¡©5r^/¨1)xX®KJbS/1^^XA¨"J./¨"1£¡¬M%©\5£( '""¢99 /x®¯^ X®+J2|!d
TI0">C1C18XD,@0"S>¥@b¦fX) ¤ /%S/"^^¡Xb^1x®¯~ /%S/"^^¡X
9 * celsius / 5 + 32
x^ /q°GI
9
*
celsius
³
/
´
+
32
µ
¶
·
9 * celsius
¸
¹
(9 * celsius) / 5
((9 * celsius) / 5) + 32
Ãz|PTI0""C"C18X2,@0"Sªc58X0
E-bY,:C(*8SX=z'(!TK0""I,:&'',@8X
8X.,^8WC5"t"EQ
Figure 3: 9 * celsius / 5 + 32
Q;a.85-/>Cn01A(¯)4">(US-cS0"8X<
((9 * celsius) / 5) + 32
GP°{¢/]°}X1 /G^^" §} /S/"^XD¡^"£¡®¢ S«\/"^ A0188,X® /;^^"¤IJ/¢W /
M1J/¢ ¥X®K /G :£S©"£\K 15ª¬M"¨"X]x /G! =>&@(¯-0""ÃA^ ^"J¨ gK1J/¢
/" ^1©"nJ. /^]X®NJ/ /1.^)¬/^" )Z 1 °}g>J¨ 2/n5^Ãz/"^XI¤x
¢/1« /"Gn(USc ¡ /"¤)° /.®¯)^^ SG¨ /£¢)"I
2.2.3 Evaluating expressions
¦ X J S/"^X "]°}n¨>J7>J^£ >J¢ /AMX^^ ¬\£¡ "t'(3[y',@8X CJ
>[f"=S>Cv®¯
/v5 /]1¨nS ^"^^XI /¨ ^/"/¨"W¨1X!J¡ AJ££G/¬ @S/"^X/]¨"¨1//
/;^1¤K¢/11¢D¬!_ /"¡]X®~1©JJ£ 5^XIG¦) /^/"/¨"]¬M©J£¡¢I¤\°}; "©;
n59^). 5°}A1©JJ£ 5^AJ z/"^XÃX £ c1,^"0v /.S/"^^¡X ¨"^"rMX/¢ ¡ À
'(Y( ¨ /£¢)1 "©¬M"1W1©5£ 5"¢I .ª£!/95G¦fX) ¤/^ ¡x¬M1¨"X]"}¨"£>q ¬K"®¯
1©JJ£ 5¡
¤M°}9 >©À1©JJ£ 5
J/¢
¤y /1°^J¤K°}b¢/X
"©
celsius
"/X/X _/®¯9n*5^celsius
XAbK1®¯ /S©J£¡\qXI 9
)Z 1.°}G5^^¨1¯5 /x1©JJ£ 5X9^ !/"/¨"x°G¡ /¨1^"KX ¢//N^ !/"/¨"GX®\ !¢/"
/ ^"J¤!G©JJ£¡¢b/¢/%^ /"/¨",^8"TM8(*8SX=z'(Y(3p]CJ8X0P,:CG /%^1~§x /]"J/f 5J'/¢/
.^ x^ !/"/¨"¨1¨")¥X/£¡9J®^1%J£¡£)¡¨z /£¡¢/^"A "©G¨1¨")^"¢I~@]¦f¡X/^ ¤®¯ S)JA £¤
/;/¢/^ /"/¨"
/¢//¨""©J£¡¢_1©JJ£ 5¡X_^ ! 1 ¨1
0^/]/9 5
(1, 2, 5, 3, 6, 4, 7)
/Á
/©J55¬ £
\5¥©5£/
¤°}G¬/J¡. /G®¯X££¡q°G/S©J£¡\qXA^/"/¨":@]>J¨ celsius
15
Sy¤) /^)¬ :S ^"^^X_^b¬M1©JJ£ 5"¢g/SG}n5^"¢À¬9^)^^X /¢//¬MPKP%
9 * celsius / 5 + 32
−→1
9
−→5
celsius
Âb
9 * 15
!
135 5
−→3
135 / 5
−→6
27
−→4
27 + 32
−→7
59
−→2
Âb
!
!
!
32
§ /À^! 1 ¨1
x
¡b5 ^ S9©JJ£¡¢7/!¢ n^/"/¨"¤ª/¢ /¨"¡ D_¢/
+1"'
(1, 2, 3, 4, 5, 6, 7)
1©JJ£ 5¡X]^/"/¨"/^ 1^/£¡/;©JJ£/X®
/J]§} /1N5N9/¨z n]G1©5£ X
Xg^ ! 1 ¨1""¤ X®f¨"X)^J¤+J/¢g¡x//M1¨"¡« 59"¢g¬!g^ x{5 ¢ 5^¢g° /¨ gX %9¬M
/^"¢I
@ÃX/;^nJ££~S)JA £¤E5££KX^^¡¬ £b1©5£ 5X /"/¨""°G££"^/£¡ ©5£/
¤f¬ )
59
¡9J£¡^v 9 5¢7v°G¡^]¢ P° S/1^^X/° /X^]©JJ£/"bJ/¢ +"¨19¢/1M"/¢X7 /
1©JJ£ 5¡XH^ ! 1 ¨1v¬K"/ ¨ /X^" @^" E)S¨"^ !+hs"l¤ E)1¨1^ÃÁ Kh^&Jl¤ J/¢ ^ _±NSJ£
^"¨SXw¬M1£q
° %S 0 ^XJ 5¨"X!J/N^/¨z Ã5 S/1^^X ]¡X !NS ¬\ //M1¨"¡« "¢
¬M" "©¡> .¥)A )X/X X¢ /X5]]/2£¤} /A^ W¡]>JH^ "©X¢I¤}^/¨"W
¨>5££¡AX/£¡n!¨"¨")}° /"gX ^^"%9; /" '1!b9/¨z g®¯/ ¨SX J£¡.!9^/X££¡/
X®f¨1¢/
2.2.4 Arithmetic operators on the type int
@. /x ^XJ
¤°}G "©J£¡^>J¢)"/¨"X/!S"¢] /9/£¡¡ £¡¨>5¡©ªM1q
fahrenheit.C
J/¢ ¤/J%°}"££M5}^ ¬ 5^AJ¢/¢/¡XnM15 Y}¬©X/%¨"X/!1+q^x /¬\¡\q^
*
+
^)¬/^J/¨SXK15
§E5¬ £]Á;£¡G5¡ /]1^¨NM15^>:J/¢W /;¢/1 ©"¢ 'C1C1BXM<2"I,8"TM"01',^8X0PCl%x 5Nq
"©5£¯5¬ £®¯% /s!M
¤°¡^ A /"¡}5^¡"1¤!/"¨"1¢ 1 ¨1"G5 ¢ÀJ^¨"5¡©¡"1E§} N5¨1 J£
int
/¬M1x 5q K>5¡_ //"¨"1¢ 1 ¨1¨"X£/]W5 "£S©J' ¡G /À8X01-/"0J]X/
/"¨"1¢ 1 ¨1"G 5xn5^^1"
1 S./¢/^¨"/^ /n®¯ /¨1^X J£¡¡";X®} /"^ÀM15^ )I¤~° /1 ¤
J/¢
5
^"£¡® :S\£J 5^
.¥)5£¡>J¢)] /¢/¡©XgK15} /¡"¢ ¡^¨"/^^XI * +
The division operator.
/"^X
0¨"¨"^¢ ¡ À /9/£"X®%n5 /"n5¡¨""¤+°}b¨"X/£¢w1 £¯5¨"9^ bS 9 * celsius / 5 + 32
¬n /S/"^X
9 / 5 * celsius + 32
E
$
Ex
&!
Description
MXI@ /¨1"]"'
MXI@ ¢ 1¨1"]"'
^: /¨1^"]"!
^: ¢/"¨1^"]"!
^X
^X
b/£¡ \£¡¨>5¡X
¢ ©^¡X @¡!"XSN%
]¢//£/
J¢/¢ X
^)¬ J¨1¡X
J^^X/]"'
b/£¡xJ^X/]"!
¢ ©5^^X/]"'
]¢gJ^^X/]"'
J¢/¢WJ^^¡X ]1!
^)¬vJ^^¡X ]1!
Table 1: Operator
++
-++
-+
*
/
%
+
=
*=
/=
%=
+=
-=
Arity
Prec.
Á
Á
Á
Á
Á Á
Á
Á
Á
!
Á Á
Á
Á
Á
!
Á
!
Á !
Á !
!
!
!
!
!
!
Assoc.
£¡"®
£¡"®
^X !
^X !
^X !
^X !
£¡"®
£¡"®
£¡"®
£¡"®
£¡"®
^X !
^X !
^X !
^X !
^X !
^X !
>0 Y,:&<w>,@r= E-'C1C1BXM<2"I,v8"TM"01',^8X0PCncJ8X07,:&K7,@pqTK
Q/=>&$Y="01"<w"I,
int
8X0w-/S="0""<2"I,À8"TK"01',^8X0Ãz|PTMS=>,:Cw$(3t'([yJQ m &K2=18X<9TM8C1@,^wz|PTI0">C1C18X YCD
(3t'([y h*TI0">drB="0""<2"I, E-TI0""dz-/1=10""<w1I,¡lX? 8X0Z 0>t'(3[fhBTM8C",:dsY="01"<w"I,
E-vTM8C",:d-/1="0"1<w"I,¡l
Q N/=>&¿'C"CSBXM<2"I,À8"TK"01',^8X07z|PTMS=>,:CÃ(3t'(3[f 'CW(*Yc",
8"TM"0SE- E- 0>t'([y'C20>*&),_8"TM"0SE- W,:&KH=18X<9TM8C1Y,^ z|PTI0">C1C18X YC7
(3t'([yJQ (B(¥8,:&K"0_8"TK"01',^8X0PCbBMt8(3t.0>t'(3[f"CÀ8XI(3p E-W&+tb8w S=>,:C5Q
° /X/ K"¨1^/¡©JJ£/bJ/¢w /.®¯//¨1X J£¡¡_X®¥ //XJ
.¥)®
fahrenheit.C
°}N/ //X5 °G¡ n /£5^1}©1^^XWX®y^ S ^"^^XWXg /) )xX®
¢ 1""
15
%"£^/"¤°}X1x /®¯X£¡£q°G/X/\)
15 degrees Celsius are 47 degrees Fahrenheit.
