Models-Partial Differential Equations-and Location Problems Diaraf SECK [email protected] Université Cheikh Anta Diop de Dakar Ecole Doctorale de Mathématiques et Informatique Laboratory of Mathematics and Applications Faculté des Sciences Economiques et de Gestion CIMPA, DAKAR DU 05 au 15 AVRIL 2011 April 15, 2011 Chapter I: Models presentation. Exemples de problèmes d’ingénieurs Contraintes thermoelastiques dans un échangeur Croisement de trains ou TGV dans les tunnels Résonnance magnétique nucléaire Zone d’action, un champs magnétique intense et le plus uniforme possible. On suppose un champs léger fluctuant. Contacts thermiques electriques et thermoelastiques Matériaux composites tissés Tubes(flambage et les essaies techniques) flambage: quand il y a un conflit de symétrie. Design ou profil d’ailes d’avions, de maisons ou ... Phénomènes biologiques, écologiques Par exemple : la pollution,les tumeurs, évolution des insectes, bactéries etc. Exemples de problèmes pédagogiques Ecoulement de fluide dans un cylindre Traction simple d’un échantillon Ingrédients necessaires On va avoir des éléments descriptifs, (d’ordre cinématique) - intensifs et des lois Eléments descriptifs a) Eléments cinématiques ou géométriques a = {a1, a2, a3} les coordonnées d’une particule à l’instant t = t0. x = {x1, x2, x3} les coordonnées de la même particule à l’instant t. x = ϕ(a, t), (équation de la trajectoire) u = x − a = ϕ(a, t) − a, déplacement, inconnue fondamentale pour les solides. ∂ϕ dϕ v(x, t) = dx = = dt ∂t dt , inconnue fondamentale en mécanique des fluides. b) Eléments intensifs − → − → . T (x, k ), vecteur contraintes en x pour une − → direction k de l’espace. . On peut être interessé par les températures: conduction (il y a contact) rayonnement convection (il y a mouvement) Les champs éléctrique et magnétique les inductions éléctreique et magnétique Les lois qui relient ces grandeurs entre elles a) Les lois générales . Conservation de la masse . principe fondamental de la dynamique . 1er principe de la thermodynamique . 2eme principe de la thermodynamique: loi de dissipation . les équations de Maxwell. Les lois particulières Nécessité d’outils mathématiques Constatations physiques rhéologie (en mécanique) (les lois de comportement, les lois d’états, les lois constitutives.) newtonnien ou non fluides : gaz liquides élastiques solides : plastiques viscoélastiques et les phénomènes thermiques. milieux isolants ou non, aimentés ou non, polarisés ou non. Ingrédients mathématiques néccessaires à la description d’un milieu continu Coordonnées d’une particule Référentiel: un instant de référence, une référence spatiale, par exemple un repére orthonormé, connaı̂tre l’évolution d’un milieu. une relation de type x = F{(X, T, t)}, le lieu x est la trajectoire de la particule (X, T ). F n’est pas quelconque, c’est une relation: reflexivité x = F{(x, t, t)} symétrie X = F{(x, t, T )}alorsx = F{(X, T, t)} transitivité x = F{(X, T, t)} et si X = F (ξ, τ, t)] alors x = F [F (ξ, τ, t), T, t] = x = F (ξ, τ, t) Coordonnées d’Euler de la particule sont désignées x1 par les variables x2 x3 Les coordonnées de Lagrange sont les trois variables qui sont liées à la position de référence, une description plus simple, on prend T = 0 x = F (a, 0, t) = ϕ(a, t) a désigne la coordonnée de Lagrange x désigne la coordonnée d’Euler La fonction ϕ est inversible, on peut trouver a en fonction de x: a = ψ(x, t) x = ϕ(a, t) =⇒ x = ϕ[ψ(x, T ), t] Comportement des fluides en évolution isotherme ou adiabatique − → ∂ρ 1. ∂t + divρ V = 0 conservation de la masse (2) − → ∂V −−→ V 2 −−→ → − → −→− + grad + rot V ∧ V ] + gradp = ρ[ ∂t 2 −−→ − → → − → − (λ + µ)graddiv V + µ∆ V + f − → − → − → dV ∂V ∂V − →− → = + grad V . V = + (V.