Overview Multigrid Structured Adaptive Mesh Refinement Conclusion An Introduction to Multigrid Techniques BOBBY PHILIP Computer Science and Mathematics Division Oak Ridge National Laboratory, U.S.A. CIMPA Research School Indian Institute of Science, July 10, 2013 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Overview Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Multigrid Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Structured Adaptive Mesh Refinement Conclusion 1 This research was conducted in part under the auspices of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract No. DE-AC05- 00OR22725 with UT-Battelle, LLC. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Some Model Examples −∇ · ∇φ = f −∇ · D(x)∇φ = f −∇ · D(φ)∇φ = f defined in the interior of a domain Ω with boundary ∂Ω. Boundary conditions: I Dirichlet I Neumann I Robin I Others.. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Discretization and Grids Discretization: I Finite difference I Finite volume I Finite element I Spectral element I Mimetic schemes I .... Types of grids: I Structured uniform grids I Block structured grids (locally uniform) I Unstructured grids Numerical approximation results in sparse discrete linear and nonlinear systems of coupled equations. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Numerical methods for linear systems I Linear systems I Direct methods I I I I Iterative methods I I I I Gaussian elimination O(N 3 ), (O(N 7/3 ) when banded, in 3D) Cyclic reduction O(Nlog (N)) Fourier methods O(Nlog (N))) Simple stationary iterations (Jacobi, Gauss-Seidel etc) Krylov subspace methods O(N 4/3 log ()) Full Multigrid (FMG) O(N) Nonlinear systems I I I Newton-Krylov methods Newton-Multigrid Full Approximation Scheme (FAS) BOBBY PHILIP Introduction to Multigrid Estimated Required Solution Time (s) Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Cholesky Jacobi GS Band Cholesky CG−MIC(0) Optimal 20 10 15 10 Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers age of the universe 10 10 60 years 5 10 one minute 0 10 −5 10 0 10 3 10 6 10 Problem Size (Courtesy, Scott Maclachlan, Tufts) BOBBY PHILIP Introduction to Multigrid 9 10 Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers To introduce linear multigrid we are going to work with: I Poissons equation with homogenous Dirichlet boundary conditions I Uniform single grid I Vertex centered finite difference discretization BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Discretize on a uniform mesh: For simplicity assume nx = ny = n, hx = hy . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Discretize on a uniform mesh: (0, ny + 1) (nx + 1, ny + 1) (0, 0) (nx + 1, 0) For simplicity assume nx = ny = n, hx = hy . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Discretize on a uniform mesh: (0, ny + 1) (nx + 1, ny + 1) (0, 0) hx (nx + 1, 0) For simplicity assume nx = ny = n, hx = hy . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers Discretize on a uniform mesh: (0, ny + 1) (nx + 1, ny + 1) hy (0, 0) hx (nx + 1, 0) For simplicity assume nx = ny = n, hx = hy . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers At any interior point (i, j) discretize using the standard 5 point finite difference stencil: (i, j + 1) (i − 1, j) (i, j) (i + 1, j) (i, j − 1) BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion h h − uh −ui−1,j + 2ui,j i+1,j h2 + Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers h h − uh −ui,j−1 + 2ui,j i,j+1 h2 = fi,jh , with 1 ≤ i, j ≤ n. or equivalently h − uh h h h 4ui,j i−1,j − ui+1,j − ui,j−1 − ui,j+1 h2 = fi,jh , with 1 ≤ i, j ≤ n. This yields the linear system Ah u h = f h . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion 1 A = 2 h h B −I · BOBBY PHILIP Elliptic Model Problems Discretizations and Grids Linear and Nonlinear Solvers −I B · · −I · · −I −I B Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Terminology: I Let v h denote an approximate to the exact solution, u h I The error: e h = u h − v h I The residual: r h = f h − Ah v h I The error satisfies the residual equation: Ah e h = r h r h = f h − Ah u h = Ah u h − Ah v h = Ah (u h − v h ) = Ah e h BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) I Hard to invert A directly I Easier to solve a ”nearby” system Mv h = f h where M ≈ A I e h = u h − v h =⇒ Ah e h = r h I Approximate e h using M instead of A in residual equation I Leads to the iteration vn+1 = vn + M −1 rn I Error propagation: en+1 = en − M −1 rn = en − M −1 Aen = (I − M −1 A)en = (I − M −1 A)n+1 e0 I Iteration converges iff ρ(I − M −1 A) < 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Stationary iterative processes Can also be considered as splitting A as: A = M − N. This yields the iterative process: Mu n+1 = Nu n + f , or u n+1 = M −1 Nu n + M −1 f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Stationary iterative processes Rewriting the previous iteration we have: u n+1 = M −1 (M − A)u n + M −1 f = u n − M −1 Au n + M −1 f = u n + M −1 (f − Au n ) = u n + M −1 r n BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Stationary iterative processes Let A = D − L − U Common examples of stationary iterations: I Jacobi: u n+1 = u n + D −1 r n e n+1 = (I − D −1 A)e n I Damped Jacobi: u n+1 = u n + ωD −1 r n I Gauss-Seidel: u n+1 = u n + (D − L)−1 r n u n+1 = (I − (D − L)−1 A)e n BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Error after 1 smoothing steps Error after 10 smoothing steps 0.9 0.7 0.8 0.6 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0.1 0 35 35 30 30 25 25 30 20 30 20 25 15 20 25 15 15 10 20 15 10 10 5 10 5 5 0 5 0 0 0 Error after 100 smoothing steps Error after 50 smoothing steps 0.5 0.5 0.45 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 35 35 30 30 25 30 20 25 15 20 25 30 20 25 15 20 15 10 10 5 5 0 0 BOBBY PHILIP 15 10 10 5 5 0 0 Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) 2D Poisson example I Iteration matrix for damped Jacobi: 2 (I − ωD −1 Ah ) = (I − ωh4 Ah ) I Error damping for ω-Jacobi : e m = (I − I Eigenfunctions: φk,l (x, y ) = sin(kπx)sin(lπy ), (x, y ) ∈ Ωh , k, l = 1, 2, · · · , n − 1 I 2 lπh Eigenvalues: λk,l = 1 − ω(sin2 ( kπh 2 ) + sin ( 2 )) I Spectral radius ≈ 1 − ωπh 2 Pn−1 P 0 m e = k,l=1 αk,l φk,l =⇒ e m = n−1 k,l=1 αk,l λk,l φk,l I ωh2 h m 0 4 A ) e 2 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Damped Jacobi with ω = 4/5 on k = 1, l = 1 error mode Error before Jacobi smoothing steps Error after 5 smoothing steps 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 35 35 30 30 25 25 30 20 25 15 30 20 20 10 25 15 15 20 15 10 10 5 10 5 5 0 5 0 0 0 Convergence rate: krk k/krk−1 k = 0.996 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Damped Jacobi with ω = 4/5 on k = 16, l = 16 error mode Error before Jacobi smoothing steps Error after 5 smoothing steps −4 x 10 1 4 0.8 3 0.6 2 0.4 1 0.2 0 0 −0.2 −1 −0.4 −2 −0.6 −3 −0.8 −1 −4 35 35 30 30 25 25 30 20 30 20 25 15 15 10 25 15 20 20 15 10 10 5 10 5 5 0 5 0 0 0 Convergence rate: krk k/krk−1 k = 0.2 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Damped Jacobi with ω = 4/5 on sin(πx)sin(πy ) + sin(16πx)sin(16πy ) + sin(25πx)sin(25πy ) mixed error mode Error before Jacobi smoothing steps Error after 5 smoothing steps 3 1 2.5 0.9 2 0.8 1.5 0.7 1 0.6 0.5 0.5 0 0.4 −0.5 0.3 −1 0.2 −1.5 0.1 −2 0 35 35 30 30 25 25 30 20 25 15 20 15 10 30 20 25 15 20 15 10 10 5 5 0 0 10 5 5 0 BOBBY PHILIP 0 kr k 1.30277e+02 2.00318e+01 8.33307e+00 3.49242e+00 1.48631e+00 6.79236e-01 3.93535e-01 3.17248e-01 3.00978e-01 2.97096e-01 2.95470e-01 2.94248e-01 2.93099e-01 2.91968e-01 Introduction to Multigrid Conv. Factor 1.000 0.407 0.416 0.419 0.426 0.457 0.579 0.806 0.949 0.987 0.995 0.996 0.996 0.996 Overview Multigrid Structured Adaptive Mesh Refinement Conclusion I Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) For elliptic equations ρ(I − M −1 A) ≈ (1 − O(h2 )) −→ 1 as the mesh is refined. I Hence, stationary iterative methods such as damped Jacobi, G-S, etc are not good solvers. I However, they are excellent smoothers of error. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Coarse Grid Correction Smooth error can be represented well on a coarser mesh: Error after 10 smoothing steps Error on a coarse grid 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 18 35 16 30 14 25 30 20 25 15 20 15 10 10 5 16 14 10 12 8 10 6 8 6 4 4 2 5 0 12 2 0 0 0 Smooth error appears more oscillatory on a coarser mesh. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Grid Aliasing Oscillatory error gets aliased into smooth error on a coarser mesh: sin(30*pi*x)*sin(30*pi*y) on 32x32 grid sin(30*pi*x)*sin(30*pi*y) on 16x16 grid 25 20 25 15 20 15 10 10 10 10 5 5 0 5 5 0 0 BOBBY PHILIP 0 Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Try to obtain a coarse approximation to the error After smoothing, the information available about the error is in the residual. Ah eh = rh Since eh is smooth it can be approximated on a coarser grid. The coarse approximation to eh is obtained by solving AH eH = rH where H = 2h typically and AH and rH are defined on a coarse grid. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Two Grid Algorithm This suggests the following two grid algorithm: I (Pre) Smooth on Ah uh = fh I Compute the residual: rh = fh − Ah uh . (Note: Ah eh = rh ) I Solve the coarse residual equation: AH eH = Rrh I Correct the fine grid approximation: uh ←− uh + PeH I (Post) Smooth on Ah uh = fh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Two Grid Algorithm I The process of I I I I Restriction to the coarser grid Solving the coarse residual equation Prolongation of the correction to the fine grid Updating the current fine grid approximation is called Coarse Grid Correction (CGC). I Solving the coarse residual equation can be accomplished by smoothing and CGC from a still coarser grid. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Restriction: R Restriction operator R transfers data from Ωh to ΩH BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Restriction: R Restriction operator R transfers data from Ωh to ΩH BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Restriction: R Restriction operator R transfers data from Ωh to ΩH BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Restriction: R Restriction operator R transfers data from Ωh to ΩH BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Interpolation: P I Interpolation operator P transfers data from ΩH to Ωh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Interpolation: P I Interpolation operator P transfers data from ΩH to Ωh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Interpolation: P I Interpolation operator P transfers data from ΩH to Ωh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Interpolation: P I Interpolation operator P transfers data from ΩH to Ωh I Operator dependent interpolation for more difficult probems BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Coarse Grid Operators I Rediscretization on the coarse grid I Variational Galerkin coarse grid operators: AH = RAh P I Operators based partially on Galerkin that try and maintain sparsity BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FEM: Canonical Projection and Restriction Operators I I I Let φjh , j = 1, 2, · · · , Nh , nodal basis for ‘fine’ space Vh , φjH , j = 1, 2, · · · , NH , basis for ‘coarse’ subspace VH P h i φjH = N i=1 pij φh , j = 1, 2, · · · , NH . For vH ∈ VH : vH = NH X vHj φjH j=1 = I j=1 vHj Nh X pij φih i=1 Nh X NH Nh X X ( pij vHj )φih = [PvH ]i φih i=1 j=1 I = NH X i=1 In vector form vh = PvH . R = Pt BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FEM: Canonical Coarse Grid Operators I Matrix form: Solve AH vH = R(fh − Ah uh ) I Variational form: For uh ∈ Vh , find v ∈ VH such that a(uh + v , w ) = f (w ) ∀w ∈ VH I a(v , w ) = f (w ) − a(uh , w ) P H s s Choose w = φjH , j = 1, 2, · · · , NH , v = N s=1 vH φH I Some error prone linear algebra leads to: (RAh P)vH = R(fh − Ah uh ) AH vH = R(fh − Ah uh ) BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Problems with varying anisotropy I Example from Klaus Stüben. I The underlying PDE is: −(aux )x − (buy )y + cuxy = f (x, y ) defined on a unit square with full Dirichlet boundary conditions. I The problem is defined such that a = b = 1 everywhere except in the upper left quarter of the unit square where b = 103 and the lower right quarter where a = 103 I To split the domain into four regions with varying anisotropies, c = 0 except in the upper right quarter where c = 2. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Error with different smoothers 0.7 0.4 0.6 0.5 0.3 0.4 0.2 0.3 0.2 0.1 0.1 0 0.8 0.2 0.6 0.4 0.4 0.6 0.8 0.2 BOBBY PHILIP 0.8 0.2 0.6 0.4 0.4 0.6 0.8 Introduction to Multigrid 0.2 Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Block Smoother Block smoother created 285 blocks on the 961 × 961 system. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 BOBBY PHILIP 0.6 0.8 1 Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Convergence Results Pointwise kr k Conv. Fac. 1.704e+007 1.00000 2.580e+006 0.15138 7.049e+005 0.27318 3.736e+005 0.53000 2.666e+005 0.71357 BOBBY PHILIP Block kr k Conv. Fac. 1.704e+007 1.00000 2.908e+003 0.00017 9.142e+002 0.31444 6.060e+002 0.66285 4.764e+002 0.78607 Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Smoothers and Coarse Grids I Smoothers I I I I I I Point Smoothers Line and Plane Smoothers Block Smoothers ILU smoothers Algebraic smoothers Coarse Grids I I I I Uniform Semicoarsening Multiple coarsenings Algebraic coarsenings BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Multigrid V-Cycle Algorithm: uh ←− MGV (uh , fh , ν1 , ν2 ) if (Ωh coarsest grid) then uh ←− (Ah )−1 fh else Pre-smooth: ν1 times on Ah uh = fh with initial guess uh Restrict residual: fH ←− R(fh − Ah uh ) Initial guess: uH ←− 0 Correct: uH ←− MGV (uH , fH , ν1 , ν2 ) Update: uh ←− uh + PuH Post-smooth: ν2 times on Ah uh = fh with initial guess uh endif BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Restrict Smooth BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Ω4h Restrict Smooth Restrict Smooth BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Ω4h Restrict Smooth Restrict Smooth Restrict Ω8h Smooth/Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Ω4h Restrict Smooth Restrict Smooth Smooth Restrict Update Ω8h Smooth/Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Ω4h Restrict Smooth Smooth Restrict Smooth Update Smooth Restrict Update Ω8h Smooth/Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) V-Cycle Ωh Smooth ΩH Ω4h Smooth Restrict Smooth Update Smooth Restrict Smooth Update Smooth Restrict Update Ω8h Smooth/Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Multigrid µ-Cycle Algorithm: uh ←− MG µ(uh , fh , ν1 , ν2 ) if (Ωh coarsest grid) then uh ←− (Ah )−1 fh else Pre-smooth: ν1 times on Ah uh = fh with initial guess uh Restrict residual: fH ←− R(fh − Ah uh ) Initial guess: uH ←− 0 Correct: uH ←− MG µ(uH , fH , ν1 , ν2 ) µ times Update: uh ←− uh + PuH Post-smooth: ν2 times on Ah uh = fh with initial guess uh endif BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Restrict Smooth BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Restrict Smooth Restrict Ω4h Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Restrict Ω4h Solve BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Restrict Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Restrict Smooth Smooth Smooth Restrict