Internet Power Grids City Networks Communication Social Networks Ecological Networks Anatomical Networks Molecular Networks G V,E nodes or vertices V v1 , , vn edges or links E V V the number of edges incident to the node . i ki 3 Leonhard Euler 1707-1783 Euler, L. Solutio Problematis ad Geometriam Situs Pertinentis. Commentarii Academiae Scientiarium Imperialis Petropolitanae, 8 (1736) 128-40. 3 C c g d 3D 5 A a e b 3 f B Theorem: A connected graph is traversible if and only if it has at most two vertices of odd degree. Adjacency matrix A B C D E A 0 1 1 0 0 B 1 0 1 1 1 C 1 1 0 0 0 D 0 1 0 0 0 E 0 1 0 0 0 A B D C E Adjacency matrix A B C D E A 0 0 1 0 0 B 1 0 1 1 1 C 0 0 0 0 0 D 0 1 0 0 0 E 0 0 0 0 0 A B D C E A ij 1 iff i ~ j 0 otherwise A Eigenvalues of A: 1 2 3 Eigenvector of j : j j (1), n , j (n) T Pn Cn Sn Kn j n 1 Pn j A 2 cos j 1,, n Cn 2j j A 2 cos n j 1,, n Sn SpA Kn SpA 1 1n 1 n 0n 2 n p 0.000 p 0.106 Pál Erdös 1913-1996 Alfréd Rényi 1921-1970 p 0.265 p 1.000 p = 0.01 p = 0.025 Size giant component p = 0.0075 0 p 1 S Oln n Size giant component k 1 pn ~1 k 1 0 p k 1 S n2/ 3 1 a giant component exists Number of nodes with k links Number of links (k) Number of links (k) Number of nodes with k links pu kv / k w w e k k k pk k! pk pk ~ e k / k 1 e 2 k k k 2 2 2 k pk ~ k n 1 k n 1 k pk p 1 p k n pk ek k k k! Assortative Disassortative 2 1 1 m e ki e k j e m e ki e k j e 2 r 2 1 2 1 1 1 2 m e ki e k j e m e ki e k j e 2 2 1 r>0 r<0 r 0.118 r 0.304 r 0.129 r 0.277 r = -0.538 r = 0.200 2 1 1E1 2m r 1 1 E2 1 k A k 1E1 2m k Ak k 2 k A k 2 P1 4 P2 2 P3 6 C3 1 1E1 2m 2 2 P2 P1 2 2 P1 4 P2 E P1 P2 C3 P3 S1,3 1 E 2 1 2 P1 10 P2 2 P3 6 S1,3 6 C3 r P2 P3/2 C P2/1 3 S1,3 P2 1 P2/1 P1 P2 S1,3 Pr / s Pr / Ps C 3 C3 / P2 P3 C3 P2 / 1 P3 / 2 C P2 / 1 P3 / 2 C r = -0.538 r = 0.200 A B C D E A 0 1 1 0 0 2 B 1 0 1 1 1 4 C 1 1 0 0 0 2 D 0 1 0 0 0 1 E 0 1 0 0 0 1 A B D C E i, k , j BC k , i jk i, j i j A B C D E A, B, D 1; A, D 1 A, B, E 1; A, E 1 C , B, D 1; B, D 1 C , B, E 1; C , E 1 D, B, E 1; D, E 1 B has a BC of 5 N 1 CC i d i, j j n A B C D E A 0 1 1 2 2 6 B 1 0 1 1 1 4 C 1 1 0 2 2 6 D 2 1 2 0 2 7 E 2 1 2 2 0 7 A B D C E d i, j j 1 A 0.67 B C 1.00 0.67 0.57 D E 0.57 xi 1 n A x x j 1 1 ij Ax j 1 0.500 2 0.238 3 0.238 5 6 7 8 0.354 0.354 0.168 0.168
© Copyright 2026 Paperzz