∇)V dt ∂t ∂t Remark: Modélisation du problème de pollution dans un milieu poreux non saturé Lois de comportement élastiques en milieu isotherme et adiabatique ρ0 = ρdet(1 + ∇u); les hypothèses de petites → pertbations entraı̂nent: ρ ' (1 − div − u )ρ0 ' ρ0 et ∂ 2ui ∂ ∂u ρ0 2 + [aijkh k ] = fi ∂t ∂xj ∂xh Ω0 Other Importants models: Boltzmann equation: ∂f + v∇xf = Q(f, f ), t ≥ 0, x ∈ RN , v ∈ RN ∂t Q depends on the Boltzmann collision kernel, v is the velocity of particles and f : a distribution function (density of particles) for more details see for example: Boltzmann, ....., Cercignani ,P.L. Lions, Di Perna, N. Masmoudi, C.D. Levermore, W. Greenberg, L St Raymond, F. Golse, C. Bardos, T. Goudon, E.Carlen, I. Gamba, ......, C. Villani (A review of mathematical topics in collisional kinetic theory,:Handbook of Mathematical Fluid Dynamics (Vol. 1), edited by S. Friedlander and D. Serre, published by Elsevier Science (2002), ......), ........ references therein Plasma: ∂f + v∇xf + F (x)∇v f = 0, ∂t F = −∇V , R 2 e V = 4π r ∗x ρ, ρ(t, x) = f (t, x, v)dv 0 equation for one species of particles, and also there is not not the effect of a magnetic field, which leads to the Vlasov- Maxwell system e: charge of the particle and : permittivity of vacuum for more details Balescu Delcroix and Bers , Decoster, C. Villani, Clément Mouhot, P.A. Raviart, E. Sonnendrucker, E. Frénod, ....... references therein Chapter II: Presentation of shape and topological optimization II.1. Shape Optimization General Formulation: min J(Ω, uΩ) Ω∈Θ (1) Θ est un ensemble de domaines admissibles, et uΩ est solution d’une certaine équation (dans beaucoup de cas c’est une équation aux dérivées partielles) posée dans Ω. et des conditions aux limites. Beaucoup de travaux dans ce domaine ont fait l’objet de plusieurs papiers . On souhaiterait donc avoir toujours des solutions pour ces types de problémes, mais lorsqu’il n’y a pas des hypothéses restrictives. Ces types de problémes n’admettent pas toujours de solution: Soient D =]0, 1[x]0, 1[, f > 0, d ∈ R, d > 0 et w est solution de ( −∆w + 2π d w = = f dans D w ∈ H01(D) (2) et considérons J(Ω) = Z Ω (uΩ − w)2dx avec ( −∆uΩ = = f dans Ω uΩ ∈ H01(Ω) (3) Alors le probleme min J(Ω) Ω∈O avec 1 O = {ω ⊂ D : dx ≥ , } 2 ω ne posséde pas de solution. Z Hadamard, D. Henry, M. Schiffer, G. Szego, J.L. Lions, D. Chenais, J.P. Zolesio, J. Sokolowski, F. Murat, J. Simon, O. Pironneau, , Ashbaugh, Benguria, M. Crouzeix, J. Ca, M. Pierre, A. Henrot, M. Masmoudi, P. Guillaume, G. Allaire, D. Bucur, G. Buttazzo, G. Dalmaso, G. Bouchitt, A. Acker, H.W.Alt, L. Caffarelli, E. Zuazua, Rappaz, J Descloux, C. Bandle, O. Besson, M. Delfour, Fasano, Sverak, A. Chambolle etc......... Henrot A. and Pierre M.: Variations et Optimisation de formes, une analyse géométrique, Mathématiques et Applications, 48, Springer 2005. A. Henrot: Extremum Problems for eigenvalues of Elliptic Operators, Birkhauser, 2006 D. Bucur and G. Buttazzo: Variational methods in shape optimization problems, Birkhauser 2005 Michel Delfour and J. Paul Zolsio: Shapes and Geometries: Analysis, Differential Calculus and Optimization, Siam, 2000 J. Sokolowski and J. P. Zolsio:Introduction to shape optimization: shape sensitivity analysis, Springer, 1992 II.2. Topological Optimization For a given x0 ∈ Ω, consider the perforated open set Ωε = Ω\ωε, ωε = x0 + εω, ω ∈ Rd is a fixed reference