§ /b"^/£¡]¡.®UJ¡^£¡¢/
+1"']®X X)A/S©X/ :5 ¢ ¨""¨1N%"^/£¡]X®
x
¢ 1""
59
¦/J )"/ /"¡>¤Mg° 5N¡XX¡ ]X2 /1 §} /b5 r°}1 5 /9¬ 5W¢/¡©XvM15^
XH /g!M
A £"]"'; /2B I,^r)"0 -Bt@C1r8XI¤ Hnq /"n5¨1¢ 1 ^"¢H¬¢ ©K
/
int
§} ¡ ¢/"%/}¨"^^"MX/¢n; /"X/£¯5 ¢ ©^¡XA° /1 /! ^"! X®I°}'"X1¥%
X"/15£y/X8 :'"J£MqX J£K! ¬M1"
§} "n5/¢ S NX®¥ /b¡!"XS¢/¡©^XD¨>Jw¬K.¬/J/"¢v° 2 /
¬ 5^W<28J-[K(3[KCMS5 )
¤ _n5^ 1 n5¨"ª¢/"/"¢¬!g]!¢M¥§} /nq /"n5¨"J£ ^ £¡
The modulus operator.
%
a = (a
¢/¡©
b)b + a
]!¢
b
J £ /X£¢/ª¡n ®¯ S/JA £J¤X® J/¢
5^©J5¯5¬ £1ªX®+!M
¤! /x©J£¡ X® ¬M"¡
a
b
int
b
/X8D'"1^)¤/^ S ^"^ ^X
(a / b ) * b + a % b
J /}J] ©JJ£/xJ ~§x /x]¢//£/fM15~~¨"X/^¢/1^"¢AJ9 £ ¡ £¨>q¡©~M1q
J/¢] J¥ /^J]/"¨1a"¢/"/¨" Á&%ª5 ¢ÀJ^¨"5¡©¡ @£"®N%J¥ /^ S °};b/£¡^¡ £¨>5^¡©
M15 J/¢
*
/
@®¬M^ J/¢
"©n/X @/"5¡©A©JJ£/"1¤ª /"
J9W/X8:/"5 ©A©J£¡ ÀJ
a
% b
°}"££Y§x /¥A
£"b 5ª /!^"X1%¢/¡©^X.^X /¢/-/8XaL}Ã
A /¥¨>J^@2
® :5¥£>JrN %ªX/X®
JGb/"5^¡©©JJ£/¤ ¡GA £1]"!qX]¢/1« /"¢_° /1 /1G¢/¡©XgX//¢/G)v
a
¢/q°GIb } 5¬9 /¢/"'¡
¤ /x^X /¢//]¢/}®¯ ¢/¡©¡^X
(a / b) * b + a % b
J£À¢/1^1]/" /®¯//¨1X J£ sX®^ ]!¢ /£/K15";@® J©5£/ ¤M /©JJ£/"
b
0
X®
J/¢
q//¢/1« /"¢I
a / b
a % b
}X]¡ 2¬+5¨ÃX/AS/JA £ :J/¢ 5¡ 2 ^"¨""¢/"/¨""gJ/¢J^^!¨"¯5 ©¡¡"b¡!ÃJN¨ ¨"X/! %S¤x°}WXSÀ^ W®¯X£¡£q°G/2©JJ£¢ 1©JJ£ 5^X ^ /"/¨"D®¯nX)ÀJ£¡S 5¡©v%"£/o @V ¦/J )"/ /"¡x¨"X'©1^XI
9 / 5 * celsius + 32 −→
−→
−→
−→
1 * celsius + 32
1 * 15 + 32
15 + 32
47
G1^°}^"^ 1^^ .nJ¢/¬!g /!^"X1¢ ©^¡X
9 / 5
J}©J£¡
1
gQA CFAsEPOHCDA ?HIC[\KE#<>U[QA
ORUFH;<VqHICDqKUWQVH;U
ZkU[ZkCDA CFAwuEPOWEP^<O ? HCFAoOWG C[E A HCF^NZX<qXE#<XLU[^;_`HICFqOoA CF^ ^C
UWQVAwO[A oG HvO[AwOox
T^BHou^EPqBMP^<LNEPOWQA uH;M#ZlHIUWEP^<OWAZA <VGwAoOwSj_gA _`E$M#MPCD^?
<^;_ ^< ORZXCDAwO[OeUWQA,AwuH;M#ZVHIU[E#^N<^ M#E$U[A CDH;MPOox
E
$
Ex
)wª "© J£ >J¢)X/¨ /"¢ //\q^
MS5>¤5J/¢^ ¡ K15
Unary additive operators.
¢/"E°G 5EX/%SM"¨1 / ©5£/ X®) /%¨"XAMX^¡^ªS/"^^¡X z|>TI0;f^ %/"q¡© X®) /
©JJ£/%X®|PTI0P§x /1}~ / 5^ M15>¤X®¯¨"XA £1^"/"^"¤X5-£¡ /X/X 9 ®¯/ ¨SX J£¡ +
x/X @ S)¡/ /©JJ£/X®f /
¨1XAMX^¡z/"^X z|PTI0n} /J]Jx^ ©5£/X®
+
z|PTI0P
J¨ vX® /"/
J/¢
¡J^^!¨"¯5^"¢_°¡^ °}
Increment and decrement operators.
++
--@C1,@Y=>,/ 5^nK15^x 5x¢/+
1G¡g/"¨"1¢ 1 ¨1J/¢WJ^¨"¯q¡© s
§x //: ¡ ¨S"]"'
J/¢2^ /@ ¢/"¨1"]1!
5¡X !J^¨"¯q¡©§x / K1¨1X®
++
- /¨"XAMX^¡^S/1^^X/
|PTI0ÀJ/¢
z|PTI0n¡}^b/¨1^>J^@ ¢/"¨1"J^¤)"rM"¨1 ©"£¡c%¥ /
++
-©JJ£/;X®z|PTI0À¬ §} /"I¤+ /;¬er- 1¨1"®¯S^"¢vA¬ z|PTI0S)/"¢I¦) /^]n5
^"/^J¤fz|PTI0b Jª1¬MJ]£¡©JJ£/ w
) J£".^ \q¥/@ /¨1"]"'¥¡
.TI0"ª|À8,',@r8XI¤
++
J/¢_^¡]£¯5£ .®¯
-§x /ÀMXI@ /¨1"]"'
J/¢ /gMXrI: ¢/"¨1^"]"!
5g£"®.J^^!¨"¯5^¡© 0 b¬M1®¯¤
++
- /A +
"¨1X® ^ b¨"XAMX^ S/"^X/_z|PTI0
J/¢¿z|PTI0
¡_¡ ¨S>J^ Y "rM"¨1 ©"£¡
++
-¢/"¨1"J^k
% /9©J£¡ .X®;z|PTI0D¬ ¤J/¢¿z|PTI02 J¬K]Jã¡©JJ£/.®¯;^ ¡°}Kg§x /
1
1^/^©5£/¤¥ /X/X I¤¥bJ^©JJ£/À¨"^1MX/¢//2D /78(¯-H©JJ£/ÀX®.z|PTI0¿41@cJ8X0"2 /
/¨11]"!9b¢ 1¨1"]"'à £¯J¨"J )w_J£¡^2^>à 59MXo :/¨11]"!
7TM8C", ª|
++
8,',@8XI¤ J/¢_]£¯5^£¡.®¯
-§x /¢ K11 ¨1¬M1°}"1_ //¨1^"]"!xMS5x/N %J/¢KX^«)À/5Xgx££/o ^q"¢_À /®¯X£¡£q°G/S/5A\£¡N/XJW
# include < iostream >
int main () {
int a = 7;
std :: cout < < ++ a < < "\n " ; // outputs 8
std :: cout < < a ++ < < "\n " ; // outputs 8
std :: cout < < a
< < "\n " ; // outputs 9
return 0;
}
Xn"n5^X N 5} //¨1"]"'xJ/¢¢/"¨1^"]"!M15x5^)M1\/X/"¤)^¡ ¨1 /"
®¯//¨1X J£ s¨>J9¬M%>J£ "' "¢¬9¨"X¬\¡ ¡ /5^^X/]"'M1qB "¨1^X ! ¡ÁÁ %y° JJ¢/¢ ¡©M15>@/¢/""¢I¤)® x;©5^¯5¬ £¤^ S ^"^^X
} /¡©JJ£"'xÀ©JJ£/
a
J/¢ K
1¨1n /_S/1^^X
$§} SvAX/W^)¬/£1++a
¤% /X/X ®]z|>TI0H]
X"/15£%£¡©5£/¤
z|PTI0 ¡A8,ba/"=¨"1a^+5¡1£¡ ! ©J£¡"! z|>TI0
z|PTI0
D§x /]>5^X
++
=
+ 1
5 ; ^ b®¯]1S/"^XI¤Gz|PTI0D1©JJ£ 5"¢ X/£¡2X/¨"¤f°G /£9 /.£¯q^1>¤y¡
1©JJ£ 5 1¢ ,@L}=1" @®|PTI0À \5GJg K1¨1>¤/ /}¨>JWn5¢ K11 ¨1
/g /1. J/¢I¤¥ /9^)¬/£1 9 b /g"J^XH° '¡ ¨S"]"'.5 ¢ ¢/"¨S"]"'
M15G5;^AK\/£¯qJ/¢_°¡¢ 1£¡/^1¢D¡D0®1J££@¤ ¡LN8X[+(U-W¬K;>Jgn"©X¢
/" ¡v/5¨1¨"J§x /;^^/^ D¡G 5/¨1^"]"!^/.N¢/"¨11]"!¡ b©J£¡ 1¬
5^;^/¨ 1
® !/"!GM15^X/x¡g ¨>5£fx ¨1¢/^ \qG¡}\"x v. "©^ /^^¨")®¯x /"W
'Â
§x /Wq"]"'
5 ¢
5^W¬©¡X £¡
Prefer pre-increment over post-increment.