Update Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) W-Cycle Ωh Smooth ΩH Smooth Restrict Smooth Smooth Restrict Update Smooth Update Ω4h Solve BOBBY PHILIP Solve Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Simplistic Nested Iteration Algorithm: u h ←− SNI (f h ; ν) if (Ωh coarsest grid) then u h ←− (Ah )−1 f h else Restrict RHS: f H ←− IhH f h Coarse approximation: u H ←− SNI (f H , ν) Smooth: ν times on Ah u h = f h with initial guess ΠhH u H endif BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH h f H = ΠH hf BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH Ω4h h f H = ΠH hf H f 4h = Π4h H f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH Ω4h h f H = ΠH hf H f 4h = Π4h H f Ω8h 4h u 8h = (A8h )−1 Π8h 4h f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH Ω4h h f H = ΠH hf H f 4h = Π4h H f Smooth Initial guess Ω8h 4h u 8h = (A8h )−1 Π8h 4h f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH Ω4h h f H = ΠH hf Smooth H f 4h = Π4h H f Initial guess Smooth Initial guess Ω8h 4h u 8h = (A8h )−1 Π8h 4h f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Nested Iteration Ωh ΩH Ω4h Smooth Initial guess Smooth h f H = ΠH hf H f 4h = Π4h H f Initial guess Smooth Initial guess Ω8h 4h u 8h = (A8h )−1 Π8h 4h f BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Simplistic Nested Iteration I Nested iteration attempts to provide a good initial guess for uh . I Note that we are solving for the solution u h , and not the error I The interpolation operator ΠhH is higher order than in the MG cycles I Simplistic Nested Iteration can have problems with aliasing BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Full Multigrid Algorithm: uh ←− FMG (fh ; µ, ν1 , ν2 ) if (Ωh coarsest grid) then uh ←− (Ah )−1 fh else Restrict RHS: Coarse approximation: Initial guess: Solve: endif fH ←− Rfh uH ←− FMG (fH , ν) uh ←− ΠhH uH uh ←− MG µ(uh , fh , ν1 , ν2 ) BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FMG-Cycle BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FMG-Cycle Ωh ΩH Ω4h Ω8h BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Full Multigrid I MG µ cycles are required in FMG to tackle oscillatory and smooth error introduced by interpolation I FMG can provide a solution within truncation error I FMG is optimal in work done I FMG is more forgiving than a V- or W-cycle BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Costs I Storage costs I I I I I In d dimensions each coarse grid has 2−d grid points as the next finer grid vh and fh need to be stored on each level Total cost : 2N d (1 + 2−d + 2−2d + 2−3d · · · 2−kd ) This works out to 2, 4/3, 8/7 in 1, 2, 3 dimensions respectively Computation cost I I I I 1WU is cost of one smoothing cycle on finest level Ignore cost of interpolation and restriction (typically estimated at 20% of a WU) For 1 V(1,1) cycle cost: 2(1 + 2−d + 2−2d + 2−3d · · · 2−kd ) WU’s Works out to 4, 8/3, 16/7 WU’s in 1, 2, 3 dimensions respectively BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Error Propagation: Two Grid Algorithm Recall the two grid algorithm: I (Pre) Smooth on Ah uh = fh I Compute the residual: rh = fh − Ah uh . (Note: Ah eh = rh ) I Solve the coarse residual equation: AH eH = Rrh I Correct the fine grid approximation: uh ←− uh + PeH I (Post) Smooth on Ah uh = fh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Error Propagation: Two Grid Algorithm I (Pre) Smooth: eh = (Ih − (Mh )−1 Ah )ν1 eh0 ≡ Shν1 eh0 I Compute residual: rh = Ah Shν1 eh0 I Solve coarse residual equation: eH = (AH )−1 RAh Shν1 eh0 I Correct fine grid approximation: eh = (Ih − P(AH )−1 RAh )Shν1 eh0 ν1 0 −1 (Post) Smooth: eh1 = Shν2 A−1 h − P(AH ) R Ah Sh eh I BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Convergence Analyses: Smoothing Property Hackbusch introduced a measure of smoothness given by: µ(ν) = ||Ah Shν || ||Ah || Definition A multigrid method is said to possess the smoothing property if there exists a function η(ν) such that for sufficiently large ν ||Ah Shν || ≤ η(ν)h−α where α > 0 and η(ν) → 0 as ν → ∞. Alternatively, this is also defined using the expression ||Ah Shν || ≤ η(ν)||Ah ||. