Controlability of Stochastic Parabolic Equation with Multiplicative Noise Aurel R¼ aşcanu "Alexandru Ioan Cuza" University and "Octav Mayer" Mathematics Institute of Romanian Academy, ROMANIA May 9-19, 2011 CIMPA-UNESCO Conference Monastir, Tunisie LECTURE 2 Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Object The lecture is concerned with the controllability of the stochastic linear heat equation with multiplicative noise: 8 dt Y (t, x ) > > > > > < ∆x Y (t, x ) dt + a (t, x ) Y (t, x ) dt = [f (t, x ) + 1D0 (x )u (t, x )] dt +Y (t, x ) σ(t, x ) dW (t ), > Y (ω, t, x ) = 0 on Ω ]0, T [ ∂D , > > > > : Y (ω, 0, x ) = y0 (x ) in Ω D , in Ω ]0, T [ D , D0 cl (D0 ) D Rd is a bounded open subsets with a boundaries of class C 2 ; (Ω, F , P, fFt gt 0 ) is a stochastic basis; fW (t ) = ( β i (t ))k 1 : t 0g is a Rk -dimensional Wiener process; assumeFt = FtW . a 2 L∞ 0, T ; H 1 (D) \ L∞ ((0, T ) D) , σ 2 C 2 [0, T ] D; Rk ; k σ (t, x ) dW (t ) = ∑ σi (t, x ) d βi (t ) ; i =1 y0 2 L2 (D) Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Denote Q =]0, T [ D , Q0 =]0, T [ D0 , Σ =]0, T [ ∂D ; Σ0 =]0, T [ ∂D0 , 1 D0 (x ) = ( 1, 0, if x 2 D0 , if x 2 / D0 H = L2 (D) and V = H01 (D). We have V and H V ∆ : V ! V is the duality mapping: ( ∆v , v )V ,V = kv k2V = k ∆v k2V We also have ( ∆v , u )V Aurel R¼ aşcanu ,V = (rv , ru )H . Controlability of Stochastic Parabolic Equation with Multiplicative Noise SDE: existence Let the forward stochastic di¤erential equation (FSDE)) 8 dt Y ∆x Y dt + a (ω, t, x ) Y dt > > > < = F (ω, t, x ) dt + Y σ(ω, t, x ) dt W (ω, t ) , u > Y (ω, t, x ) = 0 on Ω Σ, > > : u Y (ω, 0, x ) = y0 (x ) in Ω D , where 8 i) > > < ii ) > > : iii ) F 2 L0ad (Ω; L2 (0, T ; H )), ∞ ( Ω ]0, T [ D) , a 2 Lad in Ω Q (1) ∞ Ω ]0, T [ D ; Rk , σ 2 Lad y0 2 H = L2 (D) . Under these assumptions the SDE (1) has a unique solution Y 2 L0ad (Ω; C ([0, T ]; H)) \ L0ad (Ω; L2 (]0, T [; V)). such that for all v 2 V = H01 (D) : (Y (t ) , v )H + = (y0 , v )H + Z t 0 Z t 0 [(rx Y (s ) , rx v )H + (a (s ) Y (s ) , v )H ] ds (F (s ) , v )H ds + Aurel R¼ aşcanu k Z t ∑ i =1 0 (Y (s ) σi (s ), v )H d β i (s ) . Controlability of Stochastic Parabolic Equation with Multiplicative Noise Continuous dependence Moreover, there exists a constant C independent of y0 , F , u, v , D0 such that # " RT 2 2 E sup jY (t )jH + 0 kY (t )kV dt t 2[0,T ] jy0 j2H + E and E " sup jY u (t ) t 2[0,T ] RT Y v (t )j2H + h C jY u (0 ) 0 jF (t )j2H dt + E RT 0 kY u (t ) Y v (0)j2H + E Aurel R¼ aşcanu R R Q0 u 2 (t ) dtdx Y v (t )k2V dt Q 0 (u (t, x ) # i v (t, x ))2 dtdx , Controlability of Stochastic Parabolic Equation with Multiplicative Noise If F 2 L2ad (Ω D),and y0 2 V , then ]0, T [ Y (ω, t ) 2 H01 (D) \ H 2 (D) , a) b) c) Y 2 ∆ Y 2 L2 ( Ω Z t 0 a.e., Q ). and in this case for all t 2 [0, T ]: Y (t, x ) (ω, t ) L2 (Ω; L∞ (0, T ; V )), ∆x Y (s, x ) ds + = y0 (x ) + Z t 0 Z t a (s, x ) Y (s, x )ds 0 F (s, x ) ds + Aurel R¼ aşcanu Z t 0 Y (s, x ) σ (s, x ) dW (s ) a.e. in Ω D Controlability of Stochastic Parabolic Equation with Multiplicative Noise BSDE: existence We consider also the backward stochastic di¤erential equation (BSDE) 8 dt p ∆x p dt + a (ω, t, x )p dt > > < = [G (ω, t, x )+σ(ω, t, x ) q ] dt q dt W (ω, t ) in Ω Q, > > : p (ω, t, x ) = 0 on Ω Σ, and p (ω, T , x ) = pT (ω, x ) in Ω D , where G 2 L2ad (Ω; L2 (0, T ; H)), a2 ∞ Lad (Ω ]0, T [ D) , pT 2 L2 (Ω, FT , P; H), σ2 ∞ Lad Ω ]0, T [ and D ; Rk Under these assumptions the BSDE has a unique solution (p, q ) (see e.g. Pardoux &Rascanu ’99) p 2 L2ad (Ω; C ([0, T ]; H)) \ L2ad (Ω; L2 (]0, T [; V), q2 and E " and L2ad (Ω; L2 (]0, T [; Hk )) sup t 2[0,T ] jp (t ) j2H + Z T 0 kp (s )k2V ds + C E jpT j2H + Aurel R¼ aşcanu # Z T jq Z T jG (t )j2H dt . 0 0 (s )j2Hk ds Controlability of Stochastic Parabolic Equation with Multiplicative Noise h i C E jpT j2H jFt , and if G = 0, then jp (t )j2H if pT 2 L2 (Ω, FT , P; V), then a.s. on Ω. p 2 L2 (Ω ]0, T [; H01 (D) \ H 2 (D)) \ L∞ (0, T ; L2 (Ω; H01 (D)). We note that by Ito’s formula (Y (t ) , p (t ))H = (y0 , p0 )H + + Z t 0 Z t 0 [(F (s ) , p (s ))H (Y (s ) , G (s ))H ] ds (Y (s ) , (q (s ) + p (s ) σ (s )) dW (s ))H and (Y (t ) , p (t ))H = E [(Y (T ) , p (T ))H jFt ] E Z T t [(F (s ) , p (s ))H Aurel R¼ aşcanu (Y (s ) , G (s ))H ] ds jFt Controlability of Stochastic Parabolic Equation with Multiplicative Noise In particular, if we consider the SDE 8 dt Y (ω, t, x ) ∆x Y (ω, t, x )dt + a (ω, t, x )Y (ω, t, x )dt = f (ω, t, x ) dt + > > > > > < +1D0 (x )u (ω, t, x )dt + Y (ω, t, x )σ (ω, t, x ) dt W (ω, t ) in Ω Q, > Y (ω, t, x ) = 0 on Ω Σ, > > > > : Y (ω, 0, x ) = y0 (x ) in Ω D, (2) and the dual BSDE 8 dt p (ω, t, x ) ∆x p (ω, t, x )dt + a (ω, t, x )p (ω, t, x )dt > > < = [g (ω, t, x ) + σ(ω, t, x ) q (ω, t, x )] dt q (ω, t, x ) dt W (ω, t ) , in Ω Q, > > : p (ω, t, x ) = 0 on Ω Σ, and p (ω, T , x ) = pT (ω, x ) in Ω D , (3) we have the duality formula R R E Q 0 u (t, x ) p (t, x ) dxdt + E Q [f (t, x ) p (t, x ) g (t, x ) Y (t, x )] dtdx R R = E D Y (T , x ) p (T , x ) dx D Y (0, x ) p (0, x ) dx (4) Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise A control problem Let the controlled SDE of parabolic type 8 < dY (t ) + AY (t ) dt = f (t, Y (t ) , v (t )) dt + σ (t, Y (t ))dW (t ) , t 2 [0, T ] : Y 0 = y0 2 H (0.2) and the minimizing problem of the cost function J (v ) = E Z T 0 g (t, Y (t ) , v (t )) dt + Eψ (Y (T )) (0.1) Here V H fW (t ) : t V 0g is a H0 cilidrical Wiener process A 2 L(V , V ), A = A and there exists λ, λ0 > 0 such that (Av , v )V ,V + λ jv j2 Aurel R¼ aşcanu λ0 kv k2 , 8v 2 V , (H1 ) Controlability of Stochastic Parabolic Equation with Multiplicative Noise ψ : H ! R+ is continuously Fréchet di¤erentiable and convex on H; σ : [0, T ] H ! L2 (H0 , H) is measurable in the …rst variable and continuously Fréchet di¤erentiable in the second variable. f : [0, T ] H U ! H and g : [0, T ] H U ! R+ are measurable in the …rst variable, continuously Fréchet di¤erentiable in the second one and Gâteaux di¤erentiable in the last one. 9 L > 0 such that, for all t 2 [0, T ], and for all y , z, h 2 H, u, v , w 2 U: i) ii ) iii ) iv ) jf (t, 0, 0)j + kσ(t, 0)k2 L, fy0 (t, y , u )h + σy0 (t, y )h 2 L jh j , jfu0 (t, y , u )w j + jgu0 (t, y , 0)w j Ljw j, gy0 (t, y , u ) gy0 (t, z, u ) + jgu0 (t, y , u ) gu0 (t, z, u )jU + jψ0 (y ) ψ0 (z )j L jy z j , jgu0 (t, y , u ) gu0 (t, y , v )jU Lju v jU . Aurel R¼ aşcanu (H2 ) Controlability of Stochastic Parabolic Equation with Multiplicative Noise Denote AW the set of couples (u, Y u ), with u 2 L2ad (Ω ]0, T [; U ), and Y u 2 L2ad (Ω ]0, T [; V ) \ L2ad (Ω; C ([0, T ]; H )) is the associated solution of (2). Theorem Let the assumptions (H1 ) and (H2 ) be satis…ed, y0 2 H and we suppose that (u, Y u ) 2 AW is an optimal pair. Then there exists a adjoint-couple h i (p, k ) 2 L2W (Ω; C ([0, T ]; H )) \ L2W (Ω ]0, T [; V ) Λ2W , such that 8 dY (t ) + AY (t ) dt = f (t, Y (t ) , u (t )) dt + σ (t, Y (t ))dW (t ) , > > > > > > dp (t ) + Ap (t ) dt = fy0 (t, Y (t ) , u (t )) p (t ) + σy0 (t, Y (t )) k (t ) dt > > < gy0 (t, Y (t ) , u (t )) dt k (t ) dW (t ) , > > > > > Y0 (ω ) = y0 2 H, and pT = ψ0 (Y (T )) , > > > : 0 fu (t, Y (t ) , u (t )) p (t ) = gu0 (t, Y (t ) , u (t )) . (5) If f and σ are linear in (Y , u ) and g and ψ are convex quadratic in (Y , u ) , then the condition (5) is su¢ cient too and the optimal pair (u, Y u ) is unique. Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Particular case of control problem Let the state SDE dt Y (t, x ) ∆Y (t, x ) dt +a (t, x ) Y (t, x ) dt = 1D0 (x )v (t, x ) dt + Y (t, x ) hσ (t, x ) , dW (t )i Y (ω, t, x ) = 0 on Ω Y (ω, 0, x ) = y0 (x ) on Ω ]0, T ] Σ, in Ω D, D, and a minimizing problem for J (v ) = 1 E 2 Z Q v 2 (t, x ) dtdx + Aurel R¼ aşcanu Z 1 E Y 2 (T , x ) dx . 2ε D Controlability of Stochastic Parabolic Equation with Multiplicative Noise Then necessary and su¢ cient condition for (uε , Yε ) to be an optimal pair is 8 dYε (t, x ) ∆Yε (t, x ) dt +a (t, x ) Yε (t, x ) dt = 1D0 (x )uε (t, x ) dt > > > > > > +Yε (t, x ) σ (t, x ) dW (t ) in Ω Q > > > > > > Yε (ω, t, x ) = 0 on Ω Σ, > > > > > > > Yε (ω, 0, x ) = y0 (x ) , in Ω D > > > < dpε (t, x ) ∆pε (t, x ) dt + a (t, x ) pε (t, x ) = σ (t, x ) qε (t, x ) dt > > > > > > > > > > pε (ω, t, x ) = 0 on Ω Σ, > > > > > 1 > > pε (ω, T , x ) = Yε (ω, T , x ) , in Ω D > > > ε > > : 1D0 (x )pε (t, x ) = uε (t, x ) , in Ω Q. Aurel R¼ aşcanu qε (t, x ) dW ( in Ω Controlability of Stochastic Parabolic Equation with Multiplicative Noise By (4) we have 1 E 2 Hence E Z Z Q Z 1 E Y 2 (T , x ) dx 2ε D ε Z Z 1 1 = E uε (t, x ) pε (t, x ) dtdx E pε (T , x ) Yε (T , x ) dx 2 Q0 2 D 1R = y0 (x ) pε (0, x ) dx . 