WiMAX Physical Layer lecturer:林杰龍 lecturer:林杰龍 [email protected] 2009/03/10 Content I Baseband Technology I OFDM &OFDMA II Signal Characteristics III Modulation & Coding II RF Technology III Other Technology page-2 Basic Architecture of an OFDM(A) System Input Data Randomizer FEC Encoder Interleaver Mod. S/P IFFT P/S Add CP Tx Filter Output Data DeRandomizer FEC Decoder DeInterleaver P/S & De-Mod. Detection FFT Remove CP S/P Rx Filter page-3 DFT and IDFT • There is the orthogonal property between different subcarriers to avoid the interference when the spectrums overlap. e jω i t e − jω i t page-4 DFT and IDFT • Discrete Fourier Transform is implemented by the FFT and IFFT normally. 1 IDFT _ x[ n ] = N N −1 ∑ X [ k ]e j 2π kn N k =0 N −1 DFT _ X [ k ] = ∑ x[ n ]e −j 2π kn N n=0 N: the number of subcarrier in OFDM x[n]: the complex input data in time domain X[k]: the data in frequency domain page-5 Fourier Transform Characteristics • N Period: − j 2π WN = e ( (WN ) N) W Nk n = W N ( k n+ N ) N = W N( ( = e − j ( 2π N) ) N = e − j 2π = 1 k + N )n • Complex Conjugate Symmetry: • DFT needs N2 multipliers and N(N-1) adders. This is a high calculating complexity method. Æ FFT or IFFT is used to reduce the complexity to Nlog2N • WN[ k N −n] = W N− k n = (W Nk n ) ∗ page-6 DIT Radix-2 FFT x[0] X[0] x[2] X[1] x[4] X[2] x[6] X[3] x[1] X[4] x[3] X[5] x[5] X[6] x[7] X[7] page-7 Signals of Frequency Domain Single bit signal in frequency domain page-8 Signals of Frequency Domain Subcarrier Center Point page-9 Signals of Frequency Domain page-10 Physical Property – Frequency Domain • • • • • Nominal Channel Bandwidth, BW Sampling Frequency, Fs = floor(n∙BW/8000) ∙8000 Sampling factor, n = Fs / BW Used Channel, Bandwidth = Nused ∙∆f Carrier Spacing, ∆f = Fs / NFFT Nused NFFT page-11 Physical Property – Time Domain • • • • Channel Effect : The different arrival time will cause the ISI. Cyclic Prefix : Copy the last part of OFDM symbol to the front in the time domain. CP Length : 1/4, 1/8, 1/16, 1/32 Ts = Tg + Tb = CP x Tb + Tb – Tb : Useful OFDM Symbol Time – Tg : Cyclic Prefix – Ts : Transmitted OFDM Symbol Time • CP prevents the discontinuous effect of the guard interval. Ts Tg Cyclic Cyclic Prefix Prefix Tb Data DataPayload Payload page-12 Multipath Influence • ISI (inter-symbol interference) – Tcp > Tdelay-spread CP CP Td Symbol Symbol CP CP CP CP Symbol Symbol Two path model Symbol Symbol CP CP Symbol Symbol • ICI (inter-channel interference) – Tcp < Tdelay-spread CP CP Symbol Symbol Td CP CP CP CP Symbol Symbol Symbol Symbol CP CP Symbol Symbol page-13 Circular Convolution Path_1 Other Symbol Path_2 Other Symbol Path_3 Other Symbol Cyclic Cyclic Prefix Prefix Data DataPayload Payload Cyclic Cyclic Prefix Prefix Data DataPayload Payload Cyclic Cyclic Prefix Prefix Data DataPayload Payload Other Symbol Other Symbol Other Symbol ISI Free Region Tb Length Y[K] = H[K] X[k] page-14 OFDMA Scalability Parameters Values System B.W.