The SURVEY Stellar mass assembly in space and time: CALIFA ’s perspective Stellar Population group CALIFA (CALAR ALTO Legacy Integral Field Area survey) S.F. Sánchez et al. 2012, A&A, 538, 8 Science drivers: Model the stellar population and constrain the star formation histories Trace the distribution of ionized gas and chemical abundances for the gas phase Measure the stellar and gaseous kinematics a crash tour ~ 80 members / 13 countries Enrique Pérez Roberto Cid Fernandes Rosa M. González Delgado Rubén García Benito André L. Amorim Sebastián F. Sánchez P.I. Damián Mast Clara Cortijo Rafael López Fernández Bernd Husemann CALIFA team & IAA-GRID team P.I.: S. F. Sánchez (Granada) P.S.: C. J. Walcher (Potsdam) Board chair: J.M. Vilchez (Granada) 250 dark nights in 3 years: IFU PPAK @ 3.5m CAHA Full optical wavelength range (3700-6700 Å) bundle: 382 fibers (2.7arcsec), 331 on galaxy FOV: 64” x 74” 60% filling factor 3-fold dithering pattern ~2000 spectra per galaxy Sample: 270 gxs observed! 600 galaxies 0.005 < redshift < 0.03 ~20 galaxies per 1x1 mag bin in the CMD + diameter selection … Instituto de Astrofísica de Andalucía (CSIC), Granada (Spain) Universidade de Santa Catarina, Florianópolis (Brasil) Leibniz-Institut für Astrophysik Potsdam (Germany) 1st public release: December 2012 David Axon Memorial 20130419 B. Husemann et al. 2013, A&A, 549, 87 The METHOD Bimodal distribution of galaxies SDSS stamps of the CALIFA sample fossil record method of stellar population spectral synthesis #2: Decomposing galaxy spectra: The basics... =! M1 Lgal(!) = $ Red sequence Blue Cloud http://califa.caha.es Observables Full spectrum: F! 6 " t,Z + M2 + M3 + ... MSSP(t,Z) x SSP(!;t,Z) x e-#(!) $ SFH: mass or light fractions ! Pop vector Spectral Base SSPs from BC03, Granada, Pegase, “CB07”, Vazdekis, … Dust: 1 !V? 2!V? !V(t,Z)? … The analysis pipeline de-construct spatial binning, etc pre-processing CALIFA spectral cube The results: spectral fits : 400.000 (200 galaxies) STARLIGHT Cid Fernandes re-construct MagesDict [[Z,t] Z,t ,t] !Z (t ) R.A. Magebins [[t] t] Mcen[zone,t] Mcen[zone,t Mcen[zone, t] = zone(y zone( y,x) x y, zone(y,x) Magebins[t] Magebins[ ] / area(zone) lo g Mages_cube[t,y,x] Mages_cube[t Mages_cube[ tt,,y, y,x] = zone(y zone( y,,x) x y zone(y,x) Magebins[t] Magebins[tt] / area(zone) Magebins[ dec. PyCASSO zone # READ Starlight output L(t) M(t) Z(t) FITS Av, v, vd 1Ma The results: spectral fits log(t) 13Ma The results: spectral fits PyCASSO Products: DOSSIER stellar Av Cid Fernandes, Pérez, et al 2013 PyCASSO Products: DOSSIER stellar velocities 1 2 stars Ha line emission Position-Velocity gas (r.a., dec, lookbacktime) 3D Mass evolution stellar velocity dispersion Mass assembly cumulative SFH: K0008 (Sbc) Bimodal distribution of galaxies SDSS stamps of the CALIFA sample Red sequence Blue Cloud How Mass builds up in time age Myr Massive galaxies already evolved 10Gyr ago stacking www.faceresearch.org Sir Francis Galton FRS, 1878 'Composite portraits made by combining those of many different persons into a single figure.' Nature 18 : 97-100 CMD : SFH (Light) CMD : SFH (Mass) Mass build up SFH: stacking by galaxy mass nucleus HLR >HLR Mass u-r log age Mr Mass build up logM=9.5 logM=10.1 logM=10.6 logM=11.2 logM=11.6 logM=12.2 nuc 0.5HLR HLR >HLR Kauffmann et al 2003 Mateus et al. 2006 Leauthaud et al 2012 Shankar et al 2006 Booth & Schaye 2012 Behroozi et al. 2012 Stinson et al. 2013 logM SMHR ~ 6x1010 ~ 3-10 x1010 COSMOS data and find that this mass marks where the accumulated stellar growth of the central galaxy has been the most efficient P. Thomas D. Alexander R. Morganti Shankar et al 2006 relative assembly rate Pérez, Cid Fernandes, González Delgado et al. 2013, ApJL,764, L1 Thank you
© Copyright 2026 Paperzz