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Convergence Analyses: Approximation Property Hackbusch also introduced a measure for the coarse grid correction: Definition A multigrid method is said to possess the approximation property if there exists a constant CA > 0 such that −1 β ||A−1 h − P(AH ) R|| ≤ CA h where β > 0. This could be roughly interpreted as a measure of how well the coarse grid correction (P(AH )−1 Rrh ) approximates the error remaining after smoothing (A−1 h rh ). BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Convergence Analyses I Local Mode/Fourier Analysis (Brandt) I Multilevel Subspace Splittings (Oswald, Griebel, Xu, Bramble, Pasciak ) BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) Full Approximation Scheme (FAS) I The Full Approximation Scheme is a multigrid method for nonlinear problems I Discrete nonlinear problem: Ah (uh ) = fh on the finest level, where Ah is a nonlinear operator I Error for a given approximation is uh − vh I Nonlinear residual is rh = fh − Ah (vh ) = Ah (uh ) − Ah (vh ) I Given these ingredients how do we construct a multilevel algorithm? BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) FAS Two Grid Algorithm I Smooth (nonlinearly) on Ah (vh ) = fh with initial guess vh I Compute residual: rh = fh − Ah (vh ) I Restrict the residual: fH = Rrh I Solve the coarse residual equation I Correct the fine grid approximation BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion I Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) What is the coarse residual equation? I rH = fH − AH (vH ) = AH (uH ) − AH (vH ) = AH (vH + eH ) − AH (vH ) I Coarse residual equation: AH (vH + eH ) − AH (vH ) = rH I I Approximate vH = Rvh and rH = Rrh Now we have: AH (Rvh + eH ) − AH (Rvh ) = Rrh I or equivalently: AH (wH ) = AH (Rvh ) + Rrh BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Smoothing Coarse Grid Correction Full Approximation Scheme (FAS) I Smooth (nonlinearly) on Ah (vh ) = fh with initial guess vh I Compute residual: rh = fh − Ah (vh ) I Restrict the residual: fH = Rrh I Solve the coarse residual equation AH (wH ) = AH (Rvh ) + Rrh I Compute correction: eH = wH − Rv h I Update fine grid approximation: vh = vh + PeH BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Structured Adaptive Mesh Refinement Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Hierarchical Structure of SAMR Grids BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Inverting Elliptic Components Choices: I Algebraic - ILU etc I Level by Level Preconditioner I Multigrid I Multilevel Methods BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: Inverting Elliptic Components Choices: I Algebraic - ILU etc I Level by Level Preconditioner I Multigrid I Multilevel Methods Fast Adaptive Composite (FAC) Grid method: I Extension of multigrid to work on AMR grids. I Uses smoothing only on local patches. I Level independent convergence rate I V-cycle version optimal BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Compute residual: r 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Smooth: A3 e 3 = r 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Update: u 3 ← u 3 + e 3 Ωh2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Compute residual:r 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Smooth: A2 e 2 = r 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Ωh1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Compute residual: r 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Solve/smooth: A1 e 1 = r 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + I12 e 1 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Compute