0.75cm Modelling and control Lobesia botrana Bedr’Eddine AINSEBA IMB Bordeaux 2 University and INRIA Futures Bordeaux Sud Ouest 28 décembre 2008 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 1 / 51 1 Introduction 2 Biological control 3 Biological description 4 The mathematical model 5 Existence and uniqueness 6 The Parameters estimation 7 Optimal Control Strategies Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 2 / 51 Introduction Lobesia botrana is a major grapevine pest in Europe The larvas eat vine buds during spring , unripe and ripe berries during summer. The grapes become unfit for human consumption and wine making. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 3 / 51 Introduction Lobesia botrana is a major grapevine pest in Europe The larvas perforations favorize diseases Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 4 / 51 Biological control Several tools are used to reduce population size of Lobesia botrana 3 acting levels : butterflies population by interfering on the mating process (use of pheromones). larvas population using biological pesticides (Cascade (4 to 5 weeks)). eggs using biological pesticides (Cascade (4 to 5 weeks), BT (2 weeks)) Constraints These techniques must be very well applied (in time), are expensive and are not eco-aware. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 5 / 51 Biological control Main objective Modeling population dynamics to predict and control butterflies and eggs population Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 6 / 51 Biological description 4 developmental stages : egg (6 days) larva (25 days) pupa (6 days) butterfly (10 days). Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 7 / 51 Biological description A one year cycle 3, 4 or 5 generations by year : 1,5 months in spring 1 month in summer 6 months in winter the insect growth is temperature dependent food (sort of cultivar) dependent Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 8 / 51 The mathematical model To properly describe the reproductive cycle of the European grapevine moth, we consider an age and stage structured population. We denote by u e , u l , u m , and u f respectively the age density distribution of individuals at time t of egg, larva, male butterfly and female butterfly populations. The total population for the k stage is then defined by : Z k P (t) = Lk u k (t, a)da, t ≥ 0, 0 where Lk is the maximum age for the k stage and k takes the value egg, larva, male moth and female moth. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 9 / 51 The mathematical model Let us denote E the vector corresponding to the climatic and environmental factors, it is written as E = (T , H, R) where T is the temperature factor, H the humidity factor and R the grape variety factor. The vector E is time dependent. We specify that R is not the quantity of food eaten by the larva but the species of the vine. The functions me , ml , mm and mf are the stage and age specific per capita mortality rates. To model the food competition between larvae, we suppose that ml depends on the total population of larvae. The functions β k , k = e, l , m, f correspond to the k-stage age-specific transition rates. In particular, β e models the physiological change between egg and larva stages. It is called the hatching rate. The function β l is the transition between the larva and butterfly (male and female) stages and is named the flying rate. We suppose that it is the same for the male and female individual. The transition rate between the butterfly and egg stages is modelled by the function β f . The common name is the age-specific per capita birth rate. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 10 / 51 The mathematical model Observations carried out on the breeding of Lobesia botrana of UMR Santé Végétale of INRA, indicate that the population does not grow exponentially but up to a value threshold determined by the carrying capacity of the medium. The growth of the population size is not restricted to the food quantity but to the total number of butterflies per unit of volume. Therefore, the birth rate is dependent on the density of individual butterflies. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 11 / 51 The mathematical model The study of laboratory data shows the difference in growth between individuals of a cohort. This phenomenon is also observed for many other species. We often model the variability of growth by introducing growth rate that depends on the physiological age. In the Lobesia botrana model, v k , k = e, l , p represent the k-stage age-specific per capita growth rates. This function depending on age and coupled with the transition rate allows one to model a greater variability of growth inside a cohort. All these demographic functions vary with the environnemental conditions and the cultivar. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 12 / 51 The mathematical model ∂ e ∂ e e e e ∂t u (t, a) + ∂a [v (E (t), a)u (t, a)] = −m (E (t), a)u (t, a) −β e (E (t), a)u e (t, a), ∂ u l (t, a) + ∂ £v l (E (t), a)u l (t, a)¤ = −ml (P l (t), E (t), a)u l (t, a) ∂t ∂a −β l (E (t), a)u l (t, a), £ ¤ ∂ f ∂ f f f f ∂t u (t, a) + ∂a v (E (t), a)u (t, a) = −m (E (t), a)u (t, a), ∂ u m (t, a) + ∂ [v m (E (t), a)u m (t, a)] = −mm (E (t), a)u m (t, a), ∂t ∂a R Lf v e (E (t), 0)u e (t, 0) = 0 β f (P f (t), P m (t), E (t), s)u f (t, s)ds, v l (E (t), 0)u l (t, 0) = R Le β e (E (t), s)u e (t, s)ds, R0 l v f (E (t), 0)u f (t, 0) = L τ β l (E (t), s)u l (t, s)ds, R0 Ll m m v (E (t), 0)u (t, 0) = 0 (1 − τ )β l (E (t), s)u l (t, s)ds, (2) where τ denotes the sex ratio and t > 0. The model becomes complete with the initial conditions : u k (0, a) = u0k (a), a ∈ [0, Lk ], k = e, l , f , m. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 (3) 13 / 51 Existence and uniqueness Ωk , Let us denote k = e, l , f , m, the domain [0, T ] × [0, Lk ]. Using the characteristic method the solution u e , u f and u m of system (1)-(2)-(3) are implicitly given by Rt k (X k (0; a, t))e − 0 hk (E (s),X k (s;a,t))ds , u a > z k (t), 0 u k (t, a) = (4) Rt k k u k (Z k (0;a,t),0) e − Z k (0;a,t) h (E (s),X (s;a,t))ds , a ≤ z k (t), v k (E (Z k (0;a,t)),0) where hk , for k = e, f , m is given by e e e e h (E (t), a) = (m + β + ∂a v )(E (t), a), hf (E (t), a) = (mf + ∂a v f )(E (t), a), m h (E (t), a) = (mm + ∂a v m )(E (t), a), and X k (t; a0 , t0 ) is the characteristic curve through (a0 , t0 ). ( k ∂X (t) = v k (E (t), a(t)), ∂t X k (t0 ) = a0 > 0. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 (5) 14 / 51 Existence and uniqueness Since v k > 0, it follows that X k (t; a0 , t0 ) is strictly increasing. Therefore, a unique inverse function Z k (a; a0 , t0 ) exists. Let z k (t) = X k (t; 0, 0) be the characteristic curve through the origin for k = e, f and m. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 15 / 51 Existence and uniqueness Some hypotheses for existence of solutions H The growth rates v k , for k equal e, l , f , m are nonnegative and bounded functions ∀(t, a) ∈ Ω v k < v k (E (t), a) < v¯k , and are of class C 1 with respect to a, ∃Cv k > 0, k ∂v k (E (t), a) k∞ ≤ Cv k ∂a H The hatching rate β e (E (t), a) and the flying rate β l (E (t), a) are nonnegative and bounded functions Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 16 / 51 Existence and uniqueness H The fertility rate β f (P f , E (t), a) is a nonnegative and bounded function, Lipschitz with respect to its first variable. H The mortality functions me (E (t), a), mf (E (t), a) and mm (E (t), a) are nonnegative, locally bounded and satisfy Z t lim mk (E (t), X k (s; a, t)ds = ∞, a > Z k (t), a→Lk 0 Z t mk (E (t), X k (s; a, t)ds = ∞, a ≤ Z k (t), lim a→Lk Z k (0;a,t) for k equal e, f , m. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 17 / 51 Existence and uniqueness H The larva mortality ml (P l , E (t), a) is nonnegative, locally bounded and locally Lipschitz with respect to its first variable and Z t lim ml (P l (t), E (t), X l (s; a, t)ds = ∞, a > Z l (t), a→Ll 0 Z t lim ml (E (t), X l (s; a, t)ds = ∞, a ≤ Z l (t), a→Ll Z l (0;a,t) H The initial data u0k , for k equal e, l , f , m are nonegative. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 18 / 51 Existence and uniqueness Theorem Under the hypotheses H 1 - H 6, system (1)-(2)-(3) admits a unique solution. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 19 / 51 Existence and uniqueness A sketch of proof in L2 Let λ be a nonnegative constant ; we will prove that for λ sufficiently large there exist a unique solution for the system in u e (t, a) = e λt û e (t, a), u l (t, a) = e λt û l (t, a) et u f (t, a) = e λt û f (t, a). (6) Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 20 / 51 Existence and uniqueness A sketch of proof in L2 Consider the system ∂ ∂ e e e e e e ∂t ûi (t, a) + ∂a [v (E (t), a)ûi (t, a)] + λûi (t, a) = −m (E (t), a)ûi (t, a) −β e (E (t), a)ûie (t, a), £ ¤ ∂ l ∂ l l l l l l ∂t ûi (t, a) + ∂a v (E (t), a)ûi (t, a) + λûi (t, a) = −m (Pi , E (t), a)ûi (t, a) −β l (E (t), a)ûil (t, a), £ ¤ ∂ f ∂ f f f ∂t ûi (t, a) + ∂a v (E (t), a)ûi (t, a) + λûi (t, a) = −mf (E (t), a)ûif (t, a), R f L e e f f f v (E (t), 0)ûi (t, 0) = 0 β (Pi (t), E (t), s)ûi (t, s)ds, R e L v l (E (t), 0)ûil (t, 0) = 0 β e (E (t), s)ûie (t, s)ds, R Ll v f (E (t), 0)ûif (t, 0) = 0 β l (E (t), s)φi (t, s)ds, e (a), ûie (0, a) = û0,i l (a), ûil (0, a) = û0,i f f (a). ûi (0, a) = û0,i Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 21 / 51 Existence and uniqueness A sketch of proof in L2 where φi , for i = 1, 2 are given in L2 (Ωl ). By the characteristic method, one can prove that this system admits a unique solution (û e , û l , û f ). Lemma Let ∧ be the operator ∧ : L2 (Ωl ) → L2 (Ωl ) φ → û l where û l is the unique solution of (7). If λ is s.t. (λ − Cv e )(λ − Cv l )(λ − Cv f ) > Le kβ e kL∞ (Ωe ) Lf kβ f kL∞ (Ωf ) Ll kβ l kL∞ (Ωl ) 8v l v e v f , then ∧ is a contraction. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 22 / 51 Existence and uniqueness Proof 1 : Let φ = φ1 − φ2 and û l = û1l − û2l . We multiply the first equation in (7) by û e , the second by û l and the third one by û f and we integrate on Ωe , Ωl , Ωf . After some computations we obtain, Z Z 1 ( ∂t û e (t, a)2 + (λ + me (E (t), a) + β e (E (t), a))û e (t, a)2 )dadt = Ωe 2 Z Z 1 1 T e e 2 v (E (t), 0)(û (t, 0)) dt − ∂a v e (E (t), a)û e (t, a)2 dadt, 2 0 2 e Ω 1 ( ∂t û l (t, a)2 + (λ + ml (P l (t), E (t), a) + β l (E (t), a))û l (t, a)2 )dadt = Ωl 2 Z Z 1 T l 1 l 2 v (E (t), 0)(û (t, 0)) dt − ∂a v l (E (t), a)û l (t, a)2 dadt, 2 0 2 l Ω Z 1 ( ∂t û f (t, a)2 + (λ + mf (E (t), a))û f (t, a)2 )dadt = Ωf 2 Z Z 1 1 T f v (E (t), 0)(û f (t, 0))2 dt − ∂a v f (E (t), a)û f (t, a)2 dadt, 2 0 2 e Ω Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 23 / 51 Existence and uniqueness Thus Z Z e λ 1 2 Z 0 Ωe T 2 (û (t, a)) dadt ≤ Cv e (û e (t, a))2 dadt+ Ωe ÃZ f !2 L 1 β f (P f (t), E (t), s)û f (t, s)ds dt v e (E (t), 0) 0 Z Z l 2 λ (û (t, a)) dadt ≤ Cv l (û l (t, a))2 dadt+ 1 2 Ωl Z 1 2 T 1 l v (E (t), 0) µZ Ωl Le e ¶2 e β (E (t), s)û (t, s)ds dt Z Z f 2 λ (û (t, a)) dadt ≤ Cv f (û f (t, a))2 dadt+ 0 Z 0 Ωf T 1 f v (E (t), 0) 0 ÃZ Ωf Ll l β (E (t), s)φ(t, s)ds !2 dt 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 24 / 51 Existence and uniqueness Under H 1 - H 6 and using Cauchy Schwartz inequality we get, Z (λ − Cve ) e 2 (û ) (t, a)dadt ≤ Ωe Z (λ − Cvl ) (û l )2 (t, a)dadt ≤ Ωl (λ − Lf kβ f k2L∞ (Ωf ) Z 2v e Ωf Z e e 2 L kβ kL∞ (Ωe ) 2v l Z Cvf ) f 2 (û ) (t, a)dadt ≤ Ωf (û f )2 (t, s)dsdt, (û e )2 (t, s)dsdt, Ωe Ll kβ l k2L∞ (Ωl ) 2v f kφk2L2 (Ωl ) . Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 25 / 51 Existence and uniqueness (λ − Cve )(λ − Cvl )(λ − Cvf )kû l k2L2 (Ωl ) ≤ K kφk2L2 (Ωl ) , K= Le kβ e k2L∞ (Ωe ) Lf kβ f k2L∞ (Ωf ) Ll kβ l k2L∞ (Ωl ) 8v l v e v f · ∧ is a contracting map if λ is large enough. ¤ Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 26 / 51 The Parameters estimation We consider in this section experimental population dynamics obtained in laboratory conditions. Thus we have, E (t) = E0 , t > 0, v k (E (t), a) = 1, k = e, l , f , m, (t, a) ∈ Ω, mk (E (t), a) = 0, k = e, f , m, (t, a) ∈ Ω, ml (P l (t), E (t), a) = 0, (t, a) ∈ Ω, β k (E (t), a) = β k (a), k = e, l , (t, a) ∈ Ω, β f (P f (t), P m (t), E (t), a) = β f (a), (t, a) ∈ Ω. The vector E0 is (T0 , H0 , R0 ) which means that the environmental variables are constant with time. The unit of age is the chronological age because the measurements are taken at a one day regular frequency. As referred in the introduction, we formulate three parameter estimation problems. Then, an analysis is performed from both a continuous and a discrete approach. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 27 / 51 The Parameters estimation The hatching rate The objective is to identify the hatching rate β e (a), ∀a ∈ [0, L]. We use experimental data relating to the hatching dynamics obtained in climatic chambers. This experiment starts with an identically old egg population and consists to note the date of first appearance of the larva. We deduce the spreading out of the hatching dynamics and the egg mean development at 60% of moisture and 20˚C. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 28 / 51 The Parameters estimation The hatching rate This experiment can be modelled by the following PDE e ∂u ∂u e e e ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), (3.1) u e (0, a) = u0e (a), e u (t, 0) = 0, where a ∈ [0, L] and t > 0. The hatching dynamic is taken into account by the relation : Z L (3.2) qexp (t) = β e (a)u e (t, a)da, t > 0, 0 where qexp is the observed data. The boundary condition is null because there is no introduction of new individuals. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 29 / 51 The Parameters estimation The hatching rate, no regularisation vs regularisation 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1 2 3 4 5 6 7 8 9 10 Figure: These figures show the approximate (solid line) and the exact (dashed dotted line (a), cross line (b)) hatching rate with respect to the age. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 30 / 51 The Parameters estimation The flying rate We would like to identify the function β l for a ∈ [0, L]. So, we use experimental data on emergence dynamics. The experiment starts with an identically old egg population and finishes when all individuals have became butterflies. We then know the date of first appearance of the butterfly and its sex. We deduce the spreading out of the flying dynamics and the mean development of an egg to become a larva. This experiment is made under stable conditions of 60% of moisture and 20˚C. This information on the experiment enables to formulate the evolution problem associated to the egg population growth until the end of the larva stage. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 31 / 51 The Parameters estimation The flying rate e ∂u e ∂u e e ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), l l ∂u (t, a) + ∂u (t, a) = −β l (a)u l (t, a), (a, t) ∈ [0, L] × [0, T ], (a, t) ∈ [0, L] × [0, T ], ∂a (3.3) ∂te e l u (0, a) = u0 (a), and u (0, a) = 0, a ∈ [0, L], u e (t, 0) = 0, and u l (t, 0) = R L β e (s)u e (t, s)ds, t > 0, 0 and the relation describing the emergence dynamic : Z (3.4) qexp (t) = L β l (s)u l (t, a)da, t > 0, 0 where qexp is the experimental data. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 32 / 51 The Parameters estimation Hatching and Flying Rates 1.0 1.6 0.9 1.4 0.8 1.2 0.7 1.0 0.6 0.5 0.8 0.4 0.6 0.3 0.4 0.2 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Figure: These figures show the approximate (solid line) and the exact (dashed dotted line) transition rates with respect to the age. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 33 / 51 The Parameters estimation The flying rate when the hatching rate is given (a) (b) 1.0 0.8 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 0.8 0.6 0.4 0.2 0.0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 34 / 51 The Parameters estimation The hatching rate when the flying rate is given (a) (b) 1.0 0.8 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 0.8 0.6 0.4 0.2 0.0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 35 / 51 The Parameters estimation The birth rate In this part, we determine the laying rate of a female according to her age. We then consider the dynamics of laying obtained in laboratory fixed conditions. These experiments use a female population which has the same age. The butterflies are mated during 48h with a male. After that, the experimenter notes the number of eggs laid by a female until her death. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 36 / 51 The Parameters estimation The birth rate With this information, we deduce the mathematical problem for the estimation of β f . The female population dynamics are modelled by the equation : ∂ f ∂ f (t, a) ∈ [0, L] × [0, T ], ∂t u (t, a) + ∂a u (t, a) = 0, f f (3.7) u (0, a) = u0 (a), f u (t, 0) = 0, and the laying dynamics by : Z (3.8) qexp (t) = L β f (a)u f (t, a)da, t > 0, 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 37 / 51 The Parameters estimation The flying rate The problem consists in identifying the birth rate β f satisfying the equation (3.8). The explicit solution of the system (3.7) is u f (t, a) = u0f (a − t) for all a > t. So, we seek the birth function satisfying the equation : Z (3.8) qexp (t) = t L β f (a)u0f (a − t)da, t > 0. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 38 / 51 The Parameters estimation The birth rate (a) (b) 1.0 2.5 0.8 2.0 0.6 1.5 0.4 1.0 0.2 0.5 0.0 0.0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Figure: These figures show the approximate (dotted line) and the exact (solid line) birth rate with respect to the age. Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 39 / 51 Optimal Control Strategies Birth Control Reduce the size of the larvae population. · Z T Z T Z 2 Minv η v (t)dt + µ ( 0 (2) 0 L ¸ l 2 u (t, a)da) dt 0 e e ∂u (t, a) + ∂u (t, a) = −β e (a)u e (t, a), t > 0 a ∈]0, L] ∂t ∂a l l ∂u ∂u l l t > 0 a ∈]0, L] ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), f f ∂u ∂u ∂t (t, a) + ∂a (t, a) = 0, t > 0 a ∈]0, L] u i (0, a) = u0i (a), a ∈]0, L] RL u e (t, 0) = 0 f β f (a)u f (t, a)da − v (t), t > 0 R u l (t, 0) = Le β e (a)u e (t, a)da, t > 0 R0L f u (t, 0) = 0 l β l (a)u l (t, a)da, t > 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 40 / 51 Optimal Control Strategies The Optimality system Z T Z L L(S) = J (v ) + [∂t u e + ∂a u e + β e (a)e u] p e (t, a)dadt 0 0 Z T Z Lh i + ∂t u l + ∂a u l + β l (a)u l p l (t, a)dadt 0 0 Z T Z Lh i + ∂t u f + ∂a u f p f (t, a)dadt 0 0 ¸ Z T· Z L e f f + u (t, 0) + v (t) − β (s)u (t, s)ds he (t)dt 0 0 ¸ Z T· Z L + u l (t, 0) − β e (s)u e (t, s)ds hl (t)dt 0 0 ¸ Z L Z T· f l l u (t, 0) − + β (s)u (t, s)ds hf (t)dt 0 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 41 / 51 Optimal Control Strategies The Optimality system ∂ e ∂ e − ∂t p (t, a) − ∂a p (t, a) + β e (a)p e (t, a) = p l (t, 0)β e (a) R l (t, a) − ∂ p l (t, a) + β l (a)p l (t, a) = β l (a)p f (t, 0) − 2µ L u l (t, a)da −∂ p t a 0 −∂ p f − ∂ p f = β f (a) p e (t,0) t a 1−v (t) e (T , a) = p e (t, L) = 0 p p l (T , a) = p l (t, L) = 0 p f (T , a) = p f (t, L) = 0 2ηv ∗ (t) = −p∗e (t, 0) Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 42 / 51 Optimal Control Strategies Numerical simulations, One