! ©J£¡"!>¤I5N^ 1¡N K1¨1 /9^J]J/¢D^ ©JJ£/X®ª^ ++i;
S/"^^¡Xi++;
w/N/^"¢I X
¨>JnS¨ \5 X^ 1° ]>J¨ n /1}5¬\ ^5¡£¡°¡^ X)¥ K
1¨1/ /G¬K" >© X®M //o
X//¢//N/XJW Z
) /"/1©1¥X. \"©} /¨z /X¨1¤XXA^ /X/£¢./ª®¯ª /}/:¡ ¨S"]"'
M15>@ /¨1"]"' ª /G^A £S¥MS5Xb¬M"¨>J/^ /G©5£/X®
¨"Jn^A £¡¬M
++i
>5¢D w
/©q¯5¬ £ G@2¨1X!^5>¤\^ ;KXI: ¡ ¨S"]"'G J r ^"]"¬M1 9
/;X J£
i
©JJ£/X®
0 }/@ /¨1"]"'xA £1>¤!¡J£^"/¢/¬M]NA¨"¡"!>
i
1<20PO) x°G¡^ r /@ /¨1"]1!¥^"/¢ ¬M]xA¨"¡"! ;
¬K"¨>J/^¡AnJ!9¨>5^"
/A¨"XA £¡1N>J£ "' "°G /" /b©JJ£/AX®}J z/"^XÃ/;/^1¢ g@ ^/¨ 7¨>J^J¤f /
¨"XA £Sn"v¨z /!X^bX2¡NP°wn1 £¯5¨"9^ MXrI: /¨1^"]"!N¡2 /9^X)¨"9¨"¢/¬2
r /@ /¨1"]"' n
wn5¨z //£¯5 X JX5J2/](>' qXIGq°}S©1>¤I /19q¬\X£)"£¡
/¬M"/1«/}À¨z /!X^/MXI@ /¨1"]1! °G SN/: ¡ ¨S"]"' °}X/£¢n¢ 9J%°}"£¡£@~@À^ ¡
¨>J¤)XW^ /X £¡¢g5N /N¬\)¢/"W®^X /¨"XA £1%J/¢_/]("' ¬ÀX/^^"£®:
0 £^)¤MXo: /¨11]"!ªJ/¢AMXo: ¢/"¨11]"!¥5x /GX/£¡9/\q^nx M15 5 q
£"®GJ^¨"¯q¡©§} ¡xnq"x^ 1¡x ^JXq K>5^X]1° 5}¨1X '1¡!/¡ ©
§x /]J^X/]"!M15
;"©JJ£¯5¬ £®¯5££!M""¤E" "¨1^X
Assignment operators.
=
! Á¡Á >¥
. )N /195^bK"¨"¡« ¨M15 5N¨"X¬ / /b5¡ /]1^¨K15^N°G¡ DJ
J^X/]"!>§} /"^D5W /W¬ 5^ MS5
¤
¤
¤
J/¢
o§x /vS ^"^^X
z|PTI0Xi
z|PTI0 J / K"¨SX®J¢/¢//b /©+=
J£¡ -=
X®z*=
|PTI0 /=:J_©%=
J£¡ j%%b /©JJ£/X®
z|PTI0Xi :+=
5g£¡©JJ£/k %z~§x /N¬ -s"¨Sx^"®¯1^1¢¬ z|PTI0XiD ^1)/"¢I¥§} /%xX"/1J£¡('>5¡X
X®N /_ ^ :/¨1^"]"! /WS ^"^^X
|PTI0H] /¡©JJ£"'] z|PTI0
0Gn¬K"®¯¤
z|PTI0Xi
z|PTI0 og 8,] /¡©JJ£"'. ++|PTI0Xi
z|PTI0Xi
|PTI0 {X+=
"/11J£@¤%/¨"g /
=
+
£¯51xS+=/1^^X_S©J£¡\q"z|PTI0XiDs°G¨"
¤ ¤
J/¢
°}^]¡À /NJ]G®UJ^ /XI¤¬\J^"¢gXÀ^ N^)¬/^5¨1XI¤
§x /NM15
-= *= /=
%=
9 £ ¡ £¨>qXI¤X¢/¡©XI¤J/¢_]!¢ /£/%MS5>¤^"M"¨S¡©"£¡
0££+^ N5^^X/]"' M15% "© ^"¨""¢/"/¨"/
)¤@ /1.¬\¡ ¢n]°}>5£ A J] /
/1G5¡^ ]S¨MS51ª§} /x
!/¡N!^ ¡©
¤/"¤/]>J/
a=b*c-d
a=(b*c-d)
2.2.5 Value range
©q¯5¬ £NX®y!M
G5^^¨1¯5"¢À°¡^ ª| z-W/¬M1xX®f]1]^A¨"1££"¤/J/¢À /1"®¯
J£9°G¡ _«))"¢/int
9¬K1xX®y¬ ¡"¤)^> 2) ¨>J££M /x dz4"@,01TI0">CJ1I,',@8XI
b
b
/¨z W1/1^"!5X A £"^ \qAJ ¬ -s"¨S.X®xs!M
¨>J J^/]gX/£¡ « /¡"£
int
nJ'_¢/ KS"!N©JJ£/"" /¨"9J'W¬\ N¨>JD/¢ SM"/¢/"!£ _ "©9°}n5^""¤K /nq)¡b/
/¬M1xX®y^1/"^"'5¬ £©J£¡ 1 b ¤ J/¢g /;5¨1 J£K©JJ£/J/Xx¢/1« /"¢WJ} /1
0
2
{−2b−1 , −2b−1 + 1, . . . , −1, 0, 1, . . . , 2b−1 − 1} ! ¬M1^" XÀ¨"Jg« /¢gX) ^ N^n5££"¥J/¢À£¯5X"r
X ® b
/^2/ /£ ¬ 5^
J© J£/"%XnX/x¨"XA )1"¤
§x /¨"^"rMX/¢ ¡ 9¨"!¢ xX¡©"_¡XJ Â
int
limits
O UDH;<qVHICFqqX^AwO8<V^vU XCDAwO[GDCFE AcU[QXEPOwSZkUeH;< qkElA CFAw<UcGFQ^EPGoAe^ l uH;M#ZA C H;<XLAe_g^ZM#q
ZX<XCFAIHvO[^<VH MPASLE#uA <^UWQA CgCFAZE$CFAw?BA <U[O E#? ^NO[Awq BUWQA,ORUFHv<qH;CFq&x
gQA
AgOW^N?BA _`QlHIU
E
$
Ex
³
´
µ
¶
// Program : limits .C
// Output the smallest and the largest value of type int .
# include < iostream >
# include < limits >
¸·
º
¹
»
³¼
>³ ³
³´
³µ
³¶
int main ()
{
std :: cout < <
<<
<<
<<
return 0;
}
" Minimum int value is "
std :: numeric_limits < int >:: min () < < " .\ n"
" Maximum int value is "
std :: numeric_limits < int >:: max () < < " .\ n";
Program 5:
)Z 1nXA^ b //XJ
®¯X££P°¡ X)^ )>
limits.C
TI0"81Cs½ (B<@,:CqQ¾
Xn !X@¬ ¡ª^"W¤'XA°G££)]X£ "£¡X1ª /
Minimum int value is -2147483648.
Maximum int value is 2147483647.
@/¢/""¢I¤XJ
¤JX¨"J¢ 1¢ /¨"ª 5y^ ª/¬M1yX®¬\ y/^1¢^G1/""!
31
J
©JJ£/2147483647
xXA /ªr=
12 −1
,0%¥ /~MX'>¤XXn5x/ ^)/MX^"¢b;//¢ SJ/¢.^
int
32
S ^"^^X
.¢ SJ£@¤X¬ )¥°}x¬M"£S©x 5X]X1¥¡
std::numeric_limits<int>::min()
¢/>
Yx%¨"£>qx^ \q% /q¡ /]1¡¨MS5
YS)¨"S x /N/\q^
J/¢g /¬ 5^
J/¢ %
+
/
¨>J//;°}^2S)J¨1£¡w£¡.^ 1¡;n5^ 1n5¨>5£E¨"X/!S^\5^"¤f1©"ð /" /"¡qX/]"!%
5A^"^¡¨1"¢ _S ^"^"'5¬ £
©J£¡ 1"W§} A^>J^X7 5 /A©5£/";X®}¨"XAMX^
int
S ^"^^X/N¨"X/^^ ¨S"¢w®^X /"^M1q¨>JD//¢ SI xNq©S q° /;©JJ£/J/XX®
/M
§x /]XN¬©X/^/¨ S/5A\£¡ /9z/"^X
0GN°}
>
2147483647+1
"©
-s/int
^1"I¤\¡^xnq /"n5¨"J££¡9¨"^^"¨1G©JJ£/X®
/
x1/""!q¬\£¡P©1
2147483648
/Ns!M
XX)"W¤)^9X°¡££M/1© 5¬ £¡]
X1^X]N /1x©5£/
int
/¨z 2/ ¢/1o xJ/¢2P©1 P°N5^.^1©1^9/¬ £" vnJ!À/J¨1¡¨>J£Eq £¡¨>5X/"¤)¬ )
¡}°}X/£¢g¬KJ1©"W]N^1©S/¬ £" /}b P°$ 5} /1À¨>J_!¨"¨")>
2.2.6 The type unsigned int
0Ãe
¬ -r1¨1X®%M
¨>JÃ "©] 15¡©.©JJ£/"1¤E¬\)X®^"7°}.X £ w°}^2°¡ 5^/J£
/¬M11 G^¡ gÀint
!Mb 51/1^"!^;X/£¡D X8@ 15¡©©5£/";J£¡£q°G_S"/¢ /
J/XNX®IMX^¡ ©©J£¡ 1}°G¡ /X)%/^/9]¬ ¡"xo/P©¢/"}^/¨ _;K¤)¡x%¨>J£¡£"¢
_^ ¡xK¤)°} "©;J£¡£K /;5 /]1¨K15^}°}J£^9 "©®¯
¤
unsigned int
j^C@ZOoSUWQA O[ADU
^T
<lHIUWZXCDHvM<jZX? A CFO ORUFHIC[U[Og_`E$UWQ
0
S
= {0, 1, 2, . . .}
x
int
° À^ J]5^¡"1¤ ^"¨""¢/"/¨""GJ/¢WJ^¨"¯q¡© ""¡©" @¬ ¡}1/""!qXI¤ /
b
©JJ£/J/XX®
% /1
unsigned int
{0, 1, . . . , 2b − 1}
X ® b 5)J£!/¬M1"E@ /
¢ "1¢ ¤X°G 19X91 ¯£ J¨"}5££¨1¨")^"/¨""X®
¬
2
int
unsigned int
À //X5
¤ ¡xn"] ^¢//¨"^
/
®¯X££P°¡ X)^ )>
limits.C
Minimum value of an unsigned int object is 0.