domain. The physical meaning of the small ωε is different from problem to another: for example, in the case of solid elastic problem, it means to remove some materials from the initial shape, it can be seen as an obstacle in the viscous fluid. There are two popular methods: J. Sokolowski et al. and M. Masmoudi et al. We recall here to the general adjoint method and domain truncation M. Masmoudi et al. in order to get topological derivative. Let uΩε be the solution of the equation in the perturbed domain: The aim of the topological optimization is to compute the difference J(Ωε)−J(Ω). For many cases, the asymptotic expansion of the function J can be obtained in the following form: J(Ωε) = J(Ω) + ρ(ε)G(x0) + o(ρ(ε)) lim ρ(ε) = 0, ε→0 (4) ρ(ε) > 0. The function ρ(ε) depends of the space dimension and the boundaries conditions on ∂ω. The function G(x0) is called topological derivative (or topological sensitivity) and provides an information for creating a small hole located at x0. Hence the function G can be used like a descent direction in optimization process. Chapter III: Application to some mathematical models I. Faye, M. NGom, A Sy, D. Seck III.1. Application to crystals problems a) Phononics Problems Definition: Phononic crystals are synthetic materials that are formed by periodic variation of the acoustic properties of the material. In this paragraph, we propose a modeling of the acoustic wave problem. The modeling is based on the out-flow of a fluid, barotrope, occupying a domain Ω of the space and immersing a unsettled domain with a weak amplitude (sound source) occupying himself a domain Ω1(thus Ω1 ⊂ Ω). We study the propagation of these small perturbations in the fluid, and therefore the propagation of the sound. → One assumes that the strengths of weight f are negligible in front of the strengths of inertia. → f=0 (5) Thus, we can suppose that the out-flow irrotational. →→ rot u = 0 (6) It follows that there exists a function ϕ such that − → → u = ∇ϕ (7) From equations of mass conservation, we have ∂ρ + ρ,iϕ,i + ρ∆ϕ = 0 ∂t ∂ ∂ϕ u2 1 ∂p [ + ]+ = 0 , i = 1, 2, 3. ∂xi ∂t 2 ρ ∂xi (8) (9) with → 2 u = | ∇ϕ |2. (10) We make classical hypotheses of small perturbations, such that : X The velocity ui is enough small as well as i their variations ui,k , ∂u ∂t , X The pressure p and the density ρ have small variations around the constant initial data p0 and ρ0. The linearization of the equations (8) and (9) gives: ∂ρ + ρ∆ϕ = 0 ∂t (11) ∂ ∂ϕ 1 dp ∂ρ ( )+ =0 ∂xi ∂t ρ dρ ∂xi (12) ∂ρ as ∂ϕ and ∂t ∂xi remain small, we can replace ρ dp by the constants ρ0 and c2 and dρ 0 (see [?]) then : ∂ρ + ρ0∆ϕ = 0 (13) ∂t and ∂ ∂ϕ ρ + c2 ( (14) 0 )=0 ∂xi ∂t ρ0 ρ ∂ϕ + c2 is a function of t 0 ∂t ρ0 Then ∂ϕ ρ 2 + c0 = k(t) ∂t ρ0 (15) ϕ can be modify by a function of t without → changing the value of u ; indeed if we set Φ=ϕ− Z t 0 k(s)ds we get → → u =∇Φ and ∆ϕ = ∆Φ. (16) A combination of the relations (14), (15) and (16) show that Φ is obtained by the wave equation 1 ∂ 2Φ − ∆Φ = 0 2 c2 0 ∂t (17) In order to get a well posed problem, we add to (17) the following initial conditions ∂Φ Φ(x, 0) = 0, (x, 0) = 0 ∂t (18) Setting Φ = Φ0eiωt, it follows ∂Φ ∂t = iωΦ and ∂ 2 Φ = −ω 2 Φ ∂t2 the equation (17) becomes: ω2 − 2 Φ − ∆Φ = 0 c0 (19) and setting k = cω , we can write the final model 0 under the form : ( −∆Φ = k2Φ in Ω Φ = 0 on ∂Ω (20) Using one or another approach for computing topological derivative, we get the following results. For the phononic problem, the aims is to get the asymptotic expansion of the functional: J(u) = J(λΩ) = (λΩ − a)2 (21) Theorem: Let j(ε) = Jε(uε) the cost function, where J is defined by (21) and u is solution of (20). Then j has the following asymptotic expansion j(ε) = j(0) + f (ε)g(x0) + o(f (ε)) where the topological derivative at x0 ∈ Ω is g(x0) = −2πu(x0)v0(x0) v0 is solution of the adjoint problem ( −∆v0 = −4(λΩ − a)∆u on Ω v0 = 0 in ∂Ω (22) Step 0: Given an initial domain Ω0 Step 1: Solve the direct problem Step 2: Solve the adjoint problem Step 3: Compute the topological sensitivity NO Step 4: Create a small hole where the topogical derivative is the most negative Step 5: The optimal shape is reatched Yes END Figure 1: The proposed algorithm Initial mesh 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −1.5 −1 −0.5 0 0.5 1 1.5 Figure 2: step 0: Domain without hole λ1(Ω0) = 5, 74 Figure 9: step 7: Domain with seven holes λ1(Ω7) = 23, 87 Remark: There is any possibility to put another hole, because, in the last domain, the topological derivative is equal to zeros, almost everywhere. The optimal shape design is reached after putting seven holes in the initial domain. Then all admissible frequencies near the limit audible one can pass. b) The photonic problem Definition: Photonic crystals are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) in the same way as the periodic potential in a semiconductor crystal affects the electron motion by defining allowed and forbidden electronic energy bands. A crystal photonic problem is a periodic dielectric structure that has the feature that there probability frequencies for the propagation of the electromagnetic waves insides. The photonic problems based on the electromagnetic equations. Let E be the electric field, B the magnetic one, i, j the current density vector, µ the medium magnetic permeability, , the medium permittivity and ρ the volume density of the electric charge. The Maxwell, magnetic and electric equations write I I → → − →− − →− E .ds = Q, B .ds = 0 | {z electric } | {z } magnetic dB → − →− E .ds = − dt} | {z I , ∇E = − ∂B ∂t F arady 0 s Law of electromagnetic induction − → ∂E − → → − →− B . dl = µ .ds + i, s ∂t I Z ∂D − →− → ∇ ·H = J + ∂t | {z } Ampere0 s law extended by M axwell where D = E and B = µH. It follows that the Maxwell equations write in differential form: ∇.E ∇H ∇×E ∇×H = ρ/ = 0 = −µ ∂H ∂t = j + ∂E ∂t (23) In the special case where ρ = 0, j = 0, µ = µ0, the Maxwell system writes ∇.E ∇H ∇×E ∇×H = 0 = 0 = −µ ∂H ∂t ∂E = ∂t (24) Thus ∂H ∂ 2E ∇ × (∇ × E) = ∇ × (−µ0 ) = −µ0 2 ∂t ∂t It is well know that 2E ∇ × (∇ × E) = |∇(∇.E) −∇ {z } =0 It follows that ∂ 2E 2 −∇ E = −∆E = −µ0 2 ∂t Without lost of generality, we can set µ0 = 1, we obtain ∂ 2E − ∆E = 0 2 ∂t (25) When the solution wave is monochromatic (and that depends on boundary and initial conditions), E is of the form E(x, t) = Re(u(x)eikt) where u is a solution of the Helmholtz equation. Adding initial conditions, we obtain the final model of the crystal photonic problem. ( ∆u + k2u = 0 on Ω u = 0 in ∂Ω (26) Using one or another approach for computing topological derivative, we get the following results. For the photonic problem, the aims is to get the asymptotic expansion of the functional: min JΩ(uΩ) = Z Ω |∇uΩ|2dxdx (27) Theorem: Let j(ε) = Jε(uεΩ) the objective functional then j have the following asymptotic expansion : j(ε) − j(0) = f (ε)g(u(x), v0(x)) + o(f (ε)) where v0 is a solution of the adjoint problem, which strong formulation is ( ∆v0 + k2v0 = −DJ(uΩ) v0 = 0 in Ω in ∂Ω (28) In the case where ωε = B(0b1), the topological derivative is given by: G(x0) = −2π(∇uΩ(x0).