(MHz) 1.25 3.5 5 7 8.75 10 20 Sampling frequency(Fs,MHz) 1.4 4 5.714 8 9.8 11.429 22.857 FFT Size 128 512 512 1024 1024 1024 1024 Subcarrier Frequency Spacing 10.9375kHz / 11.16015625 kHz Useful Symbol Time 91.429 us / 89.604 us Guard Time Tg = Tb/8 = 10.9 us / 11.2 us ( Others: Tb/4 = 22.85725 us / 22.401 us, Tb/16 = 5.7143 us / 5.60025 us ) OFDMA Symbol Time 102.329 us / 100.804 us (based on 28/25, 8/7 sampling factor) Frame Sizes (msec) 2 2.5 4 5 8 10 12.5 20 OFDM symbols 19 24 39 49 79 99 124 198 page-15 Duplex Mode • 802.16(e) supports both TDD, H-FDD and FDD 5 ms F1 DL F1 DL 5 ms UL DL UL DL UL F2 UL F1 DL DL F2 UL UL F1 F2 ΔT DL1 TDD H-FDD (TDD over FDD) True FDD DL2 DL1 DL2 UL1 UL2 UL1 Hybrid FDD page-16 Properties of FDD & TDD • FDD: – Simultaneous transmission in uplink and downlink is possible. – Asymmetric uplink and downlink traffic can not be supported. – Channel reciprocity does not exit which is a disadvantage in case of AAS. – Paired frequency bands are required. • TDD: – Flexible allocation of bandwidth in DL and UL – Allows more effective MIMO techniques – Transceiver design is cheaper and less complex page-17 Channel Coding • To overcome the effect of the channel, WiMAX adopt different channel coding for different situations. Channel coding is composed of 3 steps: randomizer, FEC and interleaving. Transmitter: • Receiver: • • – Data Æ Randomizer Æ FEC Æ Interleaving – Data Å Randomizer Å FEC Å Interleaving Randomizer Randomizer (8.4.9.1) (8.4.9.1) Burst data FEC FEC (8.4.9.2) (8.4.9.2) Bit BitInterleaver Interleaver (8.4.9.3) (8.4.9.3) Repetition Repetition (8.4.9.5) (8.4.9.5) Modulation Modulation (8.4.9.4) (8.4.9.4) Mapping to OFDM(A) subchannels page-18 Randomizer • • The generator polynomial: 1+x14+x15 Except the preamble and FCH. OFDMA randomizer initial vector page-19 Encoding - CC • • Convolutional Code is the most common code. Constraint length=7, Code rate=1/2 G1 = 171OCT For X G2 = 133OCT For Y page-20 Convolutional Decoder • Viterbi Decoding: • Trellis Diagram: – Search through space of all possible sentences. – Pick the one that is most probable given the waveform. 0/00 0/00 0/00 1/11 1/11 0/10 0/11 1/00 1/01 0/10 1/01 t2 0/00 0/11 0/11 1/11 0/01 t1 0/00 t3 0/10 0/01 t4 t5 t6 page-21 Encoding - CTC Conventional Turbo Code RSC1 Interleaver RSC2 page-22 Concatenated Code • • • • Combination of two codes provides the greater coding gain with less implementation complexity as a comparable single code Typically, inner code is a convolutional code while the outer code is a block code Convolutional code cleans up low-input SNR’s Block code cleans up the remaining errors page-23 Interleaver • • Interleaver can avoid long runs of lowly reliable bits. The first permutation – ensure that adjacent coded bits are mapped onto nonadjacent subcarriers. m k = ( N cbps / 12 ) ⋅ k mod 12 + floor ( k / 12 ), • k = 0,1,... N cbps − 1 The second permutation – ensure that adjacent coded bits are mapped onto less or more significant bits of the constellation. j k = s ⋅ floor ( m k / s ) + ( m k + N cbps − floor (12 ⋅ m k / N cbps )) mod( s ) k = 0,1,... N cbps − 1 s = ceil ( N cpc / 2 ) 1, 2, 4, 6 for BPSK, QPSK,16-QAM, 64-QAM page-24 