Maximum value of an unsigned int object is 4294967295.
1 1J£¡X®%M
£!w£¡¡A£¡^1J£X®%M
¤®¯X££P°}"¢ ¬ "¡ /1;^
unsigned int
£ 11
¦/;S/
JA £J¤
5 ¢
5.£¡1J£X® s!M int
¤f°G¡ /"
u
U
127u
0U
unsigned int
©JJ£/"x]]"¢/¯51£¡b5/+q"!"
2.2.7 Mixed expressions and conversions
E/"^X/9n" ¡!©X£¡©]^)¬ :z/"^X/9X®}M
E- X®}M
w¦/
unsigned int
S)JA £
;_£"J£¥5¡ /]1^¨S/"^XI¤E¬ /°G 55^]¡KnJ/¢Ã©JJ£/ @
17+17u
^/¨ <U|/S-$z|PTI01>C"C1r8XIC"¤ /MSJ/¢/A5A £¨"¡^£¡=S8XMt"0P,^z-^w /2<28X0"w)" 101'(
MJ .ªw /À J/¢ 5¢I¤E /]].X"/1J£¥!M]
D§} S"®¯¤~ /
unsigned int
S ^"^^X
xX®yK
J/¢_X1x1©JJ£ 5"¢1_¬!r1vJ
17+17u
int
unsigned int
17+17 u −→ 17 u +17 u −→ 34 u
§} ¡ E]X !I¬M%X]1° 5y¨"X/®¯/^/)¤^/¨"¥n5 /"n5¡¨""¤>¡¡ -s/ / /1E°x";5X//¢
Y /^1X®y!^"X1%%}]NX"/15£I^ \5
Y /^1X®E 5)J£M!/9¬MS%S,) 5/
"°x5X®)J'¢/"1K1 -s/¡« ¨>qX®¯f /ª°x"¡ y ¢ X/ªx¤J¬ )E5y£>5y^ ª¨"X!©S^X
}°}"£4£ @¢/1« 1¢
X8
:/"5^¡©
©JJ£/"95^ ¨"X!©1"¢ WW /]J].©JJ£/]X®}s!M
int
unsigned int
/"5 ©
©5£/"5¨"X!©S^"¢v. /
©5£/ 5"^/£¡®X @nq / int
unsigned int
n5¡¨>J££¡ %%J¢/¢ ¡ b §} ¡G/£"5¬ £^ /".¬ $ -s"¨SXW¬M1°}""v /;©JJ£/;J/X"NX®
2
int
J/¢
unsigned int
@A £¨"¡¨"X!©1^^X/;w^ b /1;¢/¡^"¨1X2n"w5£^!¨"¨")¬ )q./J£¡°x"N°}"£4£ ¢/1« /"¢I %X/^¢/1x®¯S)JA £ /¢ 1¨"£¯5qX/
int a = 3 u ;
int b = 4294967295 u;
§} ©JJ£/bX® ¤ ^/¨" /©J£¡ 92^ J/X9X®ª /M
.¥)®ª°}bJ^^/]
/ !X@¬ ¡}a" 3®X 5¬MP©¤ /N©5£/X® ¡x¡A\£¡"]"!5Xb¢ int
S«\/"¢J¨"¨"^¢ ¡ /
b
x{5 ¢ 5^¢ ¤)/¨"^ £¡SJ£
xX)^¢/ /J/XX®
4294967295
int
E
$
Ex
2.2.8 Binary representation
0^ ]¡
b
Y¬ ¡}1/"^1!5^XI¤°}J£ >J¢)]/P°$ 5} /M
int
¨"P©1x /©JJ£/"
−2b−1 , . . . , 2b−1 − 1,
° /£¡
¨"P©1
unsigned int
0, . . . , 2b − 1.
@ ^ ¡9/¬ ^1¨1XI¤~°}À°xJ'D5W¨"£¡X^19£7qb /P° /"^n©5£/"95n1/"^1!"¢
7]"]^¤E/^¡ v /
"©J¡£¯5¬ £.¬ ¡1 §} ¡°G££¥J£^v^ /"¢H]^]£X !;X^X]]X®} /
n5S¯J£K¡g /N ^1©X/bx^)¬ ^"¨1¡X
§x /n4>YE0>p z|>TKIC18XX®\q)J£M/¬M1
x^ ^/
n
n=
∞
X
bi 2 i ,
i=0
° /1^ /
5 /(!/"£¡n¢/11^]/"¢g¨1.¨""'G®X
bi
/" ¬M"/9/Xe'11)ª¦/S)JA £¤
{0, 1}
¤°¡ ÀX/£¡]« /¡"£¡AnJ!nX®
13 = 1 ² 20 + 0 ² 21 + 1 ² 22 + 1 ² 23 .
§} n^ /"/¨"nX®x^
¡ 7S©1^À¢/1¨>5££"¢ /A¬ 5^ ^1/"^"'5¡X7X® w§} /
n
¬ 5^]S ^"^"'5XbXi®
¤)®¯Gz/JA £
13 1101
§} /¡¢ 1!¡
Conversion decimal → binary.
n =
∞
X
bi 2 i = b 0 +
i=0
∞
X
bi 2 i = b 0 +
i=1
∞
X
bi+1 2i+1 = b0 + 2
i=0
∞
X
bi+1 2i
|i=0 {z
=:n
}
/P©¢/"bDA £nJ£X / w¨"XA )] /n¬\¡\q^ 1/""!qXHX®vX¡©"¢ 1¨"nJ£
/¬M1
§x /D£>JrgX/¡« ¨>J!n¨1.¨""'
X® /D¬ 5^HS\J/^XX®
n
b0
n
]!¢ §x / /1 ¨".¨""'
¤
¤¨>Jn^)¬ ^!/"!£ A¬MS^J¨S"¢n¬n5/ £¡/ /
n
bi i 1
J]12¨z //( ! N
)/2
¦)S/JA £J¤f®¯n = (n − b°}0]
XS
]¢
5 ¢
)w
n = 14
b0 = 14
2 = 0
n = (14 − 0)/2 = 7
¨"X'/°G¡ J/¢ÀX1
]¢
J/¢
¦)
°}NX1
n=7
b1 = 7
2=1
]¢
J/¢
° /¨ g£>"©n"G=/}(7°−
¡^ 1)/2 = 3
n@_=^/3]n5^¤
b2 = 3
= (3 − 1)/2 = 1
n = b3 = 1
/N¬\¡\q^]21/="1"!qn
X_
X®
14
b3 b2 b1 b0 = 1110
§y2¨"X'©1^.WX¡©" ¬ 5Ã/9¬K1
'D¢ 1¨"nJ£
b k . . . b0
1/1^"!5XI¤°}¨>JWX/¨"JJg /¢/"!^¡n®X q¬Mq©J
Conversion binary → decimal.
k
X
i=0
i
bi 2 = b 0 + 2
k−1
X
i=0
bi+1 2i = . . . = b0 + 2(b1 + 2(b2 + 2( ²>²>² + 2bk ) . . . ))
¦ S/5A\£¡¤ ^A¨"X!©S^ /¬ 5^g/¬M1
)
¡!A¢/"¨1nJ£M1/
b4 b3 b2 b1 b0 = 10100
^"'5¡X ¤°}¨"XA )
(((b4 ² 2 + b3 ) ² 2 + b2 ) ² 2 + b1 ) ² 2 + b0 = (((1 ² 2 + 0) ² 2 + 1) ² 2 + 0) ² 2 + 0 = 20.
Representing unsigned int values.
n
/¨"J!
unsigned int
©J£¡
{0, . . . , 2b − 1}
J¬\¡\q^;1/1^"!5X9X®+£1 ^ bS)J¨1£
Y« ££/).°G¡ £>5¢ ¡ '11X%S¤ /E¬ 5^
b
1/1^"!5XÃg¨>J/X/¨>J£ª®¯n5;®¯;/
/^/_ /
"©JJ£¯5¬ £¬ ¡" 1 . /
n
b
©JJ£/J/XN¡^"£¡®:¤ /%JXN®¯n5}%/xS £¡¨"¡£¡b/"^¨1^¡¬M"¢À¬] /o5 ¢ 5^¢ ¤
¬ ) 5^¢ £ ÀJ!! //b"£¡^nq"}^"/^¡g/J¨1^¨"2
0} /15 b
©J£¡ 1"¤
2 unsigned int
J/¢g^ J]N! ¬M1}X® @¬ ¡}\5^^1/"¤)>J¨ \51g"/¨"¢/"xX/©JJ£/¦)
¤ /
b
b=3
£!xJx®¯X££P°"
n
0
1
2
3
4
5
6
7
1/1^"!5X
000
001
010
011
100
101
110
111
0 ¨"X]]X.°x"nX®M1/"^1!/
©JJ£/"%/^/ /J]
¬ ¡^
b
X 15®¯X£¡£q°G"@®^ ©JJ£/
¡/X8:/"q¡©¤+°}^int
/¬ 5_1/""!qXD
X®
n
n
¡"£® /¬M1x®X
Representing int values.
{0, . . . , 2b−1 − 1}.
§} \q°x"n°}/^J££M / @¬ ¡}\5^^1/x^ \qr5^x°¡^
b
0
@®x^ A©JJ£/
/"5¡©J¤E°}]] /A¬ 5^21/"^1!5^X X®
¤ª_!/9¬MS
n
n + 2b
®X
{2b−1 , . . . , 2b − 1}.