2 D uε2 (t, x ) dtdx + Z Z Z 1 1 Yε2 (T , x ) dx = E uε2 (t, x ) dtdx + E Yε2 (T , x ) dx pε2 (t, x ) dtdx + E ε ε Q D D Q0 2 jy0 jH jpε (0)jH !!!!!! and here we have need of Carleman’s estimates. Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise A Carleman estimate Lemma Let p 2 L2 (Q ) a solution of the backward parabolic equation 8 ∂p < ∆p + a1 p + b1 rp = g in Q = (0, T ) ∂t : p = 0, on Σ = (0, T ) ∂D D where a1 2 L∞ (Q ) , b1 2 L∞ Q; Rk and g 2 L2 (Q ) . Then there exists a constant CT such that jp (0)j2H CT Moreover CT Z Q0 jp (t, x )j2 dtdx + Z Q jg (t, x )j2 dtdx . h i m C ka1 km L ∞ (Q ) + k b 1 k L ∞ (Q ) for some C > 0 and m 2 N independent of a1 , b1 and g . Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Reduction to a random di¤.eq. Denote ξ (t, x ) = exp [ σ (t, x ) W (t )] and Ŷ (t ) = Y (t ) ξ (t ) By Itô’s formula in H for Ŷ (t ) , we obtain that 8 ∂Ŷ > > < ∆Ŷ + γŶ + µ rŶ = 1D0 û in Ω ∂t > > on Ω Σ and Ŷ (0) = y0 , : Ŷ = 0, Q in Ω (6) D where γ (t, x ) = a (t, x ) + ∂σ (t, x ) W (t ) + 12 jσ (t, x )j2 ∂t jr [σ (t, x ) W (t )]j2 ∆ [σ (t, x ) W (t )] , µ (t, x ) = 2 r [σ (t, x ) W (t )] û (t, x ) = u (t, x ) ξ (t, x ) Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Approximating control problem If we consider now for the state system (6) with the cost function Ĵ (v̂ ) = 1 2 Z Q v̂ 2 (t, x ) dtdx + Z 1 Ŷ 2 (T , x ) dx . 2ε D then the optimal pair Ŷε (t ) , ûε (t ) = (Yε (t ) ξ (t ) , uε (t ) ξ (t )) is characterized for almost each ω 2 Ω, by 8 ∂Ŷε > > ∆Ŷε + γŶε + µ rŶε = 1D0 v in Ω Q, > > > ∂t > > > > > Ŷ = 0, on Ω Σ, and Ŷ (0) = y0 , in Ω > > > > > > ∂p̂ε < ∆p̂ε + γp̂ε div (µ rp̂ε ) = 0, in Q, ∂t > > > p̂ε = 0, on Ω Σ, > > > > > > 1 > > Ŷε (T ) , in Ω D p̂ε (T ) = > > > ε > > : 1D0 (x )p̂ε (t, x ) = ûε (t, x ) , in Ω ]0, T ] D . Aurel R¼ aşcanu D, Controlability of Stochastic Parabolic Equation with Multiplicative Noise We have 1D0 (x )p̂ε (t, x ) = ûε (t, x ) = uε (t ) ξ (t ) = 1D0 (x )pε (t, x ) ξ (t ) In same manner we obtain Z Q0 p̂ε2 (t, x ) dtdx + Z 1 Ŷ 2 (T , x ) dx = ε D ε Z Q ûε2 (t, x ) dtdx + 2 jy0 jH jp̂ε (0)jH . Z 1 Ŷ 2 (T , x ) dx ε D ε Now using the Carleman estimate we have jp̂ε (0)j2H Z CT Q0 jp̂ε (t, x )j2 dtdx . Hence 2 jy0 jH jp̂ε (0)jH 2 jy0 jH 1 2 and consequently P 1 2 Z Q0 Z Q0 a.s. ω 2 Ω : p̂ε2 (t, x ) dtdx + p CT Z Q0 jp̂ε (t, x )j2 dtdx 1/2 2 jp̂ε (t, x )j dtdx + 4 jy0 j2H CT Z 1 Ŷ 2 (T , x ) dx ε D ε Aurel R¼ aşcanu 4 jy0 j2H CT (ω ) Controlability of Stochastic Parabolic Equation with Multiplicative Noise Therefore 1 E 2 Z Q uε2 (t, x ) ξ 2 (t ) dtdx = 1 E 2 Z pε2 (t, x ) ξ 2 Q0 4 jy0 j2H E (CT ) (t ) dtdx <∞ and E Z D Yε2 (T , x ) ξ 2 (T ) dx 4ε jy0 j2H ECT . Hence on a subsequence ε n ! 0, ξuε n ! ξu weakly in L2ad (Ω ξYε n ! ξY weakly in Y ε n (T ) ξ (T ) ! 0 in L2ad L2 Q) Ω; L2 (]0, T [; V ) (Ω (boundedness estimates on the SPDE) D) . Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise By Mazur’s theorem there are mn (uen , yen , yen (T )) = ∑ ri (uε i , yε i , yε i (T )) 2 conv f(uε i , yε i , yε i (T )) : i 2 N g , i =1 ri such that ξe un ! ξu, strongly in L2ad (Ω ξe yn ! ξY , strongly in L2ad (Ω yen (T ) ξ (T ) ! 