Simple Interleaver Concept M x N Matrix 1 2 3 4 N+1 N+2 N+3 N+4 (M(M-1)N+3 (M(M-1)N+1 (M(M-1)N+4 (M(M-1)N+2 1, N+1, 2N+1, …(M(M-1)N+1 N 2N Output MN 2, N+2, 2N+2,… 2N+2,… (M(M-1)N+2 page-25 Repetition Code • It can be used to increase signal margin over the modulation and FEC. • After FEC and interleaver, the data is segmented into slots. – UL: Ns = multiple of R – DL: Ns = [ R×K , R×K+(R-1) ] – R = 2, 4 ,6 • This scheme applies only to QPSK and in all coding schemes except HARQ with CTC. page-26 Modulation • • The data bits are entered serially to the constellation mapper. The support of 64-QAM is optional for license-exempt bands. BPSK QPSK 16-QAM 64-QAM page-27 Adaptive Modulation and Coding (AMC) • Tail Biting CC, CTC without H-ARQ CTC with Chase Combining H-ARQ CTC with Incremental Redundancy H-ARQ* Modulation Types for CC – QPSK-1/2, -3/4 – 16QAM-1/2, -3/4 – 64QAM-1/2, -2/3, -3/4 (DL only) • Code rate Receiver SNR QPSK 1/2 5 3/4 8 1/2 10.5 3/4 14 1/2 16 2/3 18 3/4 20 FEC – – – – • Modulation 16-QAM 64-QAM Modulation Types for CTC – QPSK-1/2, -3/4 – 16QAM-1/2, -3/4 – 64QAM-1/2, -2/3, -3/4, -5/6 (DL only) page-28 ARQ (Automatic Repeat reQuest) • Conventional ARQ – Stop-and-wait ARQ – Go-back-N ARQ – Selective-repeat ARQ • Hybrid ARQ – Chase Combining (CC) – Incremental Redundancy (IR) page-29 Chase Combining (CC) • • Each retransmission repeats the first transmission or part of it. Soft combining of original and retransmitted signals are done at receiver before decoding Same Data Data channel Data1 Data1 Feedback channel Data2 Data2 ack ack Data2 Data2 nack nack Data2 Data2 nack nack Data2 Data2 Data3 Data3 nack nack ack ack time Soft Combination page-30 Incremental Redundancy (IR) • • • Each retransmission transmit the new code bits from the mother code to lower the code rate. Reducing the effective data throughput/bandwidth of a user Combine with the CTC. Different Data Data channel Data1 Data1 Feedback channel Data2 Data2 ack ack IR IRdata2 data2 nack nack IR IRdata2 data2 IR IRdata2 data2 nack nack nack nack Data3 Data3 ack ack time Check puncture table and do IR Combination page-31 Simple Throughput Calculation page-32 Content I Baseband Technology II RF Technology I Multi-Input Multi-Output II Space Time Coding III Spatial Multiplexing IV Collaborative SM V Beamforming Other Technology III page-33 Multi-Input Multi-Output N×1 y p (t ) = ∑h n=0 pn x n (t ) + n (t ) ⎡ h00 ⎢h H = ⎢ 10 ⎢ M ⎢ ⎣hM 0 h01 h11 M hM 1 MIMO Decoder Decoder MIMO y1(t) … Y = HS + N M×1 M×N y yM(t) xN(t) IFFT N y0(t) FFT FFT x1(t) IFFT hM0 h00 h10 … MIMO Sub-channel Sub--channel Mapping Mapping Sub MIMO IFFT … MIMO Encoder Encoder MIMO x0(t) L h0 N ⎤ L h1N ⎥⎥ O M ⎥ ⎥ L hMN ⎦ page-34 Antenna Diversity Transmit (MISO) Receive (SIMO) Both (MIMO) page-35 Capacity of MIMO • • Shannon bound: C = log 2 (1 + P σ n2 ) Capacity of 1 to M: C = log 2 (1 + M • (bps/Hz) P σ n2 ) (bps/Hz) Capacity of N to M: 1 P C = log 2 (det( I + HH N σ n2 ≈ K log 2 (1 + P σ n2 ) H )) = min{ M , N } ∑ i =1 log 2 (1 + P σ n2 λi ) (bps/Hz) The Shannon Theorem has been broken by