Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion An Introduction to Multigrid Techniques BOBBY PHILIP Computer Science and Mathematics Division Oak Ridge National Laboratory, U.S.A. [email protected] CIMPA Research School Indian Institute of Science, July 12, 2013 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion 1 This research was conducted in part under the auspices of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC05- 00OR22725 with UT-Battelle, LLC. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Elliptic Model Examples −∇ · ∇φ = f −∇ · D(x)∇φ = f −∇ · D(φ)∇φ = f defined in the interior of a domain Ω with boundary ∂Ω. Boundary conditions: I Dirichlet I Neumann I Robin I Others.. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Discretization and Grids Discretization: I Finite difference I Finite volume I Finite element I Spectral element I Mimetic schemes I .... Types of grids: I Structured uniform grids I Block structured grids (locally uniform) I Unstructured grids Numerical approximation results in sparse discrete linear and nonlinear systems of coupled equations. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Terminology I Let v h denote an approximate to the exact solution, u h I The error: e h = u h − v h I The residual: r h = f h − Ah v h I The error satisfies the residual equation: Ah e h = r h r h = f h − Ah u h = Ah u h − Ah v h = Ah (u h − v h ) = Ah e h BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Stationary iterative processes Splitting A as A = M − N yields the iterative process u n+1 = u n + M −1 r n Examples include (damped) Jacobi and Gauss-Seidel BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Smoothers Error after 1 smoothing steps Error after 10 smoothing steps 0.9 0.7 0.8 0.6 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0.1 0 35 35 30 30 25 25 30 20 30 20 25 15 20 25 15 15 10 20 15 10 10 5 10 5 5 0 5 0 0 0 Error after 100 smoothing steps Error after 50 smoothing steps 0.5 0.5 0.45 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 35 35 30 30 25 30 20 25 15 20 25 30 20 25 15 20 15 10 10 5 5 0 0 BOBBY PHILIP 15 10 10 5 5 0 0 Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Coarse Grid Correction Smooth error can be represented well on a coarser mesh: Error after 10 smoothing steps Error on a coarse grid 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 18 35 16 30 14 25 30 20 25 15 20 15 10 10 5 16 14 10 12 8 10 6 8 6 4 4 2 5 0 12 2 0 0 0 Smooth error appears more oscillatory on a coarser mesh. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Grid Aliasing Oscillatory error gets aliased into smooth error on a coarser mesh: sin(30*pi*x)*sin(30*pi*y) on 32x32 grid sin(30*pi*x)*sin(30*pi*y) on 16x16 grid 25 20 25 15 20 15 10 10 10 10 5 5 0 5 5 0 0 BOBBY PHILIP 0 Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Two Grid Algorithm This suggests the following two grid algorithm: I (Pre) Smooth on Ah uh = fh I Compute the residual: rh = fh − Ah uh . (Note: Ah eh = rh ) I Solve the coarse residual equation: AH eH = Rrh I Correct the fine grid approximation: uh ←− uh + PeH I (Post) Smooth on Ah uh = fh BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Multigrid µ-Cycle Algorithm: uh ←− MG µ(uh , fh , ν1 , ν2 ) if (Ωh coarsest grid) then uh ←− (Ah )−1 fh else Pre-smooth: ν1 times on Ah uh = fh with initial guess uh Restrict residual: fH ←− R(fh − Ah uh ) Initial guess: uH ←− 0 Correct: uH ←− MG µ(uH , fH , ν1 , ν2 ) µ times Update: uh ←− uh + PuH Post-smooth: ν2 times on Ah uh = fh with initial guess uh endif BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Restrict Smooth BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Restrict Smooth Restrict Ω4h Solve BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Restrict Ω4h Solve BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Restrict Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Smooth Restrict Update Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: W-Cycle Ωh Smooth ΩH Smooth Restrict Smooth Smooth Restrict Update Smooth Update Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Review: Multigrid components I Grid Coarsenings I Smoothers I Restriction operators I Coarse grid operators I Prolongation operators BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Full Approximation Scheme (FAS) I The Full Approximation Scheme is a multigrid method for nonlinear problems I Discrete nonlinear problem: Ah (uh ) = fh on the finest level, where Ah is a nonlinear operator I Error for a given approximation is uh − vh I Nonlinear residual is rh = fh − Ah (vh ) = Ah (uh ) − Ah (vh ) I Given these ingredients how do we construct a multilevel algorithm? BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS:Two Grid Algorithm I Smooth (nonlinearly) on Ah (vh ) = fh with initial guess vh I Compute residual: rh = fh − Ah (vh ) I Restrict the residual: fH = Rrh I Solve the coarse residual equation I Correct the fine grid approximation BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS:Two Grid Algorithm I What is the coarse residual equation? I rH = fH − AH (vH ) = AH (uH ) − AH (vH ) = AH (vH + eH ) − AH (vH ) I Coarse residual equation: AH (vH + eH ) − AH (vH ) = rH I I Approximate vH = R̂vh and rH = Rrh Now we have: AH (R̂vh + eH ) − AH (R̂vh ) = Rrh I or equivalently: ABOBBY ) = Introduction AH (R̂vhto) + Rrh H (wH PHILIP Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion I (Pre) Smooth (nonlinearly) on Ah (vh ) = fh with initial guess vh I Compute residual: rh = fh − Ah (vh ) I Restrict the residual: fH = Rrh I Restrict the solution: vH = R̂vh I Solve the coarse residual equation AH (wH ) = AH (R̂vh ) + Rrh with initial guess vH = R̂vh I Compute correction: eH = wH − R̂v h I Update fine grid approximation: vh = vh + PeH I (Post) Smooth on Ah (vh ) = fh with initial guess vh BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS Components I Nonlinear Smoothers I I I Nonlinear Jacobi-Newton Nonlinear Gauss-Seidel-Newton Coarse Grid Operator I I Rediscretization Nonlinear Galerkin Discretization BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS: τ -correction I Right hand side for coarse grid correction: AH (R̂vh ) + Rrh I Can be written as: Rfh + AH (R̂vh ) − R(Ah vh ) I τ -correction: τhH = AH (R̂vh ) − R(Ah vh ) I (h, H) truncation error estimate for adaptive mesh refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS: FMG Algorithm: uh ←− FAS − FMG (fh ; µ, ν1 , ν2 ) if (Ωh coarsest grid) then uh ←− (Ah )−1 fh else Restrict RHS: Coarse approximation: Initial guess: Solve: endif fH ←− Rfh uH ←− FAS − FMG (fH , ν) uh ←− ΠhH uH uh ←− FASµ(uh , fh , ν1 , ν2 ) BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS-FMG-Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS-FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS-FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS-FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion FAS-FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. Many flavors: I BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. Many flavors: I I h-refinement: variants include: structured AMR, block structured AMR, cell based AMR (unstructured) BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. Many flavors: I I I h-refinement: variants include: structured AMR, block structured AMR, cell based AMR (unstructured) p-refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. Many flavors: I I I I h-refinement: variants include: structured AMR, block structured AMR, cell based AMR (unstructured) p-refinement r -refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Mesh Refinement I Adaptive Mesh Refinement (AMR) is a numerical technique to introduce local grid resolution only where required. I Benefits are significant savings in memory and computational cost. I Obviously not as easy to implement as a single grid calculation. Many flavors: I I I I I h-refinement: variants include: structured AMR, block structured AMR, cell based AMR (unstructured) p-refinement r -refinement combinations of the above, e.g., hp-refinement. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Uniform Grid Refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Uniform Grid Refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Degrees freedom Error MU WU of 400 1600 6400 25600 10.88 4/3 7/2 0.589 16/3 14 0.062 64/3 56 0.016 256/3 224 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Grid Refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Adaptive Grid Refinement BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Number of refinement levels Degrees of freedom Error MU WU 1 2 3 4 400 800 1200 1600 10.88 4/3 7/2 0.319 16/3 10 0.02 28/3 13 0.001 40/3 16 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Hierarchical Structure of SAMR Grids BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion AMR Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion AMR Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion AMR Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion AMR Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion AMR Cycle BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Inverting Elliptic Components Choices: I Algebraic - ILU etc I Level by Level Solver I Multigrid I Multilevel Methods BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Inverting Elliptic Components Choices: I Algebraic - ILU etc I Level by Level Solver I Multigrid I Multilevel Methods Fast Adaptive Composite (FAC) Grid method: I Extension of multigrid to work on AMR grids. I Uses smoothing only on local patches. I Level independent convergence rate I V-cycle version optimal BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Compute residual: r 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Smooth: A3 e 3 = r 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Update: u 3 ← u 3 + e 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Compute residual:r 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Smooth: A2 e 2 = r 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Solve/smooth: A1 e 1 = r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + I12 e 1 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Compute residual: r 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Smooth: A2 e 2 = r 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 3 ← u 3 + I23 e 2 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Compute residual: r 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Smooth: A3 e 3 = r 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Compute residual: r 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Ωh2 Compute residual: r 3 Compute residual:r 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Ωh2 Ωh1 Compute residual: r 3 Compute residual:r 2 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Ωh2 Ωh1 Smooth: A3 e 3 = r 3 Smooth: A2 e 2 = r 2 Solve: A1 e 1 = r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Ωh3 Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Form Correction: e 3 ← e 3 + Pe 2 Ωh3 Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Breaking Synchrony Ωhc Update: u 3 ← u 3 + e 3 Ωh3 Update: u 2 ← u 2 + e 2 Ωh2 Update: u 1 ← u 1 + e 1 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Ωh3,r Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Compute residual:r 2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Compute residual:r 2 Ωh2,r Ωh1 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Ωh3,r Ωh2 Ωh2,r Ωh1 Compute residual: r 3 Copy residual: rr3 ← r2 Compute residual:r 2 Copy residual:rr2 ← r1 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Ωh3,r Ωh2 Ωh2,r Ωh1 Solve: A3 e 3 = r 3 Solve: A2r er2 = rr2 Solve: A2 e 2 = r 2 Solve: A1r er1 = rr1 Solve: A1 e 1 = r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Correct: e 3 ← e 3 − Per3 Ωh3,r Ωh2 Correct: e 2 ← e 2 − Per2 Ωh2,r Ωh1 Correct: e 1 ← e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Ωh3 Ωh3,r Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Form Correction: e 3 ← e 3 + Pe 2 Ωh3 Ωh3,r Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFAC Ωhc Update: u 3 ← u 3 + e 3 Ωh3 Ωh3,r Update: u 2 ← u 2 + e 2 Ωh2 Ωh2,r Update: u 1 ← u 1 + e 1 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Ωh3,r Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Compute residual:r 2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Compute residual: r 3 Ωh3,r Ωh2 Compute residual:r 2 Ωh2,r Ωh1 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Ωh3,r Ωh2 Ωh2,r Ωh1 Compute residual: r 3 Copy residual: rr3 ← r2 Compute residual:r 2 Copy residual:rr2 ← r1 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Ωh3,r Smooth: A2r er2 = rr2 Ωh2 Ωh2,r Smooth: A1r er1 = rr1 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Smooth A3 e 3 = r 3 , initial guess Pe2,r Ωh3,r Ωh2 Smooth A2 e 2 = r 2 , initial guess Pe2,r Ωh2,r Ωh1 Solve A1 e 1 = r 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Correct: e 3 ← e 3 − Per3 Ωh3,r Ωh2 Correct: e 2 ← e 2 − Per2 Ωh2,r Ωh1 Correct: e 1 ← e 1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Ωh3 Ωh3,r Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Form Correction: e 3 ← e 3 + Pe 2 Ωh3 Ωh3,r Form Correction: e 2 ← e 2 + Pe 1 Ωh2 Ωh2,r Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Ωhc Update: u 3 ← u 3 + e 3 Ωh3 Ωh3,r Update: u 2 ← u 2 + e 2 Ωh2 Ωh2,r Update: u 1 ← u 1 + e 1 Ωh1 BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. AFAC: Asynchronous FAC. I I I I Uses restricted grids (coarsenings of each refinement level). Uses direct solvers or multigrid for each level/restricted level. Convergence rate the square root of that for FAC. Good parallelism. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I I AFAC: Asynchronous FAC. I I I I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. Uses restricted grids (coarsenings of each refinement level). Uses direct solvers or multigrid for each level/restricted level. Convergence rate the square root of that for FAC. Good parallelism. AFACx: I I I I Uses restricted grids. Uses smoothers only Cheaper than AFAC Convergence rate comparable to AFAC. BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion Software I BoxMG, parallel open source geometric black box multigrid solver (LANL) I SMG, PFMG, BoomerAMG, parallel open source multigrid solvers (LLNL) I PETSc parallel multigrid solver (ANL) I LAMG, parallel algebraic multigrid solver (LANL) I SAMRSolvers, Multilevel FAC, AFAC, AFACx solvers, ORNL/Philip BOBBY PHILIP Introduction to Multigrid Review Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion References I Multigrid Tutorial, Briggs, Henson, McCormick, SIAM I Multigrid, Trottenberg, Oosterlee, Schuller I An Introduction to Multigrid Methods, Wesseling I Multigrid Methods and Applications, Hackbusch I Multigrid methods, Bramble I Multigrid Adaptive Methods for PDEs, McCormick BOBBY PHILIP Introduction to Multigrid
© Copyright 2026 Paperzz