residual: r 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Smooth: A2 e 2 = r 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 3 ← u 3 + I23 e 2 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Compute residual: r 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Smooth: A3 e 3 = r 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: FAC Ωhc Ωh3 Ωh2 Ωh1 Update: u 3 ← u 3 + e 3 Update: u 3 ← u 3 + e 3 Update: u 2 ← u 2 + e 2 Update: u 2 ← u 2 + e 2 Update: u 1 ← u 1 + e 1 BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. AFAC: Asynchronous FAC. I I I I Uses restricted grids (coarsenings of each refinement level). Uses direct solvers or multigrid for each level/restricted level. Convergence rate the square root of that for FAC. Good parallelism. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms I Fast Adaptive Composite (FAC) Grid method: I I I AFAC: Asynchronous FAC. I I I I I Extension of multigrid to work on AMR grids. Uses smoothing only on local patches. Uses restricted grids (coarsenings of each refinement level). Uses direct solvers or multigrid for each level/restricted level. Convergence rate the square root of that for FAC. Good parallelism. AFACx: I I I I Uses restricted grids. Uses smoothers only Cheaper than AFAC Convergence rate comparable to AFAC. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx "!# # ! $!% !% &'( BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I Compute residual: rc = fc − Ac uc = Aec . BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. ek ẽk , k = 2, 3, . . . , J. Interpolate: ek0 ← P k BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R I Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. ek ẽk , k = 2, 3, . . . , J. Interpolate: ek0 ← P I Smooth/Solve: Ak ek = rk , k = 1, 2, . . . , J. I k BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R I Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. ek ẽk , k = 2, 3, . . . , J. Interpolate: ek0 ← P I Smooth/Solve: Ak ek = rk , k = 1, 2, . . . , J. I Adjust fine grid corrections: ek ← ek − ek0 , k = 2, 3, . . . , J. I k BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R I Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. ek ẽk , k = 2, 3, . . . , J. Interpolate: ek0 ← P I Smooth/Solve: Ak ek = rk , k = 1, 2, . . . , J. I Adjust fine grid corrections: ek ← ek − ek0 , k = 2, 3, . . . , J. P Form composite grid correction: ec = Jk=1 Pkc ek . I I k BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Multilevel Algorithms: AFACx Algorithm: AFACx for Ax = f I I Compute residual: rc = fc − Ac uc = Aec . Restrict rc : I I rk = Rkc rc , k = 1, 2, . . . , J. e kc rc , k = 2, 3, . . . , J. r˜k = R I Smooth: Aek ẽk = r˜k , k = 2, 3, . . . , J. ek ẽk , k = 2, 3, . . . , J. Interpolate: ek0 ← P I Smooth/Solve: Ak ek = rk , k = 1, 2, . . . , J. I I Adjust fine grid corrections: ek ← ek − ek0 , k = 2, 3, . . . , J. P Form composite grid correction: ec = Jk=1 Pkc ek . I Update current approximation: uc ← uc + ec . I k BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion Software I BoxMG, parallel open source geometric black box multigrid solver (LANL) I SMG, PFMG, parallel open source geometric black box multigrid solver (LLNL) I PETSc parallel multigrid solver (ANL) I BoomerAMG, parallel algebraic multigrid solver (LLNL) I LAMG, parallel algebraic multigrid solver (LANL) I http://www.mgnet.org, maintained by Craig Douglas BOBBY PHILIP Introduction to Multigrid Overview Multigrid Structured Adaptive Mesh Refinement Conclusion References I Multigrid Tutorial, Briggs, Henson, McCormick, SIAM I Multigrid, Trottenberg, Oosterlee, Schuller I An Introduction to Multigrid Methods, Wesseling I Multigrid Methods and Applications, Hackbusch I Multigrid methods, Bramble I Multigrid Adaptive Methods for PDEs, McCormick BOBBY PHILIP Introduction to Multigrid
© Copyright 2026 Paperzz