diversity method. page-36 Multipath Number vs SNR page-37 Advanced Technology on MIMO Space time code (STC) – – – Reduce fade margin by spatial diversity Open loop Peak rate limit – – – Improve capacity Open loop Requires good SINR and low spatial correlation – – Optimally select STC or SM to adapt to channel condition Reduced feedback – – – – Improve link budget Reduce interference #Antennas ≥ 4 for good beamforming effect Requires CSI feedback (e.g. sounding), good for slow varying channel page-38 Only extends range for unit transmission Spatial multiplexing (SM) Adaptive MIMO switch (AMS) AAS (beamforming) – Space Time Code (STC) Encoder Encoder • S/P S/P S1 S2 − S 2* S1* STC STC Decoder Decoder Transmitter: – Antenna 0: Tx transmit s1 and s2 – Antenna 1: Tx transmit –s2* and s1* • Receiver: – x’1 = h0*∙r0 + h1 ∙r1* – x’2 = h1* ∙r0 - h0 ∙r1* – [s’1 s’2]T = HHX = ( |h0|2 + |h1|2 )[s1 s2]T + N • Decoding is very similar to maximum ratio combining. page-39 Spatial Multiplexing (SM) • Each transmit antenna transmits independent information stream for high throughput • Collaborative spatial multiplexing – Mobile stations have one or two antennas, BS has multiple antennas. – Two single transmit antenna SS's can perform collaborative spatial multiplexing onto the same subcarrier – Result in the uplink capacity increment by assigning same uplink resource to two SS’s simultaneously page-40 Matrix Book of Tx DL • For 2 - antenna BS, the code books are shown as following: ⎡S A=⎢ i ⎣ Si +1 C= • − Si*+1 ⎤ ⎥ Si* ⎦ ⎡ Si ⎤ B=⎢ ⎥ ⎣ S i +1 ⎦ ⎡ S i + jr ⋅ S i + 3 ⎢ 1 + r 2 ⎣ S i +1 − r ⋅ S i + 2 1 r ⋅ S i +1 + S i + 2 ⎤ −1+ 5 ⎥, r = 2 jr ⋅ S i + S i + 3 ⎦ SM operation mode for data stream: – Vertical Encoding – Horizontal Encoding • Choose matrix type and MIMO architecture, according to the channel characteristics, system profile (permutation type, antenna number) and encoding schemes. page-41 MIMO Architecture Matrix A, Vertical Matrix B AAfor for2,3,4 2,3,4Tx Tx page-42 BBfor for33or or44Tx Tx MIMO Architecture 2 Matrix B for Horizontal Encoding 2 Layers • • • It is the same for Matrix C The number of layers depends on the number of encoding/modulation paths. The number of STC output paths is the same between vertical and horizontal. page-43 Antenna Grouping / Selection • The proposed STC code for 3Tx-rate 1 configuration with diversity order 3 is given by 3 permutation types. ⎡ ~ ~* ⎤ ⎢ S1 − S 2 0 0 ⎥ ⎢ ~ ~ ~ ~ ⎥ A1 = ⎢ S 2 S1* S 3 − S 4* ⎥ ⎢ 0 0 ~ ~* ⎥ S4 S3 ⎥ ⎢ ⎣ ⎦ ⎡~ ~* ⎤ ⎢ S1 − S 2 0~ 0~ ⎥ ⎢ ⎥ A3 = ⎢ 0 0 S 4 S3* ⎥ ~ ~ ~ ~ ⎢S S * *⎥ 1 S 4 S3 2 ⎢⎣ ⎥⎦ ⎡ ~ ~ * ~* ~ * ⎤ ⎢ S1 − S 2 S 3 − S 4 ⎥ ⎢ ~ ~ ⎥ A2 = ⎢ S 2 S1* 0 0 ⎥ ~ ~ ⎢ 0 0 S S* ⎥ 4 3 ⎢ ⎥ ⎣ ⎦ Tx1, Tx1, Tx2 Tx2 at at subcarrier subcarrier 11 Tx1, Tx1, Tx2 Tx2 at at subcarrier subcarrier 11 Tx1, Tx1, Tx2 Tx2 at at subcarrier subcarrier 11 Tx2, Tx2, Tx3 Tx3 at at subcarrier subcarrier 22 Tx1, Tx1, Tx3 Tx3 at at subcarrier subcarrier 22 Tx1, Tx1, Tx3 Tx3 at at subcarrier subcarrier 22 Si = xi ⋅ e jθ for I = 1, 2, …, 8, where θ = tan −1 ( 1 ) ~ S 1 = S1I + jS 3Q ~ S 2 = S 2 I + jS 4Q ~ S 3 = S3 