∇vΩ(x0)+uΩ(x0)vΩ(x0)) Initial Mesh 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −1 −0.5 0 0.5 1 1.5 Figure 10: Simulation for the photonic problem Remark: In this case, the topological derivative is equal to zeros, almost everywhere in Ω except in some small parts of the boundary of the domain. Thus, we can not create a hole centered to x0 ∈ Ω. III.2. Application to a thermoelasticity problem. C. Diallo, I. Faye, D. Seck In this work we consider the system as the following form: −−→ −−→ − → −µ∆~ uΩ − (λ + µ)grad div ~ uΩ − 3kαgrad θΩ = f −∆θΩ = g in Ω ∂θΩ = h on ∂Ω ∂n B~ uΩ = v on ∂Ω. (29) B is a Dirichlet or Neumann operator defined on ∂Ω, f~ ∈ L2(Ω, R3), g ∈ L2(Ω), v ∈ L2(∂Ω, R3) and L2(∂Ω). This system models phenomena of 2 3 thermoelasticity where the vector ~ uΩ = (u1 Ω , uΩ , uΩ ) is the deformations vector and θΩ is the temperature in the domain Ω. Presentation of the thermo elasticity problem Let Ω, ω two regular open and bounded sets of RN , N = 2, 3 and let x0 ∈ ω ⊂ Ω. is a small positive real. Let us defined the hall ω = x0 + ω and the perturbed domain Ω() = Ω \ ω. For the theorical study let us suppose x0 = 0. Consider −−→ ~ in Ω −µ∆~ u − 3kα grad θ = f Ω Ω div(uΩ) = 0 in Ω −∆θΩ = g in Ω (30) ∂θΩ ∂n = h on ∂Ω ∂~ uΩ ∂n = v on ∂Ω. In Ω() = Ω \ ω we have −−→ −µ∆~ uΩ() − 3kαgrad θΩ() = f~ in Ω() div(uΩ()) = 0 in Ω() −∆θΩ() = g in Ω() ∂θΩ() ∂n = h on ∂Ω ∂~ uΩ() = v on ∂Ω ∂n ∂~ uΩ() ~ uΩ() = 0 or ∂n = 0 on ∂ω ∂θΩ() θΩ() = 0 or ∂n = 0 on ∂ω. (31) In the following we set µ = 1 without loosing generality. Let us consider the functional J(Ω, ~ uΩ, θΩ) defined by J(Ω, ~ uΩ, θΩ) = 3 X αi Z Ω i=1 3 X i βi Z Ω |∇ui|2dx + r δ Z Ω Z Ω |ui − ui0|2dx+ |θΩ − θ0|2dx+ |∇θΩ|2dx where αi, βi, i = 1, 2, 3, r and δ are constants. For any positive real > 0 we consider j() = J(Ω(), ~ uΩ(), θΩ()) where (~ uΩ(), θΩ()) is solution to (31) and (~ uΩ, ,θΩ) solution to (30). The aim of this section is to detimine the asymptotic analysis of functional j() as → 0. Results Theorem Let us suppose that in the functional (??) βi = 0, i = 1, 2, 3, δ = 0 ie the functional is not depending of ∇uΩ, ∇θΩ and the Dirichlet conditions are prescribed in ∂ω. Then functional J(Ω, uΩ , θΩ ) defined by (??) where (uΩ , θΩ ) is solution to (31) admits the following asymptotic expansion Z 0 ω J(Ω)−J(Ω)− ≤ o(2) F (x, v(x))η(x)m v(x)dx u Ω (32) where η(x) = (η 1(x), . . . , η 4(x)) is the Green matrix and v = (uΩ, θΩ) is solution to problem P i i (30) and F0u = 2 4 i=1 (uω − u0 ) Theorem Let u be the solution of problem (31) and B ω is a Neumann condition on ∂ω. Then functional J(u) defined by (??) with r = δ = 0 and αi = βi = 1, i = 1, 2, 3 admits the following asymptotic expansion J(u) = J0(u) + 32π (u − u0)2 + |∇u|2− Z R3 \ω 2∇u.∇z(ξ)dξ − 3mω V · u + o(3+δ ) where u is the solution to problem (30) and V solution to the adjoint problem 0 (x, u(x), ∇u(x)) −∆V = Fu0 (x, u(x), ∇u(x)) − ∇xF∇u ∂V = 0 on ∂Ω ∂n (33) mω is the polarization matrix, z = (z 1, . . . , z 3) solution to problem (??), Fu0 (x, u(x), ∇u(x)) = 0 (x, u(x), ∇u(x)) = −∆u. 2(u − u0), and F∇u proof The proof is essentially based on the asymptotic expansion of the functional. ( Michell trusses problem Let us begin this section by a presentation of the problem. We ask the reader to see for example the interesting and meaning full work due to Bouchitte et al [?] and their references. Our aim is to link this problem to shape and topological optimization and we will end our work by numerical simulations. Presentation For the presentation of the Michell trusses problem, we are