Second Order Circuits Table 1: Natural Response of Parallel RLC Revised 4/13/11 Circuit Diff-Eq d 2v dv 2 02v 0 2 dt dt where 1 2RC 1 LC and 0 Damping Over: 20 < 2 Under: 20 > 2 Form of Soln v(t ) A1 e s1t A2 e s2t v(t ) e t ( B1 cos d t B2 sin d t ) Roots s1, 2 2 0 Boundary Conditions 2 𝑠1,2 = −𝛼 ± 𝑗𝜔𝑑 Critical: 20 = 2 , d v(t ) ( A2 A1t ) e t s1, 2 02 2 𝑣(0 +) = 𝐴1 + 𝐴2 𝑣(0 +) = 𝐵1 𝑣(0 +) = 𝐴2 𝑑𝑣(0 +) 𝑖𝐶 (0 +) = = 𝑠1 𝐴1 + 𝑠2 𝐴2 𝑑𝑡 𝐶 𝑑𝑣(0 +) 𝑖𝐶 (0 +) = = −𝐵1 + 𝑑 𝐵2 𝑑𝑡 𝐶 𝑑𝑣(0 +) 𝑖𝐶 (0 +) = = 𝐴1 − 𝐴2 𝑑𝑡 𝐶 Table 2: Step Response of Parallel RLC Circuit Diff-Eq Damping Form of Soln Roots Boundary Conditions 2 d 2i 1 di di v I s dv 02v 0 2 dt 2 LC dt dt 2 RC dt LC Over: 20 < 2 𝑖(𝑡) = 𝐼𝑠 + 𝐴1 𝑒 𝑠1 𝑡 + 𝐴2 𝑒 𝑠2 𝑡 s1, 2 2 0 2 where 1 2RC and 0 1 LC Under: 20 > 2 Critical: 20 = 2 𝑖(𝑡) = 𝐼𝑠 + 𝑒 −∝𝑡 (𝐵1 cos 𝜔𝑑 𝑡 + 𝐵2 sin 𝜔𝑑 𝑡) 𝑖(𝑡) = 𝐼𝑠 + 𝐴1 𝑡 𝑒 −∝𝑡 + 𝐴2 𝑒 −∝𝑡 𝑠1,2 = −𝛼 ± 𝑗𝜔𝑑 , d 02 2 s1, 2 𝑖(0 +) = 𝐼𝑠 + 𝐴1 + 𝐴2 𝑖(0 +) = 𝐼𝑠 + 𝐵1 𝑖(0 +) = 𝐼𝑠 + 𝐴2 𝑑𝑖(0 +) 𝑣𝐿 (0 +) = = 𝑠1 𝐴1 + 𝑠2 𝐴2 𝑑𝑡 𝐿 𝑑𝑖(0 +) 𝑣𝐿 (0 +) = = −𝐵1 + 𝑑 𝐵2 𝑑𝑡 𝐿 𝑑𝑖(0 +) 𝑣𝐿 (0 +) = = 𝐴1 − 𝐴2 𝑑𝑡 𝐿 Second Order Circuits Table 3: Natural Response of Series RLC Circuit Diff-Eq Damping Form of Soln Roots Boundary Conditions d 2i di 2 02i 0 2 dt dt Over: 20 < 2 𝑖(𝑡) = 𝐴1 𝑒 𝑠1 𝑡 + 𝐴2 𝑒 𝑠2 𝑡 s1, 2 2 0 2 R 2L 1 LC and 0 Under: 20 > 2 Critical: 20 = 2 𝑖(𝑡) = 𝑒 −∝𝑡 (𝐵1 cos 𝜔𝑑 𝑡 + 𝐵2 sin 𝜔𝑑 𝑡) 𝑖(𝑡) = 𝐴1 𝑡 𝑒 −∝𝑡 + 𝐴2 𝑒 −∝𝑡 𝑠1,2 = −𝛼 ± 𝑗𝜔𝑑 , d 02 2 s1, 2 𝑖(0 +) = 𝐴1 + 𝐴2 𝑖(0 +) = 𝐵1 𝑖(0 +) = 𝐴2 𝑑𝑖(0 +) = 𝑠1 𝐴1 + 𝑠2 𝐴2 𝑑𝑡 𝑑𝑖(0 +) = −𝐵1 + 𝑑 𝐵2 𝑑𝑡 𝑑𝑖(0 +) = 𝐴1 − 𝐴2 𝑑𝑡 Table 4: Step Response of Series RLC Circuit Diff-Eq vs d 2 v R dv v dt 2 L dt LC LC Damping Over: 20 < 2 Form of Soln 𝑣(𝑡) = 𝑉𝑠 + 𝐴1 𝑒 𝑠1 𝑡 + 𝐴2 𝑒 𝑠2 𝑡 Roots s1, 2 2 0 Boundary Conditions 2 R 2L 1 LC and 0 Under: 20 > 2 Critical: 20 = 2 𝑣(𝑡) = 𝑉𝑠 + 𝑒 −∝𝑡 (𝐵1 cos 𝜔𝑑 𝑡 + 𝐵2 sin 𝜔𝑑 𝑡) 𝑣(𝑡) = 𝑉𝑠 + 𝐴1 𝑡 𝑒 −∝𝑡 + 𝐴2 𝑒 −∝𝑡 𝑠1,2 = −𝛼 ± 𝑗𝜔𝑑 , d 02 2 s1, 2 𝑣(0 +) = 𝑉𝑠 + 𝐴1 + 𝐴2 𝑣(0 +) = 𝑉𝑠 + 𝐵1 𝑣(0 +) = 𝑉𝑠 + 𝐴2 𝑑𝑣(0 +) = 𝑠1 𝐴1 + 𝑠2 𝐴2 𝑑𝑡 𝑑𝑣(0 +) = −𝐵1 + 𝑑 𝐵2 𝑑𝑡 𝑑𝑣(0 +) = 𝐴1 − 𝐴2 𝑑𝑡
© Copyright 2026 Paperzz