0 in L2 (Ω n 0, ∑m i =1 ri = 1 Q) [0, T ]; V ) D) and by linearity (u en , yen ) is a solution of the equation (2) with yen (0) = y0 . Moreover Z 1 E ξ2u en2 dtdx 4 jy0 j2H E (CT ) . 2 Q Since RT E sup jξ (t ) yen (t ) ξ (t ) yem (t ) j2H + E 0 kξ (s ) yen (s ) ξ (s ) yem (s )k2V ds t 2[0,T ] R C E Q ( ξ (s ) u en (s ) ξ (s ) u em (s ))2 dtdx then ξe yn ! ξY , in L2ad (Ω; C ([0, T ]; H )), and yen ! Y , in q Lad (Ω; C ([0, T ]; H )) for all 1 q < 2. Passing to limit in (2) we see that (Y , u ) is a solution of the equation (2) with y (0) = y0 and Y (T ) = 0. This completes the proof. Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise We proved the following theorem Theorem Let the SPDE ∆Y (t, x ) dt +a (t, x ) Y (t, x ) dt = 1D0 (x )u (t, x ) dt dt Y (t, x ) Y (ω, t, x ) = 0 on Ω Y (ω, 0, x ) = y0 (x ) +Y (t, x ) hσ (t, x ) , dW (t )i Σ, in Ω E Q Q, D, Then there exists a control u 2 L0ad (Ω Z on Ω Q ) such that u 2 (t, x ) exp [ σ (t, x ) W (t )] dtdx C Z D y02 (x ) dx and the corresponding state Y u (ω, T , x ) = 0 Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise V. Barbu : Exact controllability of stochastic parabolic equations with multiplicative noise, arXiv:1104.4603v1 [math.AP], (Submitted on 24 Apr 2011). V. Barbu, A. R¼ aşcanu, G. Tessitore: Carleman estimates and controllability of linear stochasti heat equations, Appl. Math. Optim. 47:97-1209, (2003). J. Bismut : On optimal control of linear stochastic equations with a linear-quadratic criterion, Siam J. Control and Optim., vol.15, no. 1, p. 1 4, 1977. G.Da Prato and J. Zabczyk : Stochastic Equations in In…nite Dimensions, Cambridge University Press, 1992. A.V. Fursikov, O. Yu Imanuvilov : Controllability of Evolution Equations, Lecture Notes Series, 34, (1996), Research Institute of Mathematics, Seoul National University, Korea. D. Goreac: Approximate controllability for linear stochastic di¤erential, equations in in…nite dimensions, Appl. Math. Optimiz., 105-132 (2009). E. Pardoux : Equations aux dérivées partielles stochastiques nonlinéaires monotones. Etude de solutions fortes du type Itô, Thèse, Paris-Sud, Orsay, 1975. E. Pardoux and A. R¼ aşcanu :Backward stochastic variational inequalities, Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise Thank you for your attention ! and I invite you to ITN School and Conference in Iasi, Romania Deterministic and Stochastic Controlled Systems School: June 18-30, 2012 Conference: July 2-7, 2012 http://www.math.uaic.ro/~ITN2012/ Available Post-Doc Positions in ITN-Marie Curie Project of Iasi http://www.math.uaic.ro/~ITN_Marie_Curie/recruitment.php Iasi: 6 months. Milano: 6 months. Manchester: 6 months. Marrakech: 6 months. Aurel R¼ aşcanu Controlability of Stochastic Parabolic Equation with Multiplicative Noise
© Copyright 2026 Paperzz