going to give some elements which can be found in Bouchitte et al; and for more details see this reference and the others therein. A truss is a finite union of bars (Ai, Aj ), i 6= j, i, j ∈ {1, . . . , n} subjected to a force F = Pn i=1 Fi δM i and result of a tension σ : σ= n X i,j=1 λij σ [Ai,Aj ], (34) where Ai ∈ R3, i = 1, . . . , n and σ [Ai,Aj ] is given by σ [Ai,Aj ] = Ai − Aj Ai − A j 1 ⊗ H[A −A ], (35) i j |Ai − Aj | |Ai − Aj | δMi is the Dirac mass at a point Mi ∈ R3. The truss is in equilibrium when divσ + F = 0. (36) The problem of Michell trusses is to find all n points A = (Ai)n i=1 ⊂ R and all reals λ = (λij )n i,j=1 ⊂ R, which minimize C(A, Λ) = n X |λi,j ||Aj − Ai| (37) i,j=1 such that ( σ= Pn [Ai ,Aj ] λ σ ij i,j=1 −divσ = F (38) Using the second equation of (37) the problem is equivalent to a decomposition of F as n X Ai − Aj F = λi,j (δAi − δAj ) |Ai − Aj | i,j=1 (39) with C(A, Λ) minimal. Let us introduce T X (s̃) = {σ ∈ M (s̃, S n ∗ S n) such that F σ= n X λij σ [Ai,Aj ] and − divσ = F }. i,j=1 Our aim is to see the Michell trusses as a topological optimization problem. For a deformation (displacement) u for all pair (A, Γ) solution to the problem of Michell trusses we have Z Ω ≤ < F, u > dx = n X λi,j < u(Ai−u(Aj ); i,j n X i,j λi,j |Ai − Aj | ≤ n X Ai − Aj > |Ai − Aj | |λi,j ||Ai − Aj | = C(A, Λ). i,j (40) Let us mention that in Bouchite et al;, they showed that Z min{ Ω Z |σ|, σ ∈ ΣF (s)} = max{ Ω < F, u >, u ∈ U1(s)} (41) where U1(Ω) = {u : Ω̄ → Rn, u ∈ C(Ω̄) and kukΩ ≤ 1} and kukΩ = sup{ | < u(x) − u(y); x − y > | , 2 |x − y| ∀x 6= y (x, y) ∈ Ω2}. To go back to the objective of this section which is to study a type of Michell trusses problem as a topological optimization problem. Let us introduce the classical model in elasticity in the stationary case: this means that −divσ = F where σ(u) = λT r(ε(u)) + 2µε(u) with σij (u) = λ(divu)δij + 2µεij (u) and εij = 1 (u 2 i,j + uj,i) and div(u) = 0. Finally we have −∆ui = Fi where F = (F1, F2, F3) and u = (u1, u2, u3). Multipying by ui and integrating we get ∂ui ∇ui∇uidx− uidσ = Ω ∂Ω ∂n Z Z Z Fiuidx, i = 1, 2, 3. i Taking ∂u ∂n = 0 on ∂Ω we have Z 3 X Ω i=1 Fiuidx = 3 Z X |∇ui|2dx = i=1 Z Ω < F, u > dx. (42) Let J(u, Ω) = 3 Z X i=1 Ω |∇ui|2 (43) under the constraints divσ = F. Remark In the compressible case the topological derivative for a point x ∈ Ω of the compliance is given by π(λ + 2µ) g(x0) = 4µAe(u)· 2µ(λ + µ) e(u) + (λ − µ)tr(Ae(u))tr(e(u)) (x0) in R2 (44) and π(λ + 2µ) g(x0) = 20µAe(u) · e(u)+ µ(9λ + 14µ) (3λ − 2µ)tr(Ae(u))tr(e(u)) (x0) in R3. (45) where ω = B(0, 1). In the incompressible case ie when div u = 0 in Ω, solving the Michell trusses is therefore to maximize the functional (43) along a set of fields, so using the topology optimization. For mathematical convenience we minimize −J(u, Ω) where J is defined by (43). This reduces to reconsider cases of topological optimization problem related to the thermoelasticity because the functional (43) is a particular case of general functional (??) with αi = 0, βi = 1, r = δ = 0 and we consider only the elasticity problem with F = (Fi), i = 1, 2, 3. Theorem Let J(u) the functional defined by (??) where u = (u1, . . . , uN ) and ui is solution to (??). Then we have the following assymptotic expansion J(u) = J(u)+2π3 |∇u|3−∇u.