Dynamics on Networks. 3. Synchronization Ernesto Estrada Department of Mathematics & Statistics, University of Strathclyde Glasgow G1 1XH, UK www.estradalab.org Σύγ χρόνος – sharing a common property in time BIOLOGICAL SOCIAL • Ensemble of doves (wings in synchrony) • Collective firing of neurons • Fireflies, crickets, frogs • Communities of consciousness and crises • Football (mexican wave: la ola, ...) • Rhythmic applause Video Sync n identical dynamical units each unit has an internal degree of freedom x i x i f xi c Lij H x j , n i 1,2,, n j 1 xi internal degree of freedom c0 H L H x H x H x n j 1 ij i jV i L Δ D A i j L Lij nn 1 2 3 4 6 5 1 1 0 0 0 0 1 3 1 0 0 1 0 1 3 1 1 0 L 0 0 1 2 1 0 0 0 1 1 3 1 0 1 0 0 1 2 x1 t x2 t xn t st , as t •equilibrium point •periodic orbit •chaotic orbit i i s xi s i f xi f s i f s H xi H s i H s i f s i c Lij H s j j Let 1 2 n1 n 0. It is known that the system of eqs. can be decoupled by using the set of eigenvectors i , which are an appropriate set of linear combinations of the perturbations: i f s ci H s i At short times, one can assumes that s almost does not vary and i t i0 exp f s ci H s t max f s H s s 0 1 2 1 2 Q : n1 1 Stanley Milgram 1933-1984 1,305 mi. 10 No.of Completed Chains 12 10 8 6 4 2 0 0 2 4 6 8 10 12 No. of Intermediadiaries needed to reach the Target Person dij 5 2 Number of transitive relations Ci Number of possible transitive relations n 1 n k 1 d 2kn C 4 k 1 3 k 2 ln n 1 d ln pn 2 Cp 15 d 1847 3.65 C 0.74 0.79 2.99 0.00027 16 d 10.5 2.65 2.25 C 0.69 0.28 0.05 17 d 926 18.7 12.4 C 0.3 0.08 0.0005 18 D. J. Watts S. H. Strogatz 19 1 ~ 2r 11 2 / 3 n1 ~ 2 r r 12r 1 / 3n 2 n nodes k 2r r 1 r n 1 n2 Q : ~ n1 r r 1 2 Q np 2 p1 p n log n np 2 p1 p n log n Q 2m / nn 1 regular SW random pu kv k w w 4/9 1/ 6 1/ 9 1/ 9 1/ 9 1 / 18 4/9 u BAn, d pk 2d d 1 k k 1k 2 ~ k 3 pk ak ln pk ln k ln a pck cak ln pck ln k ln ca pck pk dxi F xi dt ki L H x ij i j CK L det K L I det K / 2 LK / 2 I dxi F xi dt ki ki H xi H x j j ~i F xi ki1 H i H xi H i H x j / ki j ~i If the network is sufficiently random, and if the system is close to the synchronised state s, then H i H s and dxi F xi ki1 H s H xi dt Condition of synchronizability: 1 i 1 k 2 , i as soon as one node has degree different from the others the network is more difficult to synchronise. k max k min Q k min k max 1 if 1 1 if 1 The minimum value of the eigenratio is then obtained for 1. Q 3 5 7 We consider n planar rotors with angular phase xi and natural frequency i coupled with strength K and evolving according to: dxi i K sin xi x j dt j ~i The level of synchronization is quantified by the order parameter: n 1 ix j t i t r t e e n j 1 n 1 ix j t i t r t e e n j 1 j xj r The radius measures the coherence and t is the average phase of the rotors. Multiply both sides of by e ixl . Thus, n 1 ix j t i t r t e e n j 1 1 n r sin xl sin x j xl n j 1 So that dxl 0 l K r sin xl dt K 0 Kn r 1 0 r 0 K Kc Kc K Kc 0 K0 K 0 Kc 8 6 synchronized Kc 4 2 0 0 0.2 0.4 p 0.6 r n, K n / F K Kc n1/ 0.8 1 F is a scaling function and describes the divergence of the typical correlation size K Kc . order parameter Kc c k k2 where c depends on the distribution of the individual frequencies. rlink 1 1 lim 2m j l ~ j t t rlink K t e i x j t xl t 1 Dij Aij lim t t K t e i x j t xl t K
© Copyright 2026 Paperzz