I + jS1Q ~ S 4 = S 4 I + jS 2Q 3 Si = SiI + SiQ page-44 Adaptive MIMO Switch page-45 Diversity Combination • Switched combining: the current branch is used until a metric fails a certain threshold (e.g. Received Signal Strength Indicator) – Cheap and simple, but not ideal • Selection combining: the most appropriate branch is always selected. Slight performance advantage over switch diversity. – All diversity branches must be analysed – RSSI is not ideal – unduly affected by interference • Equal Gain Combining: simply co-phase and sum all branches – Multiple receive chains are required • Maximal Ratio Combining: each branch is combined according to its signal-to-noise ratio. – Optimal performance – Requires multiple receive chains and S/N calculation page-46 Diversity Improve Performance BER Frequency-selective channel (no equalization) AWGN channel (no fading) “BER floor” Flat fading channel SNR Frequency-selective channel (equalization or Rake receiver) page-47 MIMO Simulation Demodulation scheme = Zero-Forcing detection Center frequency = 2.3GHz OFDM Symbol B.W. = 1.75MHz FFT size = 256 Np = 8 Modulation = QPSK Sampling Factor = 8/7 Sampling Frequency = 2MHz Length of Symbol = 128 us Length of guard interval = 16 us Maximum delay spread = 5 us No Channel Coding Ref: A Fine Frequency Synchronization and Tracking for Mobile WiMAX Broadcasting Systems page-48 Adaptive Array System (AAS) • Requirements: – Requires CSI feedback (e.g. sounding), good for slow varying channel – #Antennas ≥ 4 for good beamforming effect • Advantages: – Extend range for unit transmission – Improve link budge – Reduce interference page-49 Beamforming & Smart Antenna SIGNAL BEAMFORMER WEIGHTS λc: λc: wave wave length length INTERFERENCE Signal s(t) w(r): w(r): spatial spatial signature signature vector vector INTERFERENCE Array data in Complex Baseband Format : ⎡ j 2λπ x1 ⋅r ⎤ ⎡ x1 (t ) ⎤ ⎢ e c ⎥ ⎡ n1 (t ) ⎤ ⎥ ⎢ x(t ) = ⎢ M ⎥ = ⎢⎢ M ⎥⎥ s (t ) + ⎢⎢ M ⎥⎥ = w(r ) s (t ) + n(t ) 2π ⎢ x M ( t ) ⎥ ⎢ j λc x M ⋅ r ⎥ ⎢⎣nM (t )⎥⎦ ⎦ e ⎣ ⎢⎣ ⎥⎦ page-50 Frequency Reuse Factor ( BS num per cluster, Sector Num per BS, Useable Frequency per BS ) page-51 Fractional Frequency Reuse page-52 Coverage page-53 DL Budget for WiMAX page-54 DL Budget for WiMAX page-55 Content I Baseband Technology II RF Technology III Data Allocation I Frame Structure II Zone III Burst IV Subcarrier allocation page-56 OFDMA Frame Structure TDD page-57 Return DL & UL Data Allocation • • • Slot is the minimum allocation unit. The length of slot depends on the permutation type. The data allocation is according to 2 dimensions “subchannel & symbol” page-58 OFDMA Preamble page-59 OFDMA Preamble Index : [0 : 113] IDcell : [0 : 31] Segment: 0,1,2 Totally 142*4=568 bits (forced to zero when fit into DC carrier) 3*568=1704, 1704-DC carrier=1703, 1703-out of range=1702page-60 Midamble and Postamble Frame n-1 Frame n Frame n+1 DL subframe LP FCH … Frame m UL subframe DL DL M Burst 1 Burst 2 … DL Burst Y Postamble Midamble Preamble SP UL Data UL Data … M Symbol P+1 Symbol 1 … UL Data P Symbol Q page-61 