∇V −u.V +o(3+δ ), (46) where δ is a positive integer and u = (u1, . . . , uN ); ui is solution to (??) and V is solution to the adjoint state ( 0 (x, u(x), ∇u(x)) −∆V = −∇xF∇u ∂V = 0 ∂Ω. ∂n Ω (47) Numerical Simulations Case of the thermoelasticity problem In this section we consider ( −∆θ = h in Ω ∂θ = 0 on ∂Ω, ∂n (48) where h = 10−2 is a given function and the deformation vector u = (u1, u2, u3) is solution to ∂θ = f in Ω −∆u − 3kα i i ∂xi (49) div(u) = 0 in Ω ∂ui ∂n = hi on ∂Ω and ui0 = 2x + y − 2z is given. We consider also the topological derivative of functional (??) defined in theorem by −2π (u−u0)2+|∇u|2+ Z R3 \ω 2∇u.∇z(ξ)dξ −4πV ·u, where V is the adjoint state associated to functional (??). Let us take Ω = [−1, 1] × [−1, 1] × [−1, 1], α = k = 1, fi = 10−2, hi = 0, i = 1, 2, 3. Using finite elements methods and Getfeem++ we obtain the following numerical simulations for the topological derivative and the temperature θ in Ω. Representation of the temperature θ at the top of this page and representation of the topological derivative at the bottom. Case of Michell trusses problem’s Let us consider a square in R2 and three points A1, A2 and A3 in the square. Let us consider also a decomposition of F under the form F = α1 δ A 1 + α2 δ A 2 + α3 δ A 3 . (50) We first give the solution u = (u1, . . . , un) where ui is solution to −∆ui = fi in Ω div(u) = 0 in Ω (51) ∂ui ∂n = 0 on ∂Ω. Given a load F with finite support, we minimize numerically the functional J where u is solution to (51). Let us consider the square Ω = [−1, 1] × [−1, 1] and a decomposition of F in the form (50). Let us consider two cases: A1 = (0, 0), A2 = (1/2, 1/2), A3 = (1, 0) (52) and B1 = (−1, −1), B2 = (−1/2, 1/2), B3 = (1/2, −1/2). (53) The results obtained for the topological derivative in the case where points defined by (52) and (53) are given in figure??. The numerical simulations show that C(λ) is minimum in the considered points. Representation of the topological derivative with P P3 in the top F = 3 α δ and F = i=1 i Ai i=1 αi δBi at the bottom, λij = ji , Ai given by (52) and bi given by (53). These figures show that the topological derivative is smaller at the considered points, ie the points where we have the Dirac distributions. P We consider also a decomposition of F = 5 i=1 αi Ai where the points Ai are given by A1 = ((−1, −1), A2 = (0, 1/2), A3 = (1, 1) A4 = (0, −1/2) and A5 = (1, −1) and let λij = 1, 1 ≤ i, j ≤ 5 and λij = ji , i 6= j. Then we obtain for the topological sensitivity figure ??. Representation of the topological derivative with P j in the top F = 5 α δ , λ = i ij A i=1 i and F = i P5 i=1 αi δAi , λij = 1 at the bottom, Ai given by (??). In the case where Ω = [−1, 1]3 ⊂ R3 and F = P5 3 , i = 1, . . . , 5 α δ where the points A ∈ R i i A i=1 i are given by A1 = (0, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1), A4 = (0, 0 (54) the topological derivative is given in figure ??. Representation of the topological derivative with P λij = ji and F = 5 i=1 αi δAi , Ai given by (54). Chapter IV: Evolution de dunes sous marines I. Faye, E. Frénod, D. Seck Motivations 1. Objectif du programme de recherche : Simuler la dynamique des bancs de sable à proximité des côtes dans les zones soumises à la marée 2. Problématique : A chaque marée une masse importante de sédiment va et vient avec un effet résultant faible 3. Objectif de cette étude : Modéle duquel il sera facile de supprimer la présence explicite de l’oscillation de marée 4. Dit autrement : Modéle traitable avec des méthodes d’analyse asymptotique ou d’homogénéisation Méthodologie • Modéle du phénomène valable à toutes les échelles • Tailles caractéristiques des phénomènes ciblés • Rapports de ces tailles (→ ) • Modéle adimensionné paramétré par cf les deux papiers sur la question.
© Copyright 2026 Paperzz