§ ¡f1£¢/y / ]^/ @¬ ¡f\51/"¤J^ ¥X 1E 5E5^f°G¡ E¦/
}
¤ /¥1^/£¡/
b
1
b=3
1/1^"!5X/5
Â
E
$
Ex
n
−4
−3
−2
−1
0
1
2
3
S ^"^"'5X
100
101
110
111
000
001
010
011
§x /¡¨>J££1¢v^ ],@LN8E
Cv=S8X<bT (U"<w1I,1/1^"!5XI@D^ ¡G1/""!qXI¤IJ¢/¢//
°}
©5£/"
J/¢
©12"J A £¡_5¢ ¢D /1/"^1!5^X/NJ¨"¨"¢//]n /
int
n
n
/^ J£)/£"ªX®\¬ 5^9/¬M1ªJ¢/¢/¡XI¤X5 ¢.X/x^ xP©1 q°Z¬ ¡@®+J! %S~¦)¥S)JA £¤
.J¢/¢
5 ¢
g¨>J^X®
¤°}¨"XA )
−2
+
−1
b=3
110
111
1101
@ X//W /g£¡"®]XP©1 P° ¬ ¡"¤ /X¡©1
¤ª /n1/"^1!5^XX®x /À1^/£¡
101
W°} ¨1XA\£¡"]"!"§} /G°}^^/¨"; /;¬ 5^g/¬M1¬K" //¢_ /"/¨"¢//]X® −3
n
"¡^ S
J/¢
¤K /;" £ N
b §} /"¤K°G 1D°}9J¢/¢v /;¬\¡\q^W/¬M1G®¯
n
] / n¡X !]X¬ ¡"
¨"X//n
"'% n + 2 ]¢//£ b J/¢n^ S"®¯J1"%°¡ n+n
2
n+n
b
G^/^ x°} ¥¨1XA\£¡"]"!^1/"^"'5¡XA°}¨>J]/P°¬MS^1¥ /¢/1rJ/¢A° 5ª 5 ©JJ£/
X1¨1X!©1^^"¢D^As!M
G§x /5 ¢ 5^¢
M"/G°G /"D./"5¡©
M1¨"¡« "% 5%®¯} /"¤ int
J ¬Mn
N/¨11]"!1¢n¬! b .¥)}unsigned
//¢/1} /int
s°} }¨"XA £"]"'>¤
/N/"5¡©
©5£/ n J/¢À^ 1^/£¡/;MX^ ¡© 2
©JJ£/
"© /
int
n
unsigned int
n + 2b
J]%S ^"^"'5X
§} /]>J/E 5 /x¨1X!©1X] /^"£¡9¨"X/¨"1/ J£@¤5 ¢. J¨1^\5£
¨"XA )5¡Xn5"}\£J¨"
§x /x rJ/¢ 5¢n¢/"}/ /"^¨S¡¬M /N/^X®I /s°} %¨"XA £"]"'>¤X¬ /¥ /N^ £¡
®¯¨"X!©1^^XW®X
x¨"£>q£¡n]¡©J51¢À¬!g >
int
unsigned int
2.2.9 Integral types
§ SGªN/9¬K1X®+ /1¥®¯ /¢ J]"'J£!M"ª^1/1^"!¥^X/"¢]5 ¢. /^¡X 1¢A!^"X1"¤
}
^" /±1J£¡"¨1XI~§} /"^GK" n"9¢ K1¥®X
J/¢
°G¡ b^"M"¨S
v /"¡©JJ£/]J/X5
0£¡£ /"^ns!M"b5n¨>J£¡£"¢ YI,^int
r01'(N,@pqTMunsigned
"C"¤%J/¢®¯int
9>5¨z X® /"W¤
J££I /M15D§E5¬ £AÁ EJX>
&!%Gq"©5£¯5¬ £¤/° /;5]5¡^""¤//"¨""¢/"/¨"1"¤
J^¨"¯q¡© "J/¢®¯//¨1X J£ " @)v /n¬©¡X £¡]¡¢ ¡¨151¢7¬! /À1M"¨1^¡©
©JJ£/J/X" %S
ÂÁ
2.2.10 Details
§} /1g5ÀJ£^v/X8:¢/"¨"¡nJ£¥£ 1J£¡;X®x!M
0 8=",'(£¡SJ£ 5^° int
/¢/X ¤ ®¯X££P°}"¢¬!_9^ ! 1 ¨1X®E¢/X¡}®X
}§} ©5£/x /¨SJ£I/¬M1
1/1^"!^"0¢ ¬w^ b^ ! 1 ¨1]X® ¢/X¡®¯X££P°/] /0A£"J7¢// n¦)S)JA £¤M /A£ 1J£
0
J}©J£¡
1
0
011
+1² 8
.z|/)-/S="Y<D9'=
(£¡1S² 8J£%
5^x°¡ ¤ ®¯X£¡£q°}1¢À¬!_^ ! 1 ¨1X®E¢/X¡^%®X
J/¢
0
£11N®X
§x /©5£/ /0x
9 /S)J¢/"¨"n5£f/¬M1^1/"^"'"¢ ¬!W /9
9/"/¨"
X®}¢/X¡J/¢ A £S^1F®¯X££P°/ /]£"J¢//
v¦/z/JA £¤y /]£¡1J£
\5;©J£¡
0x
0x1F
31 = 1 ² 161 + 15 ² 160
Literals.
©"¿J S/"^^¡X 5]¨1X nX® ^
Logically parenthesizing a general expression.
/"/¨"X®M15^J/¢WMSJ/¢/"¤\°}°xJ!A¢/"¢//¨"; /£XX¡¨>J£M\5"' /"^""¦)>J¨ M15%] /^ /"/¨"¤°} P°¿ %5 s¤!¡¥/1¨""¢/"/¨" : ! ¬M1¥¬M1°}""2ÁJ/¢wÁ ¤
^"§Eq¬\£¡;ÁX EJX&;
! ®¯% /N5¡^ ]S¨}M1qS% ¤J/¢n¡%J^¨"5¡©¡ @ £¡"®%%X 'NS%
@v¨>J^X®~b 5_M15>¤/ /J^¨"¯q¡© sÀK"¨"¡« "XW°G ¡¨z W¢/;X®E /M1q¡^
M1J/¢}b¬K®¯X//¢I
1 S} }¨"X/^¡¢ S% /®¯X££P°/5¬ J¨1}S)JA £^91A\ J('"G 5%°G 5 °}¢/b /1^
¨"XA £1^"£¡]X"/1J£ J/¢_/x^"^¡¨1"¢^A5 /]1¨z/"^X/"
S ^"^^X
5 s
/"¨"1¢ 1 ¨1
J^¨"¯q¡© s
x1
1
2
4
r
x2
2
2
13
l
x3
3
4
2
13
l
1
16
r
x4
G1¡ /q° /\5"' /"^"5¬ J/"¢ ®¯N>J¨ DM15^>¤\°};¡¢ 1!®¡(*z)-YK
M1J/¢ ¤ ¢/1« /"¢vJ^ £"® J/¢_¢/;M15 ¢®¯£"®J^^!¨"¯5 ©MS51¤+J/¢vJx /
X ' J/¢v^¢/M15 ¢D /1^°G^§x /£>5¢ ¡ .M1J/¢D®¯N ¡ ¨1£/¢ 11©1^! //A
/"£1©JJ';^¢/¬M1°}"" J/¢w /b/S;MS5X®G(U8XLN"0v i ^"¨""¢/"/¨".^ \5 A@
/1°}¢/"¤\S©1^^ ¡ ._¬M1i °}""W /"°}AM15 q¬ ¬K"¢ b¬g / X/iX1 M15>
9 /£¡"®
@_X)xS/JA £J¤ /£¡>J¢//M1J/¢gX®f ¡x /N^)¬ ^ ! 1 ¨1
x2
x3
3
2
X®f ¤/^/¨"N / zK15xX®y£q°}S/"¨1"¢/"/¨" /£¡"®GX®f }
3 /¨>J^X®E¬ 5^gM15"¤ °}J£^b«\/¢W /ACJS=18XE-)0>pwM13J/¢I¤\^1 X A /
@W
/1%¢/X®M /£>J¢//K1J/¢I§x /^1¨"X/¢\q^]M1J/¢À®¯} /¨"£¡ ¢/"ª1©1^! //;
/"£S©J'¢/¬K1°}""w J/¢2 //SM15X®G,:&KgC5<wi v8X0g(*8XLN"0W/1¨""¢/"/¨"
JÀ ª§} /X/£¡A¢ K11 ¨1Ni ^^ N£"J¢//M1J/¢À/£ 5} /^"¨1X ¢ 5gK1J/¢
J£¡^>J¢)ni"/¢/° /"_JMS5X®y /9C5<w/"¨1"¢/"/¨"5/M>q"
0¨"¨"^¢ ¡ /%¢/1« /¡XI¤ /N^"¨"X/¢ 5^nMSJ/¢gX®y ¡x
gX)}S)JA £
¦f J££ ¤I°}9 /;À\J¡X® \51! /"^15X//¢w /./¬ ^ /3 "/¨"A¨"4x4"MX/¢//g^ /
£>5¢ ¡ MSJ/¢I¤ /M15x¡^1£®:¤/J/¢ /^"¨"X/¢ 5^ÀM1J/5
¢ @®yJ! %S
G1¡ /5¬ £;®¯NX)NS)JA £;5JI¤\1 J/¨"1¢D°G¡ _ /^)¬ ^ ! 1 ¨1"X®J£¡£f®¯X)
M15} 55N /À+q"!^ 1^"5¨"¨"¢//b /N/£"2
-s rG¢/"^¨S¡¬M"¢I
Â!
E
$
Ex
S ^"^^X
5 s
/"¨"1¢ 1 ¨1
J^¨"¯q¡© s
1
2
3
x1
x2
1
2
2
4
r
2
13
l
( x1
x3
1
x2
( x2
( x2
2
2
2
3
4
2
13
l
1
16
r
x3
x3 )
x3
3
3
(
4
x4
4
x4 )
4
x4 )
x4 )
4
P° °}D^A £¡\)ÀXX1 /1J££\51! /"^1g 5À°}2 "©w¬/5/"¢I¤G5/7 /"
£ ¡ £¨" "!^.J¨1¨"X/!>@_X)S/JA £°}X1x /S/"^^¡X
9
(( x2
1
2
x3 )
3
(
4 x4 ))).