generation 1200 1000 800 600 400 200 0 0 2 4 6 pop oeuf ss traitement avec traitement larve 8 10 12 14 16 18 0 2 4 6 naissance oeuf ss traitement avec traitement control 8 10 12 14 16 18 1400 1200 1000 800 600 400 200 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 43 / 51 Optimal Control Strategies Numerical simulations, Two generations 3500 3000 2500 2000 1500 1000 500 0 0 5 10 pop oeuf ss traitement avec traitement larve 15 20 25 30 35 40 0 5 10 15 naissance oeuf ss traitement avec traitement control 20 25 30 35 40 3000 2500 2000 1500 1000 500 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 44 / 51 Optimal Control Strategies Pesticides degradation ∂v = −rv + w ∂t " Z Minw η 0 T Z w 2 (t)dt + η 0 T µZ L # ¶2 u l (t, a)da dt 0 ∂v ∂t = −rv + w e ∂u ∂u e e e t > 0 a ∈ (0, L) ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), l l ∂u ∂u l l ∂tf (t, a) + ∂af (t, a) = −β (a)u (t, a), t > 0 a ∈ (0, L) ∂u (t, a) + ∂u (t, a) = 0, t > 0 a ∈ (0, L) ∂t ∂a i i u (0, a) = u0 (a), a ∈ (0, L) R e (t, 0) = Lf β f (a)u f (t, a)da − v (t), u t>0 R 0Le e l e u (t, 0) = 0 β (a)u (t, a)da, t > 0 u f (t, 0) = R Ll β l (a)u l (t, a)da, t > 0 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 45 / 51 Optimal Control Strategies Numerical results, Pesticides degradation 1600 1400 1200 1000 800 600 400 200 0 0 2 4 6 naissance oeuf ss traitement avec traitement control 8 10 12 14 16 18 0 2 4 quantite W controle v 8 10 12 14 16 18 3000 2500 2000 1500 1000 500 0 6 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 46 / 51 Optimal Control Strategies Numerical results, Pesticides degradation, Two generations 12000 900 800 10000 700 8000 600 500 6000 400 4000 300 200 2000 100 0 0 0 5 10 15 naissance oeuf ss traitement avec traitement control 20 25 30 35 40 0 5 quantite W controle v 10 15 20 25 30 35 40 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 47 / 51 Optimal Control Strategies Structured Eggs Control e ∂u ∂u e e e e t > 0 a ∈ (0, L) ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a) − v (t)u (t, a), l l ∂u ∂u l l t > 0 a ∈ (0, L) ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), f f ∂u ∂u ∂t (t, a) + ∂a (t, a) = 0, t > 0 a ∈ (0, L) u i (0, a) = u0i (a), a ∈ (0, L) R Lf f e f u (t, 0) = R 0 β (a)u (t, a)da, t > 0 L u l (t, 0) = 0 e β e (a)u e (t, a)da, t > 0 RL f u (t, 0) = 0 l β l (a)u l (t, a)da, t > 0 " Z Minv η 0 T Z v 2 (t)dt + η 0 T µZ L # ¶2 u l (t, a)da dt 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 48 / 51 Optimal Control Strategies Numerical results 1200 1000 800 600 400 200 0 0 2 4 6 pop oeuf ss traitement avec traitement larve 8 10 12 14 16 18 0 2 4 6 naissance oeuf ss traitement avec traitement control 8 10 12 14 16 18 1400 1200 1000 800 600 400 200 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 49 / 51 Optimal Control Strategies Numerical results, with pesticide degradation 1200 1000 800 600 400 200 0 0 2 4 6 pop oeuf ss traitement avec traitement larve 8 10 12 14 16 18 0 2 4 quantite W controle v 8 10 12 14 16 18 6 5 4 3 2 1 0 6 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 50 / 51 Optimal Control Strategies Butterfly control Goal : Reduce Lobesia Botrana population by using pheromone diffusers. The control act on the fecondity rate. e e ∂u (t, a) + ∂u (t, a) = −β e (a)u e (t, a), t > 0 a ∈ (0, L) ∂t ∂a l l ∂u ∂u l l t > 0 a ∈ (0, L) ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), ∂uf ∂u f f f ∂t (t, a) + ∂a (t, a) = −β (a)u (t, a), t > 0 a ∈ (0, L) u i (0, a) = u0i (a), a ∈ (0, L) RL u e (t, 0) = 0 f (β f (a) + v (t))u f (t, a)da, t > 0 RL u l (t, 0) = 0 e β e (a)u e (t, a)da, t > 0 RL f u (t, 0) = 0 l β l (a)u l (t, a)da, t > 0 · Z Minv η 0 T Z 2 v (t)dt + µ 0 T Z ( L ¸ l 2 u (t, a)da) dt 0 Bedr’Eddine AINSEBA IMB Bordeaux 2Modelling Universityand andcontrol INRIA Lobesia Futures botrana Bordeaux Sud Ouest 28 décembre () 2008 51 / 51
© Copyright 2026 Paperzz