Couplage du principe des grandes
déviations et de l’homogénisation dans le
cas des EDP paraboliques:
(le cas constant)
Alioune COULIBALY
U.F.R Sciences et Technologie
Université Assane SECK de Ziguinchor
Probabilité et Analyse - CIMPA 2014
beamer-tu-log
History
Intro
LDP
Convergence
Plan
1
History
2
Intro
3
LDP
4
Convergence
beamer-tu-log
History
Intro
LDP
Convergence
History
History
P. Baldi (1991)
Freidlin and Sowers (1999)
Diédhiou and Manga (2007)
Diédhiou (Cimpa 2014)
beamer-tu-log
History
Intro
LDP
Convergence
Introduction
abstract
We consider the coupling of homogenization and large
deviation principle in partial differential equation (PDE). We
compare them with the help of the ratio δ/ between the small
viscosity parameter () and the homogenization parameter (δ);
this comparison is required as and δ tend to zero. We use
some large deviation estimates to study the behavior of the
PDE solution.
beamer-tu-log
History
Intro
LDP
Convergence
PDE
PDE
u ,δ
(t, x) = L,δ u ,δ (t, x) + 1 f
∂t
u ,δ (0, x) = g(x),
x ∈ Rd
x
,δ
δ , u (t, x)
(1)
beamer-tu-log
History
Intro
LDP
Convergence
assumption
f is a nonlinear function 1-periodic and verify:
for all x, f (x, 1) = 0
there is c a bounded function : f (x, y) = c(x, y).y
and
c(x, y) > 0 for all x and y in (0,1)
c(x, y) ≤ 0 if not
max c(x, y) = c(x)
and
g ∈ C Rd , R+ a bounded function
: supx∈Rd g(x) = ḡ < ∞.
d
Take G0 = x ∈ R : g(x) > 0 , g is continuous one notes
G̊0 = G0
beamer-tu-log
History
Intro
LDP
Convergence
definition
Let (Ω, F, P) a probability tripleon which a d-dimensional
Brownian motion W 1 , . . . , W d is defined. Let E the
corresponding expectation operator. We have already defined
h., .i as the standard euclidian inner product on Rd ; let k . k be
the associated norm. Also let Td be the d-dimensional torus of
size 1 and C Td ; Rd be the space of continuous mapping from
Td to Rd ; let k . kC (Td ;Rd ) be the associated supremum norm.
Also we define P Td as the collection of all probability
measure on Td .
beamer-tu-log
History
Intro
LDP
Convergence
Approach
Consider the Markov diffusion process Xtx,,δ ∈ Rd governed by
the operator :
L,δ =
d
d
x ∂2
x ∂
X
X
(σσ ∗ )ij
+
B ,δ
2
δ ∂xi ∂xj
δ ∂xi
i,j=1
i=1
The trajectories of this process can be constructed with the
help of the SDE:
dX x,,δ = √σ Xtx,,δ dW + B ,δ Xtx,,δ dt
t
t
δ
δ
x,,δ
X0
=x
beamer-tu-log
History
Intro
LDP
Convergence
assumption
σ : Rd −→ Rd×d and B ,δ : Rd −→ Rd are regular applications.
The vector-valued function B ,δ is given by :
B0 , B1 and B2,δ
B ,δ = B0 + B1 + B2,δ
δ
are C ∞ Rd , Rd for all , δ > 0 and
lim k B2,δ kCp (Rd ,Rd ) = 0
,δ→0
beamer-tu-log
History
Intro
LDP
Convergence
hypothesis
Since the two parameters δ (homogenization) and (large
deviation) tend to zero, we consider a new defined parameter
δ = δ
Suppose that lim↓0 δ = γ, where γ > 0 a constant . There
results that the homogenization parameter and the large
deviation parameter go at the same rate
beamer-tu-log
History
Intro
LDP
Convergence
some rescalings
covering map
Define X̃tx,,δ by : X̃tx,,δ =
1 x,,δ
δ X δ 2
√
t
Then
(
d X̃tx,,δ = σ X̃tx,,δ d W̃t +
X̃0x,,δ =
where W̃t,δ =
δ ,δ
B
X̃tx,,δ dt
x
δ
√
,δ
δ W δ 2
√
is a Brownian motion.