.ª9^X]xnJX¨¤J^ ¡~°}"¢]X)>¤'J/¢.°} "©N®¯/££¡\51! /"^ '""¢AS/"^^¡X Y /xX/^1
\J¡X®ª\5^"! /""¨>5w¬M9¢/^ K"¢ J5I¤ X®ª¨"X)^kz% ¥
. )/9^ \q°}9¨>J//SM1¨1
( x1
^/¨ W/¨"N¬M" "©xgX"/1J£@ª%X/^¢/1x /®¯X££¡q°G/9z/JA £
S ^"^^X
5 s
/"¨"1¢ 1 ¨1
J^¨"¯q¡© s
1
x1
1
x2
2
13
r
( x1
x2
1
( x1
x2
2
1
§ N" £ /9\5^"! /"("' "¢_z/"^XW
}
(( x1
1
x2
2
2
x3
2
13
l
2
2
x3 )
x3 )
x3 )),
° /¨ 7¢/"/M"¨1® /n1©5£ 5X ¢/1" )Z 5¨"X]";DX)"^¨1 À; 5bx
X/£¡nJ£¡£q°G S ^"^^X/x®¯}° /¨ À^ NnJX¡¨G°}^}X) §} /1©X/ ¬\J¢¨>5^¡%AMXo
^¡¬ £J¤)®¯GS)JA £¤)^¡ ¨1J£¡£K¬\¡\q^ÀM15^}X®f /^J] ^"¨""¢/"/¨"5£^9 \"© /5]
J^¨"¯q¡© s
© J£¡ 1N5¨"X'©1^"¢D
©JJ£/""¤J/¢¿©¡¨"w©1^ §x /wn5 ^/ Y° 5ÀH¢/°G¡ ¿/X8@^1/"^"'unsigned
5¬ £D©J£¡ int
1%
J£b!¨"¨")G¢/)/91©JJ£ 5XÀX®5^¡ /]1¨GS/"^X/¡!©X£¡©/9X/£¡Ã8X9X®f /NM"1
§} J/¢\q¢ ¨"X!J/gX/w^ £¡w®¯W /" ¦)v5££//^X/"¢ ¡!"J£!M""¤N /
5 /]1¨M15^°}^v]¢//£ b ¤IX¡©" @¬ ¡^1/"^"'5¡X §x /]"J/ 5 /
©JJ£/}X®KJ'95¡ /]1^¨¥MS5X° 2 M1J/b¢/~X®\K
°}"££ :¢/1« /"¢IEY
unsigned int
¢/"G 1¨""^q£¡gX¡© /;nq /"n5¨"J££¡b¨"^1¨1©5£/¤\¬ ) /;//( /©J£¡ _ /
J/X 5 ¨"X//"'%¡%]¢//£ b ¦)}S/5A\£¡¤!¡® ©5^¯5¬ £X®
unsigned int
a
M
°G¡ À/X F'"1b©J£¡ J¤ /"
J2}©J£¡ b
unsigned int
-a
2 −a
À^/¨z D/£S)¡N®¯N /9X/"¢w'"5£fM"1¤ ]"J//. 5NP©1I
GJ/¢w//¢/1 q°
5¢/>J£¡}°G¡ _q /¢/^¨1SXX® /¨1XA\¡£1>
Unsigned arithmetic.
)w \"©¢/^¨1 ^"¢w /P°
int
 ) ¥ \"©¥5X/"¢95¬MP©ª 5f¡yf/^ J££ ¨1£>5y° /¨ ;M15y¨"¨")
W5_S/1^^XI¤ 1©"_ /X/X _^X]X®f /" ^ 5 /"¡}"IB¥
. )^/¨"^ ¨ \qJ¨1S
Sequences of + and -.
J/¢
5^; />"©£¡gP©1/^"¢2vM15^G"/"¤+M"¨"J£y/£1N5;/""¢/"¢vA1^X£¡©; /
]>J//-X%X®y^/"/¨"1X® 1¤ X® 1
¦)S)JA £¤/X/£¡À®X + 5^¡"1¤- ^"¨""¢/"/¨""N5 ¢v5^^¨1¯5¡©¡1%¡G¡G/G¨1£>5G P°$
'1^/1~ /}S ^"^^X/
~§x /%«/S/1^^XA¨1X £¡¢.]>J
¤X¬ /¡
a+++b ---a
(a++)+b
¨"X/£¢vJ°}1££f]>5
]£5£¡¤^ "¨"X/¢2z/"^Xv¨"X/£¢v"¡ /1
a+(++b)
a+(+(+b)
]>J
¤
§x /-(--a)
$r--(-a)
J/¢ 5¢.1-(-(-a)
^X£¡©"¥^ ¡ª¢/£1]n¬b¢/1« ¡ N 5¥^ /"/¨"¨"X/^¡/X/£¡
X® "¤MNX/£¡WX® "¤M J^n¬K9^X/K"¢2¡!A\J¡^®X £"®]¡X !>¤+°G¡ WMX^¡¬ £¡_X/
+
"n
5//
-5b /"/¢I §} /"¤
]>J/
¤ J/¢
]>5
+
a+++b
À 5b®¯]S/5A\£¡n^ S/"^X
L8X[+(U- (a++)+b
n5g"/^_° /---a
"H\51! /"^--(-a)
'""¢ J
¤¬ /95¨"¨"¢//WW /]/£>
-s ra++b
"5¬ £¡^ /"¢I¤ /9_°}"£4£ @®¯]"¢ S ^"^^XI¤
a+(+b)
^/¨"gv 5ÃM15^
¨"J/ 9 "©MSJ/¢/9X ¬M ¢/"" §x /ÀS/"^X
° A¡ª£XX¨>5£ \51! /"^++
'>5X
'©5£¢.®¯x5 ^ S¥>5^X /M15 ¢]X---a
®K^
--(-a)
/ @/¨1"]"'xb/}¬MJ_£¡©JJ£/¤¬ )x /S/"^^¡X
Jg^©JJ£/
+
-a
x$¨"X'J/ª! ¬M1ªX®K®¯//¢ J]"!J£IC1BXz-ÀJ/¢[\IC1BXz-n'
J£K!M""ª§x /^X/"¢gX 1q
¤
¤
J/¢
ª§} NJ8
signed char short int int
long int
¢ 5¢WK"¨"¡« "G^ \q>J¨ vX®E /" G1/1^"!^"¢D¬!W5G£>JrJn5!n¬ ¡5G //1©X/
X/}9^ %£¡>f§x /}/¬M1~X®/¬\ /^"¢b^N^1/"^"'
©5£/"~¢ SM"/¢/X /% £¯5®¯W
int
§} N¨""MX/¢//^ !/"/¨"X® //^X/"¢ns!M"%
¤
¤
unsigned char unsigned short int
J/¢
unsigned int
§x /"M".X¡©unsigned
¨"XA £¡1long
/_int
®"1¢ X X® K1^/ !^"X19°¡ £¯5X1b]^n5££1
©JJ£/5 X1¥ J
J/¢
nJ££1~©JJ£/J/X"%5G "®¯/£\° /"n]"]
¨"X/^/A/XWA¨"int
X/¨"SI¤yunsigned
5 ¢2£¯5XSint
X/"q95^^5¨1¡©°G /"wP©1I J/¢2 /¢/1 P° N¨ ¨")"N§} /^X/¡« ¨>J/¨"X®~^ 1^;M" B° /¨ D5J£¡^>J¢)/""!NW /9 ^XJ]]/
£¯J/X JXk %~ J}®UJ¢/"¢g¡_xª§x />JXg ^ \q °}N¨>J /¡>5^£¡.A £"]"'ªX)xP°
J¡£I :n5¢ !^"J£EK"¡ x¤y¡®ª°}9 1"¢w /"W@ /N9/¨ 2]¨"/¬M1I ^X]D%X/^ ! 1!£¡¤~nJ'7x ¨1XA\¡£1^A £¡Dn5
5 ¢
J
long int
J£J%®¯
¤ J/¢g /J]N /X£¢/®¯x /¨1^"KX ¢//b /^short
¡X 1¢gint
M1"
Other integral types.
int
@ /¨1^"]"!¥J/¢A¢/"¨1^"]"!¥M1qªJª°}"£¡£+J¥J^^¡X ]"'bK15^9¨1X r^/¨1bS/"^X/b°G¡ JH +"¨1> /¨z M15^b "©n2¬MÀ/^"¢
° ¨>q®¯°}9"J^X/"
§x /n¬©X/>5^X ¡; 5 :J;°}n5£¡>J¢)w£>5/"¢7 /]"/¢7X® "¨SX !Á¡kÁ % /
1©JJ£ 5¡X ¢/1.®¯b^ g^)¬ :S ^"^^X/bX®vX¡©"HS/"^^¡X b/9M1¨"¡« "¢HX"8 15£@}X/^!/"!£ ¤\©JJ£/;J/¢v +"¨1n"g¢ SM"/¢WXW /;1©JJ£ 5X¢/1>G}X/^¢/1 /
S ^"^^X
Order of effects and sequence points
++ i + i
° /1^°}^) KX^ 5 9©J55¬ £NX®fM
%@® x/¡¯J£¡£¡ ¤ "¤) /"_ /N©J£¡
i
int
5
X®K /¨"XAKX^¡xS/1^^Xnn".¡A J¨1¨1¬M
i §} "^/£¡¥
¢ S M"/¢/%XA° /1 /1
11
12
ÂV
E
$
Ex
9/9^ n +"¨1.X®x /À£"®9M1J/¢
X®} /5¢ ¢/¡^Xà ^¨""^"¢¬M1®¯À^ ]¡X !
