Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion An Introduction to Jacobian-Free Newton-Krylov with An Application to Non-Equilibrium Radiation Diffusion BOBBY PHILIP Computer Science and Mathematics Division Oak Ridge National Laboratory, U.S.A. [email protected] CIMPA Research School Indian Institute of Science July 17, 2013 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Preconditioned Krylov Methods Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Non-Equilibrium Radiation-Diffusion Model Problem Discretization Solution Methodology Numerical Results Conclusion 1 This research was conducted in part under the auspices of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC05- 00OR22725 with UT-Battelle, LLC. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Krylov Methods Original linear system: Ax = b, A ∈ Rn×n , b, x ∈ Rn . BOBBY PHILIP Nonlinear Methods (1) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Krylov Methods Original linear system: Ax = b, A ∈ Rn×n , b, x ∈ Rn . Assume A is symmetric positive-definite (SPD), and we wish to find a solution efficiently and robustly. BOBBY PHILIP Nonlinear Methods (1) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Krylov Methods Original linear system: Ax = b, A ∈ Rn×n , b, x ∈ Rn . (1) Assume A is symmetric positive-definite (SPD), and we wish to find a solution efficiently and robustly. Equivalent to solving the minimization problem: Find x ∈ Rn minimizing: 1 f (y ) = minn ( y T Ay − b T y ) (2) y ∈R 2 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Steepest Descent Method General Idea: ◮ Pick initial guess: x0 ◮ Compute direction of steepest descent: −∇f (xk ) = b − Axk = rk ◮ New approximation: xk+1 = xk + αk rk ◮ αk comes from line search to minimize f (xk+1 ): dxk+1 < rk , rk > df (xk+1 ) = ∇f (xk+1 )T · = 0 =⇒ αk = dαk dαk < Ark , rk > ◮ Note: d 2 f (xk +αk rk ) dα2k >0 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Steepest Descent Method ◮ ◮ ◮ f (xi ) = f (x + ei ) = f (x) + 12 eiT Aei ei+1 = ei − αk ri Convergence rate: ||ei ||A ≤ κ−1 κ+1 i ||e0 ||A , κ= where ||ei ||A =< Aei , ei > ◮ λmax (A) , λmin (A) Same search directions often visited multiple times leading to slow convergence BOBBY PHILIP Nonlinear Methods Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Conjugate Directions Method ◮ Choose n A−orthogonal search directions d0 , d1 , · · · , dn−1 (Adi , dj ) = 0 for i 6= j ◮ Pick initial guess: x0 ◮ Compute search vector: xk+1 = xk + αk dk ◮ Perform line search to choose αk by minimizing f (xk+1 ): df (xk+1 ) dxk+1 = ∇f (xk+1 )T · = 0 =⇒< Aek+1 , dk >= 0 dαk dαk ◮ Leads to: αk = <Aek ,dk > <Adk ,dk > = BOBBY PHILIP <rk ,dk > <Adk ,dk > Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Conjugate Directions Method Eliminates error in search directions progressively Pk ◮ xk+1 = xk + αk dk =⇒ ek+1 = ek − αk dk = e0 − i=0 αi di Pn−1 ◮ Let e0 = i=0 δi di . ◮ Then δi = = ◮ This gives: ek+1 < Ae0 , di > < Adi , di > P < A(e0 − i−1 j=0 αj dj ), di > < Adi , di > < Aei , di > = < Adi , di > = αi P P = e0 − ki=0 αi di = n−1 i=k+1 αi di BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Conjugate Directions Method ◮ Error minimization approach ◮ Converges in n iterations if search directions available ◮ Where do the n A-orthogonal search directions come from? ◮ Given n linearly independent vectors u0 , u1 , · · · , un−1 use the Gram-Schmidt (GS) process (or modified GS) to A-orthogonalize. dk = uk − with βik = k−1 X βik di i=0 <Adi ,uk > <Adi ,di > BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Conjugate Directions Method ◮ Properties: ◮ ◮ ◮ ◮ Pros: ◮ ◮ ◮ (rk , dj ) = 0 for j < k since by design (Aek , dj ) = 0 Pj−1 (rk , uj ) = 0 for j < k since uj = dj + i=0 βij di (rk , dk ) = (rk , uk ) for k = 0, 1, · · · , n − 1 Optimal for error minimization Converges in n iterations if search directions available Cons: ◮ ◮ All search vectors have to be stored for orthogonalization Full method is O(n3 ) for general bases BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Conjugate Gradients Method ◮ What if uk are chosen to be the rk like in Steepest Descent? ◮ Then, xk+1 = xk + αk dk gives αk Adk = rk − rk+1 ◮ Or, αk (Adk , rj ) = (rk , rj ) − (rk+1 , rj ) = 0 if j < k ◮ Therefore at every iteration the current search direction dk is A-orthogonal to all previous search directions except dk−1 ◮ The Gram-Schmidt orthogonalization now reduces to orthogonalizing against the previous search direction: dk = rk − βk,k−1 dk−1 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Krylov Subspace Since xk+1 = (xk + αk dk ), we have: xk+1 ∈ x0 + span{d0 , d1 , . . . , dk } = x0 + span{d0 , Ad0 , . . . , Ak d0 } = x0 + span{r0 , Ar0 , . . . , Ak r0 } = x0 + Kk+1 (A; r0 ) BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Conjugate Gradients Algorithm ◮ r0 ← b − Ax0 , d0 ← r0 . ◮ For j = 0,1,... until convergence do: ◮ α ← (rj , rj )/(Adj , dj ) ◮ ◮ ◮ ◮ ◮ xj+1 ← xj + αdj rj+1 ← rj − αAdj β ← (rj+1 , rj+1 )/(rj , rj ) dj+1 ← rj+1 + βdj enddo BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG Convergence CG will converge to the solution in n iterations, and the convergence rate is given by: kx − xk kA ≤2 kx − x0 kA √ κ−1 k √ , κ+1 κ= but ..... n can be very large. BOBBY PHILIP Nonlinear Methods λmax (A) , λmin (A) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG Convergence CG will converge to the solution in n iterations, and the convergence rate is given by: kx − xk kA ≤2 kx − x0 kA √ κ−1 k √ , κ+1 κ= but ..... n can be very large. CG converges quickly when: BOBBY PHILIP Nonlinear Methods λmax (A) , λmin (A) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG Convergence CG will converge to the solution in n iterations, and the convergence rate is given by: kx − xk kA ≤2 kx − x0 kA √ κ−1 k √ , κ+1 κ= but ..... n can be very large. CG converges quickly when: ◮ κ(A) is small; BOBBY PHILIP Nonlinear Methods λmax (A) , λmin (A) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG Convergence CG will converge to the solution in n iterations, and the convergence rate is given by: kx − xk kA ≤2 kx − x0 kA √ κ−1 k √ , κ+1 κ= but ..... n can be very large. CG converges quickly when: ◮ κ(A) is small; ◮ eigenvalues of A are clustered; BOBBY PHILIP Nonlinear Methods λmax (A) , λmin (A) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG Convergence CG will converge to the solution in n iterations, and the convergence rate is given by: kx − xk kA ≤2 kx − x0 kA √ κ−1 k √ , κ+1 κ= but ..... n can be very large. CG converges quickly when: ◮ κ(A) is small; ◮ eigenvalues of A are clustered; ◮ distinct eigenvalues are few. BOBBY PHILIP Nonlinear Methods λmax (A) , λmin (A) Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Preconditioning Most systems do not have these nice properties. The aim of preconditioning would be to transform the system Ax = b, BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Preconditioning Most systems do not have these nice properties. The aim of preconditioning would be to transform the system Ax = b, into a system: M −1 Ax = M −1 b, such that both systems have the same solution, but the new system now possesses one or more of the attributes mentioned, i.e., BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Preconditioning Most systems do not have these nice properties. The aim of preconditioning would be to transform the system Ax = b, into a system: M −1 Ax = M −1 b, such that both systems have the same solution, but the new system now possesses one or more of the attributes mentioned, i.e., ◮ κ(M −1 A) is small; ◮ eigenvalues of M −1 A are clustered; ◮ distinct eigenvalues are few. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems What M would do the job? Requirements on a preconditioner: ◮ M −1 A must be well conditioned ◮ M must be cheap to apply BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems What M would do the job? Requirements on a preconditioner: ◮ M −1 A must be well conditioned ◮ M must be cheap to apply These conflicting requirements must be balanced depending on the application. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems What M would do the job? Requirements on a preconditioner: ◮ M −1 A must be well conditioned ◮ M must be cheap to apply These conflicting requirements must be balanced depending on the application. ◮ Extreme 1: M = A =⇒ κ(M −1 A) = 1; BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems What M would do the job? Requirements on a preconditioner: ◮ M −1 A must be well conditioned ◮ M must be cheap to apply These conflicting requirements must be balanced depending on the application. ◮ Extreme 1: M = A =⇒ κ(M −1 A) = 1; ◮ Extreme 2: M = I . BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems What M would do the job? Requirements on a preconditioner: ◮ M −1 A must be well conditioned ◮ M must be cheap to apply These conflicting requirements must be balanced depending on the application. ◮ Extreme 1: M = A =⇒ κ(M −1 A) = 1; ◮ Extreme 2: M = I . .... and somewhere in between is what we want. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems ”Finding a good preconditioner to solve a given sparse linear system is often viewed as a combination of art and science....” Saad. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners Consider a splitting A = M − N. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners Consider a splitting A = M − N. The associated stationary iteration is x k+1 = M −1 Nx k + M −1 b. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners Consider a splitting A = M − N. The associated stationary iteration is x k+1 = M −1 Nx k + M −1 b. If this iteration converges, kI − M −1 Ak < 1 (can be relaxed), it will converge to the fixed point of (I − M −1 N)x = M −1 b, BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners But, I − M −1 N = I − M −1 (M − A) = M −1 A, and so we converge to the solution of M −1 Ax = M −1 b, - the preconditioned system. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners But, I − M −1 N = I − M −1 (M − A) = M −1 A, and so we converge to the solution of M −1 Ax = M −1 b, - the preconditioned system. Thus, we can use preconditioners based on splittings. Examples are: ◮ Jacobi ◮ (Symmetric) Gauss-Seidel ◮ (Symmetric) SOR ◮ Block versions of the above stationary splittings BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Splitting based preconditioners But, I − M −1 N = I − M −1 (M − A) = M −1 A, and so we converge to the solution of M −1 Ax = M −1 b, - the preconditioned system. Thus, we can use preconditioners based on splittings. Examples are: ◮ Jacobi ◮ (Symmetric) Gauss-Seidel ◮ (Symmetric) SOR ◮ Block versions of the above stationary splittings These preconditioners are often cheap to implement and apply, but may not provide significant improvements. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Factorization based preconditioners ◮ ◮ ◮ For SPD matrices we can factor A = LLt - a Cholesky factorization. For sparse A this can introduce significant fill-in and is expensive. An incomplete Cholesky factorization A ≈ LLt is an approximate Cholesky factorization where the sparsity pattern of L is limited, based in some fashion on the sparsity pattern of A. A = LLt + R M = LLt can then be used as a preconditioner. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Factorization based preconditioners ◮ For SPD matrices we can factor A = LLt - a Cholesky factorization. For sparse A this can introduce significant fill-in and is expensive. An incomplete Cholesky factorization A ≈ LLt is an approximate Cholesky factorization where the sparsity pattern of L is limited, based in some fashion on the sparsity pattern of A. A = LLt + R M = LLt can then be used as a preconditioner. ◮ Advantages: ◮ ◮ ◮ ◮ Useful where black-box preconditioners required Disadvantages; ◮ ◮ Not easily parallelized The factorization LLt can be unstable BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ Multigrid methods optimal for elliptic problems. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ ◮ Multigrid methods optimal for elliptic problems. Provide grid independent convergence rates. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ ◮ ◮ Multigrid methods optimal for elliptic problems. Provide grid independent convergence rates. Example from Wathen: − ▽2 u = f in Ω, u = g on ∂Ω. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ ◮ ◮ Multigrid methods optimal for elliptic problems. Provide grid independent convergence rates. Example from Wathen: − ▽2 u = f in Ω, u = g on ∂Ω. A 2D FD discretization yields a block tridiagonal A, with ◮ ◮ ◮ λmin ≈ 2π 2 , λmax ≈ 8h−2 , and κ ≈ O(h−2 ). BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ ◮ ◮ Multigrid methods optimal for elliptic problems. Provide grid independent convergence rates. Example from Wathen: − ▽2 u = f in Ω, u = g on ∂Ω. A 2D FD discretization yields a block tridiagonal A, with ◮ ◮ ◮ ◮ ◮ λmin ≈ 2π 2 , λmax ≈ 8h−2 , and κ ≈ O(h−2 ). Unpreconditioned CG: h−dependent convergence rate. CG preconditioned with multigrid: h−independent rate. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Multigrid preconditioners ◮ ◮ ◮ Multigrid methods optimal for elliptic problems. Provide grid independent convergence rates. Example from Wathen: − ▽2 u = f in Ω, u = g on ∂Ω. A 2D FD discretization yields a block tridiagonal A, with ◮ ◮ ◮ ◮ ◮ ◮ λmin ≈ 2π 2 , λmax ≈ 8h−2 , and κ ≈ O(h−2 ). Unpreconditioned CG: h−dependent convergence rate. CG preconditioned with multigrid: h−independent rate. Requires more effort to implement for average user (but more packages are available now). BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG: Incorporating Preconditioning ◮ The preconditioned system is: M −1 Ax = M −1 b with M, A SPD. However, M −1 A is not SPD in general and it would appear we no longer can apply CG. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG: Incorporating Preconditioning ◮ The preconditioned system is: M −1 Ax = M −1 b with M, A SPD. However, M −1 A is not SPD in general and it would appear we no longer can apply CG. ◮ But M can be factored as M = LLt . Moreover, M −1 A and L−1 AL−t have the same eigenvalues. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems CG: Incorporating Preconditioning ◮ The preconditioned system is: M −1 Ax = M −1 b with M, A SPD. However, M −1 A is not SPD in general and it would appear we no longer can apply CG. ◮ ◮ But M can be factored as M = LLt . Moreover, M −1 A and L−1 AL−t have the same eigenvalues. We can now apply CG to the preconditioned system L−1 AL−t z = L−1 b, Lt x = z. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Split-Preconditioned (Transformed PCG) ◮ r0 ← b − L−1 AL−t x0 , d0 ← r0 . ◮ For j = 0,1,... until convergence do: ◮ α ← (rj , rj )/(L−1 AL−t dj , dj ) ◮ ◮ ◮ ◮ ◮ xj+1 ← xj + αdj rj+1 ← rj − αL−1 AL−t dj β ← (rj+1 , rj+1 )/(rj , rj ) dj+1 ← rj+1 + βdj enddo BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Untransformed PCG Transformed CG would require computing the factorization M = LLt . This can be avoided in practice and leads to the following algorithm: ◮ r0 ← b − Ax0 , d0 ← M −1 r0 . ◮ For j = 0,1,... until convergence do: ◮ α ← (M −1 rj , rj )/(Adj , dj ) ◮ ◮ ◮ ◮ ◮ xj+1 ← xj + αdj rj+1 ← rj − αAdj β ← (M −1 rj+1 , rj+1 )/(M −1 rj , rj ) dj+1 ← M −1 rj+1 + βdj enddo BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES ◮ ◮ ◮ The Krylov space: Ki (A; r0 ) = span{r0 , Ar0 , · · · , Ai−1 r0 } The Generalized Minimum Residual (GMRES) algorithm is a minimum residual approach i-th step of GMRES: Find xi ∈ Ki (A; r0 ) such that xi = argmin (||b − Ax||2 ) x∈Ki (A;r0 ) ◮ The Krylov vectors Aj r0 form an ill-conditioned basis for Ki (A; r0 ) and cannot be directly used BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Arnoldi iteration ◮ ◮ Given A ∈ Rn×n there exists a unitary matrix Q ∈ Rn×n and an upper Hessenberg matrix H ∈ Rn×n such that Q T AQ = H or equivalently AQ = QH. Let Q = [q1 q2 . . . qn ]. By comparing columns of AQ and QH we can show AQk = Qk+1 H̃ where Qk = [q1 q2 . . . qk ] and H̃ ∈ R(k+1)×k is the upper left matrix block of H which is upper Hessenberg also. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Arnoldi iteration The Arnoldi iteration is used to generate the vectors qi from a starting 2 norm unit vector q0 ◮ ◮ r0 ← q0 , h10 = 1, k = 0. While (hk+1,k 6= 0) ◮ ◮ ◮ ◮ qk+1 ← rk /hk+1,k k ←k +1 rk ← Aqk for j ← 1 · · · k ◮ ◮ ◮ hjk ← (rk , qj ) rk ← rk − hjk qj hk+1,k ← krk k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion ◮ ◮ Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems q0 , q1 , . . . , qi form an orthonormal basis for the vector space Ki+1 (A; q0 ) = span{q0 , Aq0 , . . . , Ai q0 } Let xi = Qi yi . Then the i-th iteration of GMRES becomes yi = argmin(||AQi y − b||2 ) y ∈Ri = argmin(||Qi+1 H̃i y − b||2 ) y ∈Ri ∗ = argmin(||Qi+1 (Qi+1 H̃i y − b)||2 ) y ∈Ri ∗ = argmin(||H̃i y − Qi+1 b||2 ) y ∈Ri = argmin(||H̃i y − ||b||e1 ||2 ) y ∈Ri BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES Algorithm ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES Algorithm ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ k ←k +1 vk+1 ← Aqk BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES Algorithm ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← Aqk for j ← 1 · · · k ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES Algorithm ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← Aqk for j ← 1 · · · k ◮ ◮ ◮ ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k min kβe1 − Hk y k k2 over Rk ρ ← kβe1 − Hk y k2 xk ← x 0 + Q k y k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems GMRES: Observations ◮ GMRES converges monotonically ||rk+1 ||2 < ||rk ||2 ◮ GMRES converges in atmost n steps ◮ The storage and computational cost of each step increases due to the increasing size of the Krylov space ◮ GMRES(m) restarted versions of GMRES ◮ Strong preconditioners can limit the size of the required Krylov space resulting in an efficient and robust solver BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Preconditioning GMRES ◮ Left preconditioning: L−1 Ax = L−1 b ◮ Right preconditioning: AR −1 z = b, Rx = z ◮ Split preconditioning: L−1 AR −1 z = L−1 b, Rx = z BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Left Preconditioned GMRES ◮ r0 ← L−1 (b − Ax0 ), ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Left Preconditioned GMRES ◮ ◮ r0 ← L−1 (b − Ax0 ), ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ k ←k +1 vk+1 ← L−1 Aqk BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Left Preconditioned GMRES ◮ ◮ r0 ← L−1 (b − Ax0 ), ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← L−1 Aqk for j ← 1 · · · k ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Left Preconditioned GMRES ◮ ◮ r0 ← L−1 (b − Ax0 ), ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← L−1 Aqk for j ← 1 · · · k ◮ ◮ ◮ ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k min kβe1 − Hk y k k2 over Rk ρ ← kβe1 − Hk y k2 xk ← x0 + Qk y k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Left Preconditioned GMRES Points to note: ◮ ◮ The Arnoldi process now constructs an orthogonal basis for (r0 , (L−1 A)r0 , · · · , (L−1 A)k r0 ). All residuals and norms calculated in the algorithm now correspond to the preconditioned residuals, L1− (b − Axk ). ◮ The original residuals and norms for the unpreconditioned system cannot be accessed easily, they have to be explicitly calculated. ◮ Special care must be taken when specifying stopping criteria due to the previous point. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Right Preconditioned GMRES ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Right Preconditioned GMRES ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ k ←k +1 vk+1 ← AM −1 qk BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Right Preconditioned GMRES ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← AM −1 qk for j ← 1 · · · k ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Right Preconditioned GMRES ◮ ◮ r0 ← b − Ax0 , ρ ← kr0 k, β ← ρ, q0 ← r0 /ρ, k = 0. while ρ > ǫkbk andk < kmax do ◮ ◮ ◮ k ←k +1 vk+1 ← AM −1 qk for j ← 1 · · · k ◮ ◮ ◮ ◮ ◮ ◮ ◮ hjk ← (vk+1 , qj ) vk+1 ← vk+1 − hjk qj hk+1,k ← kvk+1 k qk+1 ← vk+1 /hk+1,k min kβe1 − Hk y k k2 over Rk ρ ← kβe1 − Hk y k2 xk ← x0 + M −1 Qk y k BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Right Preconditioned GMRES Points to note: ◮ ◮ The Arnoldi process now constructs an orthogonal basis for (r0 , (AM −1 )r0 , · · · , (AM −1 )k r0 ). All residuals and norms calculated in the algorithm now correspond to the original residuals, (b − Axk ). ◮ No special care needs to be taken when specifying stopping criteria due to the previous point. ◮ Flexible preconditioned versions of GMRES are possible with right preconditioning. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Steepest Descent Conjugate Directions Method Conjugate Gradients Method Preconditioning Krylov Methods for Non-Symmetric Systems Split Preconditioned GMRES Points to note: ◮ Suitable when A is nearly symmetric and P ≈ LLt . ◮ Combines left and right preconditioning aspects. ◮ Residual norms correspond to left preconditioning. ◮ Stopping criteria suffer same problems as left preconditioning alone. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) ∂t BOBBY PHILIP Nonlinear Methods in Ω = [0, 1]3 in Ω = [0, 1]3 Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) ∂t Constitutive law: σa = z3 T3 BOBBY PHILIP Nonlinear Methods in Ω = [0, 1]3 in Ω = [0, 1]3 Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) ∂t Constitutive law: σa = Diffusion coefficients: in Ω = [0, 1]3 in Ω = [0, 1]3 z3 T3 1 Dr = Dt = kT 5/2 BOBBY PHILIP 3σa + k∇E k E Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) ∂t BOBBY PHILIP Nonlinear Methods in Ω = [0, 1]3 in Ω = [0, 1]3 Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) in Ω = [0, 1]3 ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) in Ω = [0, 1]3 ∂t Initial conditions: E = E0 , T = (E0 )1/4 at t = 0 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Non-Equilibrium Radiation-Diffusion Model equations: ∂E − ∇ · (Dr ∇E ) = σa (T 4 − E ) in Ω = [0, 1]3 ∂t ∂T − ∇ · (Dt ∇T ) = −σa (T 4 − E ) in Ω = [0, 1]3 ∂t Initial conditions: E = E0 , T = (E0 )1/4 at t = 0 Boundary conditions: 1 E n · Dr ∇E + = R 2 4 n · Dr ∇E = 0 n · ∇T = 0 BOBBY PHILIP on ∂ΩR , t ≥ 0 on ∂ΩN , t ≥ 0 on ∂Ω, t ≥ 0 Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Previous Work ◮ Rider, Knoll and Olson (JQSRT, 63, 1999; JCP, 152, 1999) introduced the idea of physics based preconditioning in 1D ◮ Mousseau, Knoll, Rider (JCP, 2000) and Mousseau, Knoll (JCP, 2003) demonstrated effectiveness for 2D problems ◮ Mavriplis (JCP, 175, 2002) compared Newton-Multigrid and FAS using agglomeration ideas on unstructured grids. ◮ Stals (ETNA, 15, 2003), Newton-Multigrid and FAS, local refinement on unstructured grids for equilibrium radiation diffusion. ◮ Lowrie (JCP, 2004) compares different time integration methods for non-equilibrium radiation diffusion BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Previous Work ◮ Brown, Shumaker, Woodward (JCP, 2005) consider fully implicit methods and high order time integration. ◮ Shestakov, Greenough, and Howell (JQSRT, 2005) consider pseudo-transient continuation on AMR grids using an alternative formulation. ◮ Glowinski, Toivanen (JCP, 2005) consider using automatic differentiation and system multigrid. ◮ Pernice, Philip (SISC, 2006), use JFNK with FAC preconditioners on AMR grids for equilibrium radiation-diffusion on SAMR grids. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Spatial Discretization: ◮ Method of Lines (MOL) approach ◮ Cell Centered Finite Volume Discretization ◮ Face centered diffusion coefficients ◮ Fluxes computed at cell faces ◮ Material discontinuities aligned with cell faces for simplicity ◮ Linear interpolation at coarse-fine interfaces to provide centered ghost cell data ◮ Coarse-fine interpolation is programming intensive to account for all special cases BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Space Discretization: Coarse-Fine Boundaries (a) Convex face (b) Convex edge (d) Concave edge (f) Sibling edge BOBBY PHILIP (c) Convex point (e) Concave point (g) Sibling point Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Space Discretization: Coarse-Fine Boundaries (a) 3 patches. (c) Coarse fine boundary fragments of the top face of the patch at the bottom. BOBBY PHILIP (b) The coarse fine boundary fragments of the right face of the patch on the left. (d) Coarse fine boundary fragments of the front face of the patch at the back. Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Space Discretization: Coarse-Fine Interpolation c1 c3 c1 i f c2 g i c3 i c4 ci (i = 1, 2, 3, 4) coarse ghost cell value coarse ghost cells i interpolated value fine ghost cells f fine cell value fine cell g fine ghost cell value Methods Figure Nonlinear : BOBBY PHILIP c2 c4 Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Explicit, Semi-Implicit, or Implicit? ◮ Stiff IBVP that we want to evolve at dynamical timescale ◮ Explicit methods: do not meet criteria here Semi-implicit methods: ◮ ◮ Pros: ◮ ◮ ◮ potential overall cost savings reuse off the shelf solver components Cons: ◮ ◮ ◮ timesteps limited by stability restrictions, typically stronger than accuracy restrictions problem specific analysis AMR implementations can be complex BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Explicit, Semi-Implicit, or Implicit? Implicit methods: ◮ Pros: ◮ ◮ ◮ ◮ Cons: ◮ ◮ Step at dynamic timescale of problem instead of finest scales Timestep limited primarily by accuracy considerations, stability for nonlinear systems less of a problem AMR implementations less complex than for semi-implciit Efficient monolithic nonlinear solver required We pick BDF2: 3 step method with quick damping of error modes, 2nd order in time, potentially expand to BDF1-5 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: BDF2 αn2 1 + 2αn n+1 u − (1 + αn )un + un−1 = ∆tn f (un+1 ) 1 + αn 1 + αn BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: BDF2 αn2 1 + 2αn n+1 u − (1 + αn )un + un−1 = ∆tn f (un+1 ) 1 + αn 1 + αn with ∆tn ∆tn−1 E u = T ∇ · (Dr ∇E ) + σa (T 4 − E ) f (u) = ∇ · (Dt ∇T ) − σa (T 4 − E ) αn = BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Timestep Control ◮ First step: Backward Euler with user selected initial guess for timestep BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Timestep Control ◮ ◮ First step: Backward Euler with user selected initial guess for timestep Subsequent steps: ◮ ◮ ◮ ◮ constant fixed timestep ramp to constant final timestep limit relative change in energy predictor-corrector with adaptive timestep selection BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Predictor-Corrector1 1 ‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Lamin Flow‘, Gresho and Sani BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Predictor-Corrector1 ◮ Predict using generalized leapfrog: un+1 = un + (1 + αn ) ∆tn u̇n − αn2 un − un−1 P 1 ‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Lamin Flow‘, Gresho and Sani BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Predictor-Corrector1 ◮ Predict using generalized leapfrog: un+1 = un + (1 + αn ) ∆tn u̇n − αn2 un − un−1 P ◮ Solve for un+1 using un+1 as an initial guess for BDF2 step P 1 + 2αn n+1 αn2 u − (1 + αn )un + un−1 − ∆tn f (un+1 ) = 0 1 + αn 1 + αn 1 ‘Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Lamin Flow‘, Gresho and Sani BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Time Discretization: Timestep Control ◮ Estimate local error e n ≡ un − u(tn ) ≈ ◮ ◮ ◮ αn−1 + 1 n (u − unP ) 3αn−1 + 2 Choose stepsize to satisfy : ||e n+1 || ≤ ǫ Control theoretic controller (PI.4.7): 0.4/3 n−1 0.7/3 ||e || ∆tn+1 = ∆tn ||eǫn || ||e n || Choice of ǫ and || · || is important BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Components ◮ Time Integrator (BDF2) BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Components ◮ Time Integrator (BDF2) ◮ Nonlinear Solver BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Components ◮ Time Integrator (BDF2) ◮ Nonlinear Solver ◮ Linear Solver BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Components ◮ Time Integrator (BDF2) ◮ Nonlinear Solver ◮ Linear Solver ◮ Preconditioner BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Components ◮ Time Integrator (BDF2) ◮ Nonlinear Solver ◮ Linear Solver ◮ Preconditioner .... on AMR grids. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Nonlinear systems Implicit time discretizations lead to a nonlinear system of equations that needs to be solved at each timestep F (un+1 ) = 0 where F (un+1 ) ≡ 1 + 2αn n+1 αn2 u − (1 + αn )un + un−1 − ∆tn f (un+1 ) 1 + αn 1 + αn with un+1 a cell centered vector over an AMR mesh. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Inexact Newton Methods ◮ Let F : Rn → Rn and consider solving F (u) = 0. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Inexact Newton Methods ◮ ◮ Let F : Rn → Rn and consider solving F (u) = 0. The k th step of classical Newton’s method requires solution of the Newton equations: F ′ (uk )sk = −F (uk ). BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Inexact Newton Methods ◮ ◮ Let F : Rn → Rn and consider solving F (u) = 0. The k th step of classical Newton’s method requires solution of the Newton equations: F ′ (uk )sk = −F (uk ). ◮ With inexact Newton methods, we only require kF (uk ) + F ′ (uk )sk k ≤ ηk kF (uk )k, This can be done with any iterative method. BOBBY PHILIP Nonlinear Methods ηk > 0. Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Jacobian-free Newton-Krylov (JFNK) ◮ System multigrid could be used directly, or ◮ Krylov subspace methods - need Jacobian-vector products, which can be approximated by F ′ (uk )v ≈ F (uk + εv) − F (uk ) , ε √ ε ≈ O( ǫmach ). ◮ The resulting Jacobian-free Newton-Krylov (JFNK) method is easier to implement because only function evaluation and preconditioning setup/apply is required. ◮ ε must take into account accuracy, efficiency, and non-negativity considerations BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioning In order for a Newton-Krylov method to be efficient, effective preconditioners are required. The aim of preconditioning would be to transform the system Ax = b, BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioning In order for a Newton-Krylov method to be efficient, effective preconditioners are required. The aim of preconditioning would be to transform the system Ax = b, into a system: P −1 Ax = P −1 b, such that both systems have the same solution, but the new system now possesses one or more of the attributes below: BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioning In order for a Newton-Krylov method to be efficient, effective preconditioners are required. The aim of preconditioning would be to transform the system Ax = b, into a system: P −1 Ax = P −1 b, such that both systems have the same solution, but the new system now possesses one or more of the attributes below: ◮ κ(P −1 A) is small; ◮ eigenvalues of P −1 A are clustered; ◮ distinct eigenvalues are few. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioned Krylov Methods ◮ Right-preconditioning of the Newton equations is used, i.e., we solve (F ′ (uk )P −1 )Psk = −F (uk ). where P is the preconditioner. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioned Krylov Methods ◮ ◮ Right-preconditioning of the Newton equations is used, i.e., we solve (F ′ (uk )P −1 )Psk = −F (uk ). where P is the preconditioner. For JFNK this requires the Jacobian-vector products: (F ′ (uk )P −1 )v ≈ BOBBY PHILIP F (uk + εP −1 v) − F (uk ) . ε Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioned Krylov Methods ◮ ◮ Right-preconditioning of the Newton equations is used, i.e., we solve (F ′ (uk )P −1 )Psk = −F (uk ). where P is the preconditioner. For JFNK this requires the Jacobian-vector products: (F ′ (uk )P −1 )v ≈ ◮ F (uk + εP −1 v) − F (uk ) . ε The approximate Jacobian-vector is computed in two steps: ◮ ◮ Solve y = P −1 v approximately (uk ) . Compute F (uk +εy)−F ε BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Linear Systems The Jacobian systems at each Newton step are of the form: δE −rE L δT = −r T where L≈ I ∆t − ∇ · Drk ∇ + σa I −σa I BOBBY PHILIP I ∆t −σa (T k )3 − ∇ · Dtk ∇ + σa (T k )3 Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Preconditioner: Operator Split We use a splitting of the form shown in our preconditioner L ≈ P1 P 2 where P1 = I ∆t − ∇ · Drk ∇ 0 I ∆t 0 − ∇ · Dtk ∇ and P2 = (1 + ∆tσa )I −∆tσa I −∆tσa (T k )3 I + ∆tσa (T k )3 Systems involving P1 are solved using the FAC/AFACx methods and systems involving P2 are solved using cell-wise inversion. BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Regridding: Time Integration ◮ Linear interpolation causes jump in time derivative ◮ Warm restart to minimize timestep changes ◮ Cold restart results in time step cuts ◮ Resolve at existing step to minimize perturbation to solution ◮ Regrid can lead to non-positive values BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Numerics: Simulation Software ◮ SAMRAI package for AMR ◮ PETSc SNES package for inexact Newton ◮ PETSc Krylov solver - GMRES ◮ SAMRSolvers package for multilevel preconditioners and operators - FAC, AFACx, MDS ◮ NRDF application code with implicit time integration BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Numerics: Solver parameters ◮ ◮ ◮ ◮ timestepper tolerance: 1.0e − 5 nonlinear solver absolute tolerance: 1.0e − 10 nonlinear solver relative tolerance: 1.0e − 12 step tolerance: 1.0e − 10 ◮ variable forcing term: ηk = 0.01 initially ◮ max. gmres subspace dimension: 50 ◮ max. linear iterations: 100 ◮ FAC V-cycle, R-B Gauss Seidel (1 pre and 0 post smooths) ◮ final time: 0.5 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Numerics: Material Properties (Atomic Number) BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Nonlinear Iterations Levels 1 2 3 4 5 163 - 2.99 2.96 2.64 2.71 323 2.99 2.96 2.63 2.71 - 643 2.96 2.64 2.71 - - 1283 2.61 2.72 - - - 2563 3.04 - - - - BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Nonlinear Iterations �� ����� ����� ����� ������ ���������������������� �� �� �� �� �� �� �� ����� ����� ����� ����� ����� ����� ���������� BOBBY PHILIP