t
beamer-tu-log
History
Intro
LDP
Convergence
new consideration
the torus Td
n
o
Thereafter, consider the process X̃t,δ : t ≥ 0 Td -valued
which generator is defined by :
L̃,δ =
d
d
1X
∂2
δ X ,δ
∂
(σσ ∗ )ij (x)
+
B (x)
2
∂xi ∂xj
∂xi
i,j=1
i=1
Consider a = σσ ∗ , the above generator converges to the
operator
Lγ =
d
d
d
X
X
∂2
∂
∂
1X
(a)ij (x)
+
Bi0 (x)
+γ
Bi1 (x)
2
∂xi ∂xj
∂xi
∂xi
i,j=1
i=1
i=1
beamer-tu-log
History
Intro
LDP
Convergence
reference
tools
The basic set of calculations of this subject involves deriving the
Varadhan formula and in identifying the constant C 2 . The main
technique for showing that is the following result : (Baxendale
and Stroock (1988), corollary 1.12, p[183] to p[185])
beamer-tu-log
History
Intro
LDP
Convergence
LDP
rate function
Let J 2 (θ) defined by Freidlin and Sowers (1999), the limit of
1
hθ, X x,,δ i
log E exp
J 2 (θ) = n
Z
inf
φ∈C ∞ Td
o n
sup
o
µ∈P Td
+
Td
1
γ
d
1 X
2 k =1
2
h(I − ∇φ) σk (z), θi + h(I − ∇φ) B1 (z), θi
h(B0 − L0 φ) (z), θi µ(dz)
Define the Legendre-fenchel of J 2 (θ)
D 0E
0
J 2 (θ) = sup
θ, θ − J 2 (θ )
0
{θ ∈Rd }
beamer-tu-log
History
Intro
LDP
Convergence
large deviation principle
LDP
Define in addition :
2
S0,T
(φ)
=
Z
T
.
J 2 φ (s) ds
if φ absolutely continuous and φ(0) = x
0
∞
if not
Theorem (Freidlin and Sowers 1999)
n
o
Fix T > 0 and x ∈ Rd . The family Xtx,,δ : 0 ≤ t ≤ T
of
>0
d
C [0, T ] , R -valued random variables has a large deviation
2 (φ) for all φ ∈ C [0, T ] , Rd .
principle with rate function S0,T
beamer-tu-log
History
Intro
LDP
Convergence
barrier
constant
Now define
Z
C2 =
sup
c(z)µ(dz)
µ∈P (Td ) Td
beamer-tu-log
History
Intro
LDP
Convergence
fundemental theorem
Varadhan formula
Theorem
Let c be an element of C ∞ Td and D a Borel subset of
C [0, t] , Rd . Then
t
Z
1
x,,δ
c
Xs
0
x,,δ
lim inf log E
)e
1D (Xt
!
ds
δ
2
≥tC 2 − inf S0,t
(φ)
◦
↓0
x,,δ
lim sup log E
)e
1D (Xt
↓0
φ∈D
t
Z
1
x,,δ
c
0
Xs
δ
!