++i
M1J/¢
x1©JJ£ 5"¢Iª§x /©J£¡ X®f /S/1^^X
} /11®¯;//M"¨" «\1¢¬
i
++i + i
/{J/¢ 5¢I
§fS £¯J /¥^"¨1X ¢ @J/¢b/¨ ;£"f¬©X/"¤5¬ )y®¯^/ 5"£¡J£¡^G9/¨z £"^ "£1©JJ'N%
>5^XI¤£1%/}¨"X/^¢/1¥ /®¯X££P°/;//¨1"!%£¡¡ S/"^Xn 5%'©X£¡©"}©J5¯q¬\£¡
X®ys!M
i
int
i = ++ i + 1
§ ¡S ^"^^X J°}_ K1¨1 ^ b/¨1"]1!X® J/¢w /A5^^X/]"' .¥"¨>J/^
}
/9J^^¡X ]1!¨"JwX/£¡W 5/M1w
J®^1N /9K1J/¢/i >©¬M1"w1©JJ£ 5^"¢I¤M¡i^"1]N^ \q
/¢/1}X®M /G°} +"¨1%¡ ¨"£>q //¨1"]1! ¨1X]"ª¬M1®¯ /J^X/]"!>¤!J/¢] /
P©1J££M©JJ£/J/¢_ K1¨15^°}"£¡£4:¢/1« /"¢I
GP°}1©1>¤ /¡/G/¤\®¯>JX x 5 \"©^.¢/.° X)//¢/1£¡/b¨1XA\)S
]¢/"£Y¤P^ ©X "/nJ/;q¨ "¨1)JE¦X ^ ¨"XA )1 KX! X®©1°;¤q /¥1©JJ£ 5^X
X®y^ ^)¬ :S ^"^^X
¨"X/^xX®f /®¯X££P°/^1 "
++i
Á%n /N©J£¡ X®
!B0¢/¢
1
i
®X
^ nJÀ]"]^A!9X/X® /;
$1X1^ 9 /}©J£¡ À /1X1 )2¡ /N"X^1G¨1X!"'G¬\J¨n.n5g]1]^¤5} /J¢/¢)"^X®
i
£>5£ ¤ /«/rG°}]1 N5^;/"¨""^^5^_]¬/5 /©JJ£/;X® /;S/"^^¡X
%
J/¢I¤
++i
/"/¨"¤5 \"©~}¬M ^¨""^"¢;¬M"®¯^ /J^X/]"!>].¥) /~^ ¢r1¢/1 / /"¨""5£
"©9¬M¨"XA £1"¢n¬M"®¯^ /J^^¡X ]1!>~@g¢/1^AJ££¡q° /¨"XA £¡1 b ^]('"
/2J/^®¯1WX®¢\qìK1°}"" "X^1WJ/¢¿n5 ]"] Y° /¨ ¿¡g©1^ b/¨ £¯5®¯^ ¢/1K"/¢ 1!N %S¤ /¢/1 J/¬M1" M"¨1¡« "¢IA@ ®UJ¨S>¤f¡//)>JX\q¬\£¡
2J^^/]A 5^ ]^ A¨]¬M1°}"1 "X¡19J/¢ nJ ]"]^wJ/( '1"¢ ¨ ^ \q
^1©SJ£ ¡"]x5N^5 ®¯1"¢v5xX/¨"
! ¡¨£¡ÀJ®SJ/ /1>¤)/^¡ 9^V @¨>J££1¢ 4>[+0PC1,:C"
) KX^.5¬M1®¯9^ \q
/¡¯5££¡g \5N©JJ£/ @®ª /bJ^^¡X ]1!NM1^®¯]"¢ 5®1
/b^"XS;¨"X'"!°¡^^i"w¬\J¨2^_nJ2]"5]^¤
^S
.¥/®
i = ++i + 1
i
/nJ^X/]"! \q K"/g4"@c58X0">¤~ /]£¯5S;^J/^®¯SX®}^ A^"XS;©5£/
q©17¢/"; /
6
/1©X/x©JJ£/X® ¤ J/¢
¡^S
¡ r>J¢I
7
i
6
§x /xNJ/¢\q¢v¢ S«\/"NÀCJ "[f"=STK8XYI,A¬M;9MX'¢/)/b^ 1©5£ 5X_ /"/¨".X®%J S ^"^^X75° /¨ X 5J'""¢ ^ \q;J£¡£ª +"¨1X®¥/1©¡X £¡wS©J£¡\q"¢
@^)¬ %rS/"^^¡X "©]¬M"" ¨>5^¡"¢ X)>wY°xJ/¬\5¬ £¡w /nS"/¨"nX®x /X /£¡ /4 ]( '"1¢]H¨"XA £1^E 5¥£¡1ª^ J/¢ 5¢.^"®J.®X ¢/"¨"£5/N /J^X/]"!J¥
^ !/"/¨"MX'> @W^ S°}¢/"¤/° /"g /;J^X/]"!}
5"\£J¨" /S©J£¡\qX
i
¤ ¥ª/ M1¨"¡« "¢A° /1^ S¥ / +"¨1%X®K^ x/1©¡X £¡.S©J£¡\q"¢]/¨11]"!
i = ++i + 1
M15A Jb¬M""Z¨>5^^"¢ X)]]/>@ ¨"X!^J>¤% /_^1]¨"X£X7 5.S] 5"bJ
S ^"^^X51]"!xJ£¡°x"x^ ! 1 ¨1MX'>
§x /1^"®¯¤~°}]X/£¡ "©nJ ¡^^/A°¡^ 7z/"^X/; 5 >©]]^. JÃX/À K"¨1"
G"/¨"J¤®¥Xà ^"®¯1/_°}^ q¬MX); +"¨1¢/1>¤f"/^)A 5;"J¨ S/"^^¡XÃ^ \q
Xg°¡GX"/151G5}]Xr%X/ K"¨1" E/"^X/%°¡ À]G^ \5gX/N K1¨1x¨>Jnq
ÂXÂ
^"/^J¤ /X X I¤)5 ¢n /1nqNK¤)J}£X/J%X]^! 1 ¨1MX¡! 1\55 / +"¨1xJ/¢
) /" 'A°}"££ :¢/1« /"¢g^¢ S>¥§} /x ]nq('""¢nÀ /®¯X£¡£q°G//£
.¥1°}"1_s°}b^ ! 1 ¨1MX'1¤) /1©JJ£ 5XgX®EJS/"^X
n"Single
n]Modification
¢/®A^ N©JJ£/Rule:
X®fJ_¬e-s"¨1X®f®¯//¢\5]"!5£Ks!M5G]XrX/¨"J
0¿S/"^^¡X¿£¡
^ \qÀ©X£¯5^"A /n/£vg¨1X ¢/1"¢^"nJ'¨>J£¡£¡
++i + 1
££¡"J£MJ/¢_£¡>J¢/%.//¢/i1« = 1¢
¬M" "©"
@®xXÃM1^¨""¡©A /z/JA £.J5^ «\¨1¯J£@¤ /1n ].\q)J£©X£¯5^X X®% /
^/X£N]!¢ «\¨1¯5Xb/£ ®
¡G;©J5¯5¬ £NX®f!M
¤/¡x]X !}"" 5
nextvalue
int
nextvalue = 5 * nextvalue + 3
¨"X/£¢g]N¨"XA\J¨1£¡.¬M°¡^^"_J
( nextvalue *= 5) += 3
§ ¡°G££)¨"XA £
}
¥JA£¡©JJ£/¤^°}¨>5nJ^^X9 >!££Y¤ /£¯q^1
S ^"^^X¡!©JJ £(nextvalue
¢À^/¨"¡x]*=
¢/¡« 5)
"
°¡¨"
nextvalue
0%ª /MX¡!>¤JA5^"'¡©%>5¢ S¥^ /X/£¢9°}X ¢/1ª /q°JbS/1^^X.^ \qª¡!©X£¡©"^1©&
15£+X)^ ) M15ª¨"XA £"~°¡^ . //
/X£
¢/¡« ¨>5¡X/£J~@ ¢/"1¢ ¤JnS/1^^X
3
£¡
std :: cout < < a < < " ^8 = " < < b * b < < " .\ n"
J^S©1J£E K"¨1^NJ££ X®E° /¨ W]¢/®n /;£¡©JJ£/
G§x /x°}^G^/¨" /!M
std::cout
X®
Y° /¨ A°}x°££// ¢/¨"/^ /1k%G8,%®¯//¢\5]"!5£\5 ¢I¤! 1 ¨1¤ /¡ X£¡
std::cout
¢/¡« ¨>qX
/£¢/"x/5/ £¡nÀ /x¨>J^
3
2.2.11 Goals
0}} /}MX'>¤X_ X/£¢w""
Dispositional.
ÁkA
% /P°^ N )"0G /]1¨ ©JJ£ 5X /£" !%]/ ¢/1^J/¢ /¨"X/¨"1/X®fM15}/"¨""¢/"/¨";J/¢WJ^^!¨"¯5^¡©¡ % /P°^ 5 /]1¨K15^®¯x /!M"
5 ¢
A
int
unsigned int
&%A¬M"°x5 5}¨"XA )5^X/ª'©X£¡©¡ ;^ !M"
J/¢
n>A¢ 1£¡©1
unsigned int
/¨"^"¨S1^/£¡"¤/¢//9MX^^ ¬\£¡P©1I J/¢_//¢/1 int
q°G"
@\5^¡¨"/£¯5>¤'XW^ /X £¡¢g¬M5¬ £1>
Operational.
9Ák]
% \5^"! /"('"DJ/¢
1©JJ£ 5^vÃX ©"¿5^¡ /]1¨gS/1^^X!©X£¡©/ M15 ¢/nX®
5 ¢
¤ /¬ 5^n5^¡ /]1¨xM15 ¤ ¤ ¤ ¤ ¤)J/¢n /
K"
int
/ 5^ unsigned
-
int
+- * / %
K!%n¨1X!©1^9X ©"¢/"¨"¡nJ£M/¬M1x!^9¬ 5^]^1/"^"'5¡XWJ/¢g©¨"N©1 Â
E
$
Ex
%n¢/1^¡©x^ ,@LN8E
Cb=S8X<bT (U"<w1I, 1/"^1!5^XAX®MNX¡©"A!/9¬MS¥ @¬ ¡1/1^"8
b
qXI¤®¯^X]
b /&%]°¡/XJ]}° /X^;X)^ )¢/11]¡ 1¢_¬W9«/"¢D/9¬K1X®~5^¡ /]1¨NST
/"^X/¡!©X£¡©/9£¡¡15£}J/¢_) )x©J55¬ £"}X®yK"
J/¢
int
unsigned int
Ân
% ¢/1^1]/¥ /%©JJ£/xJ/XxX® '"J£!M"~XAX¡©"bnJ¨ //@ /^//XJ S%
2.2.12 Exercises
0""I,:&K"C1¯!7,:&KncJ8(B(*8XL}BK z|PTI0""C"C18XICE-,:&K" "t'(3[y',^Ã,:&K1< C",^T 4>p
C",^TQ m &@Cx<wzIC,:&+',,@pPTM>CE-t!'([y>C;8c'(B( BI,^"0><wz-r',^0">CS[K(,:C,:&+',%01=18X<bTI[+,^S-[+0>BK_,:&Kg"t'(3[y',@r8XHC"&K8X[+(U-D4"TI0"8Xtr-/z-)Q
9Ák%
>l
4^l
=l
-2-4*3
10%6*8%3
6-3+4*5
->l
l
c5l
Exercise 8
5u+5*3u
31/4/2
-1-1u+1-(-1)
&r=>& 8c,:&K¥cJ8(Y(U8XL}YK=>&+01/=>,^"0C5 >[y"=1>CA0"8,%(*s'(|PTI0">C"CS8XIC1?xELx&p8X0W ,:&K28X>C,:&+',b01"?XBt_,:&K(*81=S'(TK0"1I,:&K>C1¯',@8XEQZh 8X01-/"0v,^8t8Xsh<g@C"(US)-BK
rl &YI,:C1?LNv&+tW01"<w8Xtz-H,:&KvCsTK/=1>CW,:&+',LNW[KCS[y'(Y(3pÃY=>(3[y-/cJ8X0D,:&K
C5'OÀ8c]4">,:,^10]0"S)-))4>Y(Y,@p Q l
9Ák%
4^l
=l
>l
c=a+7+--b
c=-a=b
c=a=-b
->l
l
c5l
a-a/b*b
b*=++a+b
a-a*+-b
"l
&Jl
l
7+a=b*2
a+3*--b+a++
b+++--a
§} 1^S)S¨"^1N^ /¡XDA^>J¢v /\5Jq\ vXv£XX¨"J££¡]\51! /"^ '"/]AX"/15£
S ^"^^Xg] /±NSJ£ª^"¨1^XI E)S¨"^ lJ£^ /¡" XÀ>J¢À /\5Jq\ nX
^ !/"/¨""X® J/¢
g^ ±1J¡£%^"¨1^XI
Exercise 9
+
-
8X02'(Y(%(Ur'(N|PTI0">C"CS8XICcS0"8X<
|/"0"="YCJ
?}TI0"8Xtr-/v C1,^T dz4>p!dC1,^T "t'(3[Kd
',@8XM?C1[!T)TK8C1YK ,:&+',YMY,@r'(Y(3p
&+'Cnt'([y ?