Subframe Structure • OFDMA Subframe Structure – Zones • • • • STC AAS Permutation Common Sync Symbol – Bursts – Sub-Bursts page-62 Multiple Zones in SubFrame • Zone types: • Other Parameters: – Normal, STC, AAS, Common Sync Symbol – Permutation types (FUSC,PUSC,AMC) – Midamble, Boosting, Preamble Configuration, SDMA page-63 Permutation Contiguous Permutation (Band AMC) • Downlink Permutation – Band AMC (1*6, 2*3, 3*2) – FUSC – Optional FUSC – PUSC – TUSC1, TUSC2 • Uplink Permutation – Band AMC (1*6, 2*3, 3*2) – PUSC – Optional PUSC Diversity Permutation (FUSC、PUSC) page-64 Permutation Explanation • • • • • • • PUSC – – Partial usage of subchannels. Divide the subcarrier into clusters. – – Advanced cluster structure. Only for UL. – – Full usage of subchannels. Only for DL. – – Advanced cluster structure. Only for DL. – – Advanced Modulation/Coding Adjacent subcarrier permutation – – Tile usage of subcarriers Only for DL + AAS. – – Tile usage of subcarriers Only for DL + AAS Optional PUSC FUSC Optional FUSC AMC TUSC1 TUSC2 page-65 Permutation Tradeoff Contiguous Permutation (Band AMC) Diversity Sub-carrier Permutation (PUSC,FUSC) Benefits Sub-channelization gain、Frequency selective loading gain Sub-channelization gain、Frequency Diversity、Inter-cell interference averaging Scheduling Advanced frequency Simple scheduler, scheduler to explore Rely on frequency frequency selectivity gain diversity to achieve robust transmission Channel Condition Stationary channel Fast-changing channel Favorable Smart Antenna Tech. Beamforming MIMO page-66 Slot Definition Permutation Downlink Uplink AMC 1 subchannel by 2,3,6 OFDMA symbol 1 subchannel by 2,3,6 OFDMA symbol PUSC 1 subchannel by OFDMA symbols 1 subchannel by OFDMA symbols 3 Optional PUSC n/a 1 subchannel by OFDMA symbols 3 FUSC 1 subchannel by 1 OFDMA symbol n/a Optional FUSC 1 subchannel by 1 OFDMA symbol n/a TDSC1 1 subchannel by 3 OFDMA symbols n/a TDSC2 1 subchannel by 3 OFDMA symbols n/a 2 page-67 Subframe Structure • OFDM(A) Frame Structure – Zones – Bursts • • • • Allocation Boosting Modulation Coding – Sub-Bursts page-68 Burst • • For DL – – – – Frame Control Header (FCH) Map Data Burst (DL-MAP、UL-MAP) Normal Data Burst AAS Burst (Optional) – – – – – – – Initial Ranging/Handover Ranging Periodic Ranging/Bandwidth Request HARQ ACK Channel Fast Feedback Channel PAPR/Safety Zone Sounding Zone Normal Data Burst For UL page-69 FCH • Sub channel bit map RNG REP Coding DLDL-Map Len Reserved 6 bits 1 bit 2 bits 3 bits 8 bits 4 bits Frame Control Header – Used subchannels bitmap Æ 6 groups – Ranging Change Indicator Æ Periodic/B.W. Request – DL-Map Coding parameters • Repetition Coding Indicator (1,2,4,6) • Coding Indicator CC (mandatory), BTC, CTC or ZT CC – DL-MAP Length – Total 24 bits • Fixed Location and Coding Rate: – None FFT-128 • First 4 slots of the segment • QPSK rate ½ with repetition coding of 4 – FFT-128 • Only the first slot • No repetition code page-70 DL-MAP Coding Parameters FCH DL-MAP Collect a symbol block for FEC decoder Coded Information Data FEC decoder S0 S1 Sn S0 S1 Sn