Nonlinear Methods ����� ����� ����� Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Linear Iterations Levels 1 2 3 4 5 163 - 7.71 7.21 6.63 6.92 323 7.68 7.22 6.61 6.91 - 643 7.15 6.63 6.92 - - 1283 6.43 6.86 - - - 2563 6.72 - - - - BOBBY PHILIP Nonlinear Methods Model Problem Discretization Solution Methodology Numerical Results Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Performance: Linear Iterations ��� ����� ����� ����� ������ ������������������� ��� ��� ��� ��� �� �� �� ����� ����� ����� ����� ����� ����� ���������� BOBBY PHILIP Nonlinear Methods ����� ����� ����� Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Relative Degrees of Freedom �������������������������� ���� ����� ����� ����� ������ ����� ���� ����� ���� ����� ���� ����� �� �� ���� ���� ���� ���� BOBBY PHILIP Nonlinear Methods ���� ���� Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Number of Timesteps Levels 1 2 3 4 5 163 - 1333 3251 8204 8697 323 1334 3251 8204 8704 - 643 3253 8204 8704 - - 1283 8207 8734 - - - 2563 8698 - - - - BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Timestep Variation ������� ����� ����� ����� ������ ������������� �������� ������� ������ �� �� ����� ����� ����� ����� ����� ���������� BOBBY PHILIP Nonlinear Methods ����� ����� ����� Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Performance: Timestep Variation ������� ����� ����� ����� ������ ������� ������� ������������� ������� ������� ������� ������� ������� ����� ����� ����� ����� ����� ���������� BOBBY PHILIP Nonlinear Methods ����� ����� Model Problem Discretization Solution Methodology Numerical Results Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion 1,805.92 1,804.22 3,842.55 2,584.29 3,351.01 3,297.35 7,247.99 0.5 4,257.58 7,131.46 7,075.36 1 ·104 8,360.88 Time in seconds 1.5 13,446.3 Performance: Wallclock Time 0 Total Preconditioner 128b1l 64b2l 32b3l Nonlinear function 16b4l Figure : Timings for 128b1l equivalent AMR grids on 128 cores BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Accuracy: Temporal t 0.05 ∆t 0.15 0.25 0.35 0.45 L2 Error: Energy Density 2.0e-04 4.53e-05 3.93e-05 2.87e-05 2.47e-05 2.36e-05 1.0e-04 1.13e-05 9.80e-06 7.10e-06 6.10e-06 5.80e-06 5.0e-05 2.30e-06 2.00e-06 1.50e-06 1.30e-06 1.20e-06 L2 Error: Temperature 2.0e-04 2.43e-05 2.06e-05 1.89e-05 1.87e-05 1.82e-05 1.0e-04 6.00e-06 5.10e-06 4.70e-06 4.60e-06 4.50e-06 5.0e-05 1.20e-06 1.00e-06 1.00e-06 9.00e-07 9.00e-07 Table : Temporal L2 norm errors on a 16b4l grid BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Accuracy: Spatial, Single Material t 0.05 Grid 0.11 0.27 0.36 0.45 L2 Error: Energy Density 16b1l 1.22e-01 3.46e-01 4.65e-01 4.22e-01 3.77e-01 16b2l 2.28e-01 1.99e-01 1.47e-01 1.35e-01 1.13e-01 16b3l 9.27e-02 5.64e-02 4.92e-02 3.20e-02 4.13e-02 16b4l 1.94e-02 1.30e-02 1.07e-02 1.06e-02 9.15e-03 128b1l 1.94e-02 1.30e-02 1.07e-02 1.06e-02 9.12e-03 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Accuracy: Spatial, Single Material t 0.05 Grid 0.11 0.27 0.36 0.45 L2 Error: Temperature 16b1l 5.57e-02 1.61e-01 2.30e-01 2.34e-01 2.29e-01 16b2l 8.03e-02 8.05e-02 7.98e-02 7.04e-02 6.12e-02 16b3l 2.55e-02 2.28e-02 2.17e-02 1.69e-02 1.99e-02 16b4l 5.15e-03 4.37e-03 3.81e-03 4.14e-03 4.20e-03 128b1l 5.15e-03 4.37e-03 3.81e-03 4.14e-03 4.19e-03 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Accuracy: Spatial, Multimaterial t 0.04 Grid 0.10 0.25 0.35 0.46 L2 Error: Energy Density 16b1l 6.01e-02 3.32e-01 4.99e-01 4.49e-01 3.77e-01 16b2l 2.21e-01 2.12e-01 1.55e-01 1.28e-01 1.15e-01 16b3l 9.92e-02 6.82e-02 4.12e-02 3.84e-02 4.28e-02 16b4l 2.38e-02 1.39e-02 1.11e-02 1.44e-02 2.29e-02 128b1l 2.38e-02 1.39e-02 1.11e-02 1.44e-02 2.29e-02 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Model Problem Discretization Solution Methodology Numerical Results Accuracy: Spatial, Multimaterial t 0.04 Grid 0.10 0.25 0.35 0.46 L2 Error: Temperature 16b1l 3.15e-02 1.52e-01 2.32e-01 2.23e-01 2.06e-01 16b2l 7.78e-02 8.97e-02 7.17e-02 7.08e-02 7.86e-02 16b3l 2.76e-02 2.26e-02 1.90e-02 2.65e-02 3.39e-02 16b4l 5.53e-03 4.43e-03 7.63e-03 1.11e-02 1.64e-02 128b1l 5.53e-03 4.43e-03 7.63e-03 1.11e-02 1.64e-02 BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion Software ◮ BoxMG, parallel open source geometric black box multigrid solver (LANL) ◮ SMG, PFMG, BoomerAMG, parallel open source multigrid solvers (LLNL) ◮ PETSc parallel multigrid solver (ANL) ◮ LAMG, parallel algebraic multigrid solver (LANL) ◮ SAMRSolvers, Multilevel FAC, AFAC, AFACx solvers, ORNL/Philip BOBBY PHILIP Nonlinear Methods Preconditioned Krylov Methods Non-Equilibrium Radiation-Diffusion Conclusion References ◮ Iterative Methods for Large Linear Systems, Hank A. van der Vorst ◮ Matrix Computations, Golub and Van Loan ◮ Iterative Methods for Sparse Linear Systems, Youssef Saad ◮ Iterative Methods for Linear and Nonlinear Systems, C. T. Kelley BOBBY PHILIP Nonlinear Methods
© Copyright 2026 Paperzz