&+'Cgt'(3[f ?bE-Ã,:&Kgt'([y 8c
@C
[+E-/ %S-)Q
& r=>& 8c9,:&Kgz|PTI0">C1aC18XIC0">C1[+( ,5Yb[\ICrTMS=" z- 8X20.[\E-/ %S- 41>&+tr8X0c
9Ák%
Exercise 10
018XtA,:&+',fc58X0À'(B(
Exercise 11
(a
¢/¡©
b)
c=a
¢/¡©
0
E-
b, c > 0
?x,:&Kc58(Y(U8XL}YK2 >[ ',@8X &K8(¯-'C
(bc).
¾N8X<9TI[K,^À4>pw&+E-w4>YE0>pv0"TI01>CJ"I,',@r8XIC_8c.,:&Kc58(Y(U8XL}YKw-/S="Y<D'(M[\<_d
Exercise 12
4"10PC5Q
>l ÁPÂ
¢/¡©
a
4^l
Á !
=l
!
->l
Á !!
K!%
¾N8X<9TI[K,^À4>pw&+E-w-/1="B<2'(0"TI0""CJ"I,',@8XICW8c9,:&Kc58(Y(U8XLxBKw4>BE0>p2M[\<_d
4"10PC5Q
K!%
>l ÁXÁ )ÁXÁXÁ 4^l Á
)Á =l ÁXÁXÁ )Á )Á ->l Á )Á )Á )Á )Á
Exercise 13
 "C C1[\<BKw d4>@,01TI0">CJ1I,',@8XM?=18X<9TI[K,^],:&K4"YE0>p2,@L8E
C=18X<9T *( 1<w"I,
0"TI01>CJ"I,',@r8XIC8c9,:&Kc548(Y(U8XLxBK2-/S="Y<D'(M[+<241"0PC5Q
%
>l
4^l D =l ->l
l Exercise 14 0>@,^TI0"8SX01<
,:&+', =18XMt10P,:C,^1<bTM"0S',@[+0">CcS0"8X< -/sX0"1"C E'&)d
-/rX011>CW¾>(C1Y[+C5celsius.C
0""I&K1@,GBI,^8w
Q
m &K BM@,@s'(98X[+,¡TI[K,],:&+',;TI0"8X<bT ,:C ,:&K [+CJ"0Ã,^8$"I,^"0 ,:&KÃ,^"<9TM"01',@[\0"ÃY -/rX011>C
E'&0""I&K"Y,vC"&K8X[K(¯-{'(CJ8{=18XI,B £P°}1E- )/M1Z4"8X[+E-'CgcJ8X0 ,:&K¿'(B(*8XLNS-$BTI[K,:C5Q
m &K>CJ 418X[+E-'C2C"&K8X[K(¯-41H=>&K8CJ1 C1[f="& ,:&+',.8¿8Xt"0PdDE-[+E-/"0 8XLC7=S 8J=1="[\0 Y
,:&KC1[ 4PCJ "[f"I,=18X<9TI[K,',@r8XIC1?¥XBt"7,:&+',},:&K[KCJ"001>CrTMS=>,:Cb,:&KA418X[+E-'C5QuE8X[D<2pcJ8X0
,:&@Cbz| "0"=1@CJA'C"CS[+<w;,:&+',x,:&KYI,^r"0À-Bt@CS8X 0"8X[\E-'C;,^8XL01-'C!"018c58X0A'(Y(~8"TM"01E-'C cJ8X0gz|/<9T (*"?
,:&K1H0"8X[+E-'C9,:&K|//=>,G0""C1[K(,
,^8
Q
-5 / 2
−2.5
−2
m &K;TI0181X01< C"&K8X[+(U-Ã8X[+,¡TI[K,,:&Kv¨""¨1]0""C1[K(,Y -/rX011>C2¾N"( C1B[KCg'CÀ2<gU| z-D01'd
E,@8XE'(ªM[+<241"0w8cA,:&Kc58X0><
hr<wSMBK
lX?Lx&K"0"
Q 8X0
x y9
x + y/9
x, y |y| 8
z|/<9T (*1?
=18X[K(¯- 4"8X[K,¡TI[K,.C1Y<9T (p 'C
Q
'(CJ8 '(B(*8XL c58X0Hz|/<9T (* ,:&K
13 94
13 4/9 8X[K,¡TI[+,
hr<wSMBK
lQ
&%
Exercise 15
-1 -1/9
−1 − 1/9 = −10/9
0>@,^_]TI0"8101<
,:&+',0"S)-'C7hS-/S="Y<D'( l_M[+<241"0
c10"8X<
a 0
C]4"YE0>pv0"TI0""CJ"I,',@8XEQ ¥@(B(~['T
a
L}@,:&2(*z)-YKn'"0"8CbB =z'CJ.,:&KÀ4>YE0>pv0"rTI0">CJ"I,',@r8X &+'C(*>C1Cb,:&+ ,:&0114>Y,:C5Q /&%
C",E-)01-_Y TI[K,NE- 8X[+,¡TI[K,:C9,:threebin.C
&Kg£Jx )"W4>@,:CÀ8c
Exercise 16
2.2.13 Challenges
8CJT &[KCL'CÀ
"L}@C"&w<g@(3@,0>pv(US)-/"0]B ,:&K
"L}YC"&)d N
8X<2HL0_8cÀk)kXd
Exercise 17 c1,^"07,:&K 8X<DIC &+)- YMt!)-/S-&@C20>0>@CJ8X ,^8XL}M? ,:&K]c5"L CJ8(U-r"0PCHhS<28XK
Q
,:&K"< 8CJT &[+Crl7,:&+',b&+)-C1[\0>tYtz- ,:&K2OJ@(B(BKC 4>p ,:&K 8X<DIC -/S="r-/z- ,^8Z=18X<<g@,
C1[\="s-/J Q`[K, C58X<w>&K8XL}? 8CJrT &[KCE-W8XA8c&@C=18X<0S)-/>C;<2EX)z-À,^8nC1[+0>01"E-/"0,^8
,:&K N8X<2]cJ8X01=1>C;L}@,:&K8X[+ ,G4""BKgOJ@(B(*z-Dh 8CJT &[KC(U',^10n411=z<w] 8X<D ="@,@!"HE
LN>(Y(dO58XLx &YC",^8X0>rlQ
m &YC_&@C1,^8X0>=S'(N"t1I,b@C,:&K 41/=>O50"8X[+E-gcJ8X0v,:&K5X^S\ !/ ~¬ £1 ,:&+',]8 "0PCw
h<gp,:&r=S'( lÃz|PT (¯E',@8X )4"8X[+,&K8XL
8CrTM>&[+C.L'C)4P(Un,^8Ãt8Xr-2C1[+r="r-/5Q ."0"]YC],:&K
TI0"84P(U"<DQ
l 0"ÃC1,E-YK Y $=1Y0"=>(U"?vE-"t"0>p d,:&HTM"0Pd
i TM18"T (UZhM[+<D4""01S1, ..., 40
CJ8X @C OJ@(B(*z- [+I,@Y(A8 8X0,
C1[+0>tJYt>CqQ 8X0
?Ã,:&KOJ@(B(BK 8X0S-/"0¿@C k,:&K"01@cJ8X0"
k = 3
Q
&K"0"7Y ,:&K ="Y0"="(* -/8>C 8"CrTM>&[+C &+tÃ,^87TK8C1@,@r8X&B<_CJ"( c
2, 5, 8, ..., 38, 0, 4, ... Y8X01-/"0],^8D4".,:&KA(¯'C",GC1[\0>tYt8X0_hLx&K8_,:&K1¿84>tr8 C1[K(3pw-/8>CSf
,GSS-D,^8OJ@(B(&Y<_C5>( cq
l >l
0>@,^9TI0"8SX01< ,:&+',¥CJ8(t>C,:&K 8CJT &[KC TI0"84>(*"< %,:&KTI0181X01< C"&K8X[K(¯-A011=11Yt
' C BTI[K,À,:&K7M[\<241"0
E-o8X[+,¡ TI[K,À,:&KÃM[+<241"0
8cÃ,:&K7(U'C1,
k
p(k)
{0, ..., 40}
C1[\0>tYt8X0Q
4^l R>,¥[+C'C1C1[+<2,:&+', 8CJrT &[KC@CN8,)4P(U;,^8=>&K8CJ&@C%TM8C1@,@r8XwB ,:&K.="B0"=>(U"?4"[K,
,:&+',;&Kw=S Y 0">,@[+0> ="&K88CJW,:&K9TK01<w",^"0
Q
CgY,TM8C"C1s4P(UcJ8X0
k {1, . . . , 41}
&B< ,^8C1[+0>tJYtb,:&K"M?x8<2',:,^10ALx&K"0"]&K9YMY,@r'(Y(3pWC",E-'C Â
E
$
Ex
© Copyright 2026 Paperzz