Combine MAC Message page-71 MAP Message Type page-72 Downlink Map page-73 OFDMA Ranging • Initial-ranging / handover-ranging – N1 = 2 or 4 symbols • Periodic-ranging / BW-request – N1 = 1 or 3 symbols N2 = 6 for default 8 for optional page-74 CDMA_Allocation_IE Duration in units of OFDMA slots Ranging Code CDMA code sent by the SS Ranging Symbol the OFDMA symbol used by SS Ranging subchannel indicates the subchannel used BW request mandatory indicates whether SS shall include a BW request in the allocation page-75 Ranging Code • • • A set of 256 special PN 144 bit-long ranging codes are divided into 4 groups for initial, periodic ranging, bandwidth requests and handover-ranging. 144bits are used to modulate the subcarriers in a group of 6 adjacent subchannels. These codes are BPSK modulated onto the subcarriers in the ranging channel. (1 bit per subcarrier) page-76 Auto Correlation 150 decode ranging code autocorrelation For six users 100 R(t) 60 decode ranging code autocorrelation 50 50 40 0 50 100 150 200 shift 250 R(t) 0 300 350 30 For one user 20 10 0 0 50 100 150 200 shift 250 page-77 UL ACK Channel • Provides feedback for Downlink HARQ – One ACK channel occupies half subchannel by three OFDMA symbols • 3 pieces of 4x3 uplink tile in the case of PUSC • 3 pieces of 3x3 uplink tile in the case of optional PUSC – ACK coding • If 0 for ACK, modulation vector 0,0,0 on ACK channel • If 1 for NACK, modulation vector 4,7,2 on ACK channel • Tile(0) Tile(0) Tile(1) Tile(1) ACK Channel – Modulated by the QPSK symbol – Even and odd half subchannel 1 ACK Channel (mini-subchannel) Tile(2) Tile(2) Tile(3) Tile(3) Tile(4) Tile(4) Tile(5) Tile(5) page-78 Fast Feedback Channel • • • Slots are shared by multiple channels. Controlled by CQICH IE (control/allocation) Type: – Normal fast feedback channel • Used for STTD, SM, Permutation, Precoding Selection, MCS – Enhanced fast feedback channel • Normal + Anchor BS report – – – – – Band AMC differential CINR feedback Indication Flag Feedback Primary/Secondary fast feedback channel Extended rtPS bandwidth request MIMO feedback for transmit beamforming page-79 PAPR/Safety Zone • • PAPR Zone reduces the PAPR value. Safety Zone reduces the interference between BSs. PAPR reduction/Safety zone/Sounding zone allocation IE page-80 Sounding Zone UL Channel Sounding is a means of providing channel response information to the BS on an as-needed basis DL-MAP UL-MAP UL-MAP DL-MAP – Intended for TDD systems where UL&DL RF reciprocity can be leveraged – Simple, efficient, low complexity, and effective – Periodicity feature can be used to significantly reduce sounding-command-IE overhead if continual sounding is required Frequency • page-81 Subcarrier Allocation in DL PUSC • • Dividing the subcarriers into the number of physical clusters Renumbering the physical clusters into logical clusters – For first DL Zone • RenumberingSequence (PhysicalCluster) – For others • RenumberingSequence((PhysicalCluster) + 13⋅DL_PermBase)mod Nclusters • Allocate logical clusters to group • Allocating subcarriers to subchannel