download

Course
Year
: S0912 - Introduction to Finite Element Method
: 2010
1D OF FINITE ELEMENT METHOD
Session 4 – 6
COURSE 4
Content:
• 1D Element Types
• 1D Element Modelling
• 1D Solution
• Example/Case Study
Bina Nusantara
1D ELEMENT TYPES
Bina Nusantara
1D ELEMENT MODELLING
Forces and Moments on 1D Element
Bina Nusantara
APPLICATION TO FINITE ELEMENT
Bina Nusantara
1D SOLUTION
Global and Local Coordinate System
Bina Nusantara
1D SOLUTION
Bina Nusantara
1D SOLUTION
Bina Nusantara
1D ELEMENT EXAMPLE
u1
u2
Deformed shape
f1
x
Element
Bina Nusantara
f2
Node
(a hinge)
1D ELEMENT EXAMPLE
(i)
Conjecture a displacement function
u(x)
x
 a1 
u x   a1  a2 x  1 x    N a (1)
 
 a2 
Bina Nusantara
1D ELEMENT EXAMPLE
(ii)
Express u(x) in terms of nodal displacements by using boundary
conditions.
Deformed shape
u(0) = u1
 u1  1 0   a1 
u   1 L a  
 2 
 2 
Bina Nusantara
u(L) = u2
u  Aa (2)
1D ELEMENT EXAMPLE
Sub (2) into (1)
1
1 0 
1
 u
u x   NA u  1, x


1 L
 x
u x   1  ,
 L
x


u

C
u
L 
(3)
Displacement polynomial that satisfies boundary conditions
Bina Nusantara
Bar Element example
(iii)
Derive strain-displacement relationship by using mechanics
theory
du d
 1
 x  
  Cu   Bu  
dx dx
 L
Axial Strain
Bina Nusantara
1
u

L
(4)
1D ELEMENT EXAMPLE
(iv)
Derive stress-displacement relationship by using elasticity
theory
 x  E x  EB u
Elastic Modulus
Axial Stress
Bina Nusantara
(5)
1D ELEMENT EXAMPLE
(v)
Use principle of Virtual Work
Work = Stress x Strain x Volume
Internal work
Bar cross-sectional area A
WI     x . x dxdydz     x .  x dx  dydz
 A  x .  x dx
 EA B u.B u dx  EAu
External work
Bina Nusantara
WE  u1
 f1 
T


u2 
u f
 
 f2 
T
T


B
 Bdxu
1D ELEMENT EXAMPLE
Equate internal and external work
WE  WI
u f  EAu
T
f  k  u ,
Stiffness matrix
Bina Nusantara
T
T


B
 Bdxu
k   EA BT Bdx
(6)
1D ELEMENT EXAMPLE
Resultant stiffness matrix
k   EA

 EA
Bina Nusantara
L  1 
L
 1 
0 
 L 
L
1
2
L
 1
0  2
 L
 L1 L1 dx
1
L2 dx
1
L2 


EA  1  1

(7 )


L  1 1 
EXAMPLE
Axial deformation of a bar subjected to a uniform load
(1-D Poisson equation)
p x  = p0
x = 0, L
d 2u
EA 2 = p0
dx
u 0  = 0
du
EA
dx
=0
xL
u = axial displacement
E=Young’s modulus = 1
Bina Nusantara
A=Cross-sectional area = 1
EXAMPLE
Model the following shaft using two beam finite elements
neglecting axial deformation, given the following data:
Bina Nusantara
EXAMPLE
Bina Nusantara
EXAMPLE
Global and element coordinates are parallel. The Global
nodal coordinates are then defined as ui, i =1, 2, ......... , 6 .
Now assign a set of generalized coordinates qi along same
directions.
Bina Nusantara
EXAMPLE
Simple Form
Bina Nusantara
EXAMPLE
Bina Nusantara
EXAMPLE
Bina Nusantara
EXAMPLE
Bina Nusantara
EXAMPLE
Bina Nusantara