Matakuliah Tahun Versi : T0324 / Arsitektur dan Organisasi Komputer : 2005 :1 Pertemuan 21 Arithmetic: I 1 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 ) 2 Chapter 6. Arithmetic: I (OFC5) 3 xi yi Carry-in ci Sumsi Carry-outci +1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 si = xi yi ci + xi yi ci + xi yi ci + xi yi ci = x i yi ci ci +1 = yi ci + xi ci + xi yi Example: X 7 +Y = +6 Z 13 0 = + 00 1 1 1 1 1 1 1 1 0 0 1 0 1 0 Carry-out ci+1 xi yi si Carry-in ci Legend for stagei Figure 6.1. Logic specification for a stage of binary addition. 4 n-bit adder cn c0 sn - 1 s1 s0 Figure 6.3. Binary addition-subtraction logic netw ork. 5 x15-12 c16 y15-12 4-bit adder x11-8 c12 G3I P3I y11-8 4-bit adder s15-12 x7-4 c8 G2I P2I y7-4 4-bit adder s11-8 x3-0 G1I P1I y3-0 c4 4-bit adder s7-4 . c0 s3-0 G0I P0I Carry -lookahead logic G0II P0II Figure 6.5. 16-bit carry-lookahead adder built from 4-bit adders (see b). Figure 6.4 6 Sign extension is shown in blue 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 ( - 13) ( + 11) ( - 143) Figure 6.8. Sign extension of negative multiplicand. 7 0 0 0 1 0 1 1 0 0 +1 +1 + 1+1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 +1 0 0 1 0 1 0 0 -1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 2's complement of the multiplicand Figure 6.9. Normal and Booth multiplication schemes. 8 0 0 1 0 0 +1 -1 +1 1 1 0 - 1 0 0 1 1 1 0 1 0 0 +1 0 0 - 1 +1 - 1 + 1 1 1 0 0 0 - 1 0 0 Figure 6.10. Booth recoding of a multiplier. 9 0 1 1 0 1 1 1 0 1 0 ( + 13) (- 6) 0 1 1 0 1 0 - 1 +1 - 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 ( - 78) Figure 6.11. Booth multiplication with a negative multiplier. 10 Multiplier Version of multiplicand selected by biti Bit i Bit i -1 0 0 0M 0 1 +1M 1 0 1M 1 1 0M Figure 6.12. Booth multiplier recoding table. 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Worst-case multiplier +1 - 1 +1 - 1 +1 - 1 +1 - 1 +1 - 1 +1 - 1 +1 - 1 +1 - 1 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 0 Ordinary multiplier 0 -1 0 0 +1 - 1 +1 0 - 1 +1 0 0 0 -1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 +1 0 0 0 0 -1 0 0 0 +1 0 0 -1 Good multiplier Figure 6.13. Booth recoded multipliers. 12 Matakuliah Tahun Versi : T0324 / Arsitektur dan Organisasi Komputer : 2005 :1 Pertemuan 22 Arithmetic: II 13 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Membandingkan berbagai jenis operasi aritmatika didalam sistem komputer digital ( C4 ) ( No TIK : 10 ) 14 Chapter 6. Arithmetic: II (OFC6) 15 0 m3q0 m3q1 FA m3q2 FA m3q3 FA p7 p6 FA m2q3 FA p5 p4 m1q0 m1q1 m0q0 m0q1 FA m1q2 FA 0 m0q2 FA m1q3 FA m2q0 m2q1 FA m2q2 FA 0 m0q3 FA p3 0 p2 p1 p0 (a) Ripple-carry array (Figure 6.6 structure) 16 0 m3q0 m2q2 FA FA p7 p6 m2q0 m2q1 m3q1 m3q2 m2q3 m3q3 FA FA FA FA FA p5 p4 m0q2 FA m0q3 FA m1q0 m0q1 m1q1 m1q2 FA m1q3 p3 FA m0q0 0 0 FA 0 p2 p1 p0 (b) Carry -sav e array Figure 6.16. Ripple-carry and carry-save arrays for the multiplication operationx M Q = P for 4-bit operands. Figure 6.16. Ripple-carry and carry-save arrays for the multiplication operation M Q = P for 4-bit operands. 17 1 0 1 1 0 1 (45) M 1 1 1 1 1 1 (63) Q 1 0 1 1 0 1 A 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 X 1 B C D E F 1 0 0 1 1 (2,835) Product Figure 6.17. A multiplication example used to illustrate carry-save addition as shown in Figure 6.18. 18 Figure 6.19. Schematic representation of the carry-save addition operations in Figure 6.18. Figure 6.19. Schematic representation of the carry-save addition operations in Figure 6.18. 19 13 21 274 26 14 13 1 10101 1101 100010010 1101 10000 1101 1110 1101 1 Figure 6.20. Longhand division examples. 20 Shift left an an - 1 a0 q q n- 1 A 0 Dividend Q Quotient setting Add/Subtract n +1-bit adder Control sequencer 0 mn - 1 m0 Divisor M Figure 6.21. Circuit arrangement for binary division. 21 excess-127 exponent 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 ... (There is no implicit 1 to the left of the binary point.) Value represented= + 0.0010110 29 (a) Unnormalized value 0 1 0 0 0 0 1 0 1 0 1 1 0 ... 6 Value represented= + 1.0110 2 (b) Normalized version Figure 6.25. Floating-point normalization in IEEE single-precision format. 22 Representation Examples Sign and magnitude +526 526 +70 70 9's complement 0526 9473 0070 9929 10's complement 0526 9474 0070 9930 Figure P6.1. Signed numbers in base 10 used in Problem 6.3. 23 12 bits 1 bit for sign of number 0 signifies+ 1 signifies- 5 bits excess-15 exponent 6 bits fractional mantissa Figure P6.2. Floating-point format used in Problem 6.25. 24 (3) +( - 5) -2 0 + 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 (6) + ( - 3) 3 0 1 + 1 101 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 Figure P6.3. 1's-complement addition used in Problem 6.36. 25
© Copyright 2026 Paperzz