in each major group – Dividing the clusters into 6 major groups – G0: cluster 0-11, G1:12-19, … G5:52-59 for 1024-FFT – Even group: use basic permutation sequence 6 – Odd group: use basic permutation sequence 4 page-82 Subcarrier Allocation in DL PUSC page-83 1024 OFDMA DL carrier allocation - PUSC page-84 Band AMC Allocation • AMC allocation can be made by two mechanisms – Subchannel index reference in DL / UL MAP • A slot is defined as N bines by M symbols • NxM = 6 – Subchannel allocation in a band using HARQ map • A group of 4 rows of bins is called a physical band • A slot consists of 6 contiguous bins in a band AMC slot AMC slot page-85 1024 OFDMA DL carrier allocation - AMC page-86 Pilot in Diversity Permutation FUSC DL PUSC Cluster Structure Even symbol Odd symbol Symbol 0 Symbol 1 Symbol 2 UL PUSC Tile Structure UL OPUSC Tile Structure page-87 Cluster Structure for FUSC • For even symbols • For odd symbols – Antenna 0 uses VariableSet#0 and ConstantSet#0 – Antenna 1 uses VariableSet#1 and ConstantSet#1 – Antenna 0 uses VariableSet#1 and ConstantSet#0 – Antenna 1 uses VariableSet#0 and ConstantSet#1 page-88 Subchannel Number for Permutation Downlink Uplink FUSC PUSC AMC 6X1 AMC 3X2 AMC 2X3 AMC 1X6 PUSC AMC 6X1 AMC 3X2 AMC 2X3 AMC 1X6 FFT 128 2 3 2 4 6 12 4 2 4 6 12 FFT 512 8 15 8 16 24 48 17 8 16 24 48 FFT 1024 16 30 16 32 48 96 35 16 32 48 96 FFT 2048 32 60 32 64 96 192 70 32 64 96 192 page-89 Pilot Modulation • • • The polynomial for the PRBS generator is X11+X9+1 The sequence is 11111111111000… The third 1 is W2=1, shall be used in the first OFDM downlink symbol following the frame preamble page-90 Cluster Structure for PUSC using 4 antennas page-91 STC in Uplink For STTD (Space-Time Transmit Diversity) Mode Antenna 0 (Pattern A) Antenna 1 (Pattern B) For SM (Spatial Multiplexing) Mode Horizontal mode: First burst on antenna 0, Second burst on antenna 1 Vertical Mode: 2 consecutive slots are mapped instead of a single slot. First slot of each slot pair on antenna 0. Second slot on antenna 1. For both modes, the pilot allocation is the same with STTD mode. page-92 Collaborative Spatial Multiplexing • For 2 single transmit antenna SS’s – One use uplink tile with pattern A – Another one use tile with pattern B • For 2 dual transmit antennas SS’s – One use uplink tile with pattern A,B – Another one use tile with pattern C,D Pattern C Pattern D page-93 Reference • • • • • • • 802.16™ IEEE Standard for Local and metropolitan area networks IEEE Std 802.16e™-2005 and IEEE Std 802.16™-2004/Cor1-2005 Performance of Convolutional Turbo Coded High-speed Portable Internet (WiBro) System, 2007 OFDMA PHY SAP Interface Specification for 802.16 Broadband Wireless Access Base Station IEEE 802.16e-2005 Air Interface Overview Timing Recovery for OFDM Transmission, Baoguo Yang, Member, IEEE, Khaled Ben Letaief, Roger S. Cheng, Member, IEEE, and Zhigang Cao, Senior Member, IEEE Closed-Loop MIMO for Rel.1.x FDD Operation, Wen Tong, Peiying Zhu, MoHan Fong, SangYoub Kim, Michael Wang Nortel Networks, Aug, 2007 page-94
© Copyright 2025 Paperzz