ds
2
≤tC 2 − inf S0,t
(φ)
φ∈D
{
}
beamer-tu-log
History
Intro
LDP
Convergence
behavior of u ,δ
Feynman Kac
u ,δ (t, x) = E g Xtx,,δ e
1
Rt
0
c
x,,δ
Xs
δ
,Ysx,,δ
ds
beamer-tu-log
History
Intro
LDP
Convergence
BSDE
Pardoux Peng 1992
R Ysx,,δ = g (X x,,δ ) + 1 t f Xrx,,δ ,Yrx,,δ
t
δ
s
o
nR
t
E
|Zrx,,δ |2 dr < ∞
s
dr
−
1
√
Rt
s
x,,δ
Zr
dWr
,0 ≤ s ≤ t
and
Y0x,,δ = u ,δ (t, x)
beamer-tu-log
History
Intro
LDP
Convergence
viscosity solution
Pradeilles 1998
Since u ,δ (t, x) > 0, denote v ,δ (t, x) = log u ,δ (t, x) and
observe, that v ,δ (t, x) is a viscosity solution of :
2
1
x
∂v ,δ
(t, x) = L,δ v ,δ (t, x) + ∇v ,δ (t, x)σ (x) + c
, u ,δ (t, x)
∂t
2
δ
v ,δ (0, x) = log (g(x)) ,
x ∈ G0
d
lim v ,δ (t, x) = −∞,
x ∈ R \G0
t→0
beamer-tu-log
History
Intro
LDP
Convergence
some notation
definition
Let us define a distance in R+ × Rd , by for
(t, x), (s, y ) ∈ R+ × Rd :
d {(t, x), (s, y)} = max {|t − s|, kx − y k}
Let us now introduce some notation :
Z
A=
inf
sup
{φ∈C ∞ (Td )} µ∈P (Td )
(I − ∇φ) a (I − ∇φ) (z)µ(dz)
Td
Z
B=
inf
sup
{φ∈C ∞ (Td )} {µ∈P (Td )}
ρ2 (t, x, G0 ) =
(I − ∇φ) B1 +
Td
1
γ
(B0 − L0 φ) (z)µ(dz)
inf
S20,τ (φ)
{φ∈C ([0,t],Rd );φ0 =x;φt ∈G0 }
beamer-tu-log
History
Intro
LDP
Convergence
asymptotic behavior
Define
v (t, x) = lim sup v ,δ (s, y) : (s, y) ∈ B {(t, x), η}
η→0
v (t, x) = lim inf v ,δ (s, y) : (s, y) ∈ B {(t, x), η}
η→0
Theorem
v and v are sub and super viscosity solutions of :
1
∂w
d
max
(t, x) − hA∇w(t, x), ∇w(t, x)i − hB, ∇w(t, x)i − C 2 = 0, x ∈ R , t > 0
w
∂t
2
w(0, x) = 0,
x ∈ G0
d
lim w(t, x) = −∞,
x ∈ R \G0
t→0
beamer-tu-log
History
Intro
LDP
Convergence
asymptotic behavior
definition
Let O is open subset in R+ × Rd , define the function τ on
[0 , ∞ [ × C [0 , ∞ [ × Rd
τ = τ (t, φ) = inf {s : (t − s, φ(s)) ∈ O}
Take Θt the set of Markov functions τ .
Use the process
(
V (t, x) = inf
τ ∈Θt
C 2τ −
inf
{φ∈C ([0,t],Rd );φ0 =x;φt ∈G0 }
)
S20,τ (φ)
beamer-tu-log
History
Intro
LDP
Convergence
asymptotic behavior
using the fact (Pradeilles 1998):
−ρ2 (t, x, G0 ) ≤ v (t, x) ≤ v (t, x) ≤ min Kt − ρ2 (t, x, G0 ) , 0
Theorem
For (t, x) ∈ R∗+ × Rd ,
lim log u ,δ (t, x) = V (t, x)
↓0
beamer-tu-log
History
Intro
LDP
Convergence
asymptotic behavior
corollary
Let M and E be a partition of R+ × Rd , such that:
n
o
M = (t, x) ∈ R+ × Rd : V (t, x) = 0
n
o
E = (t, x) ∈ R+ × Rd : V (t, x) < 0
Theorem
We have
(
lim u ,δ (t,x) =
↓0
0 uniformly from any compact K of E
0
◦
1 uniformly from any compact K of M
beamer-tu-log
© Copyright 2026 Paperzz