Course Year : S0912 - Introduction to Finite Element Method : 2010 1D OF FINITE ELEMENT METHOD Session 4 – 6 COURSE 4 Content: • 1D Element Types • 1D Element Modelling • 1D Solution • Example/Case Study Bina Nusantara 1D ELEMENT TYPES Bina Nusantara 1D ELEMENT MODELLING Forces and Moments on 1D Element Bina Nusantara APPLICATION TO FINITE ELEMENT Bina Nusantara 1D SOLUTION Global and Local Coordinate System Bina Nusantara 1D SOLUTION Bina Nusantara 1D SOLUTION Bina Nusantara 1D ELEMENT EXAMPLE u1 u2 Deformed shape f1 x Element Bina Nusantara f2 Node (a hinge) 1D ELEMENT EXAMPLE (i) Conjecture a displacement function u(x) x a1 u x a1 a2 x 1 x N a (1) a2 Bina Nusantara 1D ELEMENT EXAMPLE (ii) Express u(x) in terms of nodal displacements by using boundary conditions. Deformed shape u(0) = u1 u1 1 0 a1 u 1 L a 2 2 Bina Nusantara u(L) = u2 u Aa (2) 1D ELEMENT EXAMPLE Sub (2) into (1) 1 1 0 1 u u x NA u 1, x 1 L x u x 1 , L x u C u L (3) Displacement polynomial that satisfies boundary conditions Bina Nusantara Bar Element example (iii) Derive strain-displacement relationship by using mechanics theory du d 1 x Cu Bu dx dx L Axial Strain Bina Nusantara 1 u L (4) 1D ELEMENT EXAMPLE (iv) Derive stress-displacement relationship by using elasticity theory x E x EB u Elastic Modulus Axial Stress Bina Nusantara (5) 1D ELEMENT EXAMPLE (v) Use principle of Virtual Work Work = Stress x Strain x Volume Internal work Bar cross-sectional area A WI x . x dxdydz x . x dx dydz A x . x dx EA B u.B u dx EAu External work Bina Nusantara WE u1 f1 T u2 u f f2 T T B Bdxu 1D ELEMENT EXAMPLE Equate internal and external work WE WI u f EAu T f k u , Stiffness matrix Bina Nusantara T T B Bdxu k EA BT Bdx (6) 1D ELEMENT EXAMPLE Resultant stiffness matrix k EA EA Bina Nusantara L 1 L 1 0 L L 1 2 L 1 0 2 L L1 L1 dx 1 L2 dx 1 L2 EA 1 1 (7 ) L 1 1 EXAMPLE Axial deformation of a bar subjected to a uniform load (1-D Poisson equation) p x = p0 x = 0, L d 2u EA 2 = p0 dx u 0 = 0 du EA dx =0 xL u = axial displacement E=Young’s modulus = 1 Bina Nusantara A=Cross-sectional area = 1 EXAMPLE Model the following shaft using two beam finite elements neglecting axial deformation, given the following data: Bina Nusantara EXAMPLE Bina Nusantara EXAMPLE Global and element coordinates are parallel. The Global nodal coordinates are then defined as ui, i =1, 2, ......... , 6 . Now assign a set of generalized coordinates qi along same directions. Bina Nusantara EXAMPLE Simple Form Bina Nusantara EXAMPLE Bina Nusantara EXAMPLE Bina Nusantara EXAMPLE Bina Nusantara EXAMPLE Bina Nusantara
© Copyright 2026 Paperzz