Course Year : S0705 – Soil Mechanic : 2008 TOPIC 6 LATERAL EARTH PRESSURE CONTENT • • RETAINING EARTH WALL (SESSION 21-22 : F2F) RANKINE METHOD (SESSION 21-22 : F2F) – ACTIVE LATERAL PRESSURE – PASSIVE LATERAL PRESSURE • COULOMB METHOD (SESSION 23-24 : OFC) – ACTIVE LATERAL PRESSURE – PASSIVE LATERAL PRESSURE • • Bina Nusantara LATERAL PRESSURE DUE TO EXTERNAL LOAD (SESSION 23-24 : OFC) DYNAMIC EARTH PRESSURE (SESSION 23-24 : OFC) SESSION 21-22 RETAINING EARTH WALL RANKINE METHOD Bina Nusantara RETAINING EARTH WALL Defined as a wall that is built to resist the lateral pressure of soil – especially a wall built to prevent the advance of a mass of earth/soil Bina Nusantara RETAINING EARTH WALL Bina Nusantara RETAINING EARTH WALL Bina Nusantara RETAINING EARTH WALL Bina Nusantara RETAINING EARTH WALL Bina Nusantara RETAINING EARTH WALL Bina Nusantara RETAINING EARTH WALL Bina Nusantara EARTH LATERAL PRESSURE • Defined as soil stress/pressure at horizontal direction and a function of vertical stress • Cause by self weight of soil and or external load • 3 conditions : – Lateral Pressure at Rest – Active Lateral Pressure – Passive Lateral Pressure Bina Nusantara EARTH LATERAL PRESSURE Lateral Pressure at rest Case I Bina Nusantara EARTH LATERAL PRESSURE Active Lateral Pressure Case II Bina Nusantara EARTH LATERAL PRESSURE Passive Lateral Pressure Case III Bina Nusantara EARTH LATERAL PRESSURE q Jaky, Broker and Ireland Ko = M – sin ’ Sand, Normally consolidated clay M = 1 Clay with OCR > 2 M = 0.95 v = . z + q z Broker and Ireland Ko = 0.40 + 0.007 PI , 0 PI 40 Ko = 0.64 + 0.001 PI , 40 PI 80 v h h K v At rest, K = Ko Bina Nusantara Sherif and Ishibashi Ko = + (OCR – 1) = 0.54 + 0.00444 (LL – 20) = 0.09 + 0.00111 (LL – 20) LL > 110% = 1.0 ; = 0.19 RANKINE METHOD ACTIVE LATERAL PRESSURE a = v . tan2(45-/2) – 2c . tan (45-/2) a = v . Ka – 2cKa Bina Nusantara Ka = tan2 (45 - /2) 1 = 3 . tan2 (45+/2)+2c.tan (45+/2) RANKINE METHOD PASSIVE LATERAL PRESSURE Bina Nusantara RANKINE METHOD PASSIVE LATERAL PRESSURE p= v . tan2(45+/2) + 2c . tan (45+/2) Bina Nusantara RANKINE METHOD PASSIVE LATERAL PRESSURE Kp = tan2 (45 + /2) h = v . Kp + 2cKp Bina Nusantara EXAMPLE q = 20 kN/m2 h1 = 2 m Sheet Pile 1 = 15 kN/m3 1 = 10 o c1 = 0 kN/m2 2 = 15 h3 = 4 m kN/m3 h2 = 8 m 2 = 15 o c2 = 0 kN/m2 Questions: 1. Determine the active and passive lateral pressure of sheet pile structure 2. Determine the total lateral pressure Bina Nusantara SOLUTION Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 q = 20 kN/m2 2m Pa1 Passive ; kp = tan2(45+2/2) = 1.698 8m 4m Pw2 Pp1 Pa2 Pq1 Pw1 Active Lateral Pressure Pa1 = ka . 1 . h1 – 2 . c . ka = 0.704 . 15 . 2 – 2 . 0 . 0.704 = 21.12 kN/m2 Bina Nusantara Pa2 = ka . (1 . h1 + 1’ . h2) – 2 . c . ka = 49.28 kN/m2 SOLUTION Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 q = 20 kN/m2 2m Pa1 Passive ; kp = tan2(45+2/2) = 1.698 8m 4m Pw2 Pp1 Pa2 Active Lateral Pressure Pq1 = ka . q = 0.704 . 20 = 14.08 kN/m2 Bina Nusantara Pw1 = kw . w . h2 = 1 . 10 . 8 = 80 kN/m2 Pq1 Pw1 SOLUTION Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 q = 20 kN/m2 2m Pa1 Passive ; kp = tan2(45+2/2) = 1.698 8m 4m Pw2 Pp1 Pa2 Pq1 Pw1 PASSIVE LATERAL PRESSURE Pp1 = kp . 2’ . h3 + 2 . c . kp = 1.698 . 5 . 4 + 2 . 0 . 1.698 = 33.96 kN/m2 Bina Nusantara Pw2 = kw . w . h3 = 1 . 10 . 4 = 40 kN/m2 SOLUTION Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 q = 20 kN/m2 2m Pa1 Passive ; kp = tan2(45+2/2) = 1.698 Pa 4m 8m za Pp zp Pw2 Pp1 Pa2 Pq1 Pw1 ACTIVE LATERAL FORCE Pa = 0.5 . Pa1 . h1 + (Pa1+Pa2)/2 . H2 + Pq1 . (h1+h2) + 0.5 . Pw1 . h2 = 763.52 kN/m Bina Nusantara za = 3.56 m SOLUTION Coefficient of Lateral Pressure : Active ; ka = tan2(45-1/2) = 0.704 q = 20 kN/m2 2m Pa1 Passive ; kp = tan2(45+2/2) = 1.698 Pa 4m 8m za Pp zp Pw2 Pp1 Pa2 Pq1 PASSIVE LATERAL FORCE Pp = 0.5 . Pp1 . h3 + 0.5 . Pw2 . h3 = 147.92 kN/m Bina Nusantara zp = 4/3 m Pw1 RANKINE EARTH PRESSURE FOR INCLINED BACKFILL Ka cos cos cos 2 cos 2 cos cos 2 cos 2 Pa Kp cos 1 2 . .H 2 .Ka cos cos 2 cos 2 cos cos 2 cos 2 Pp 1 2 . .H 2 .Kp Bina Nusantara SESSION 23-24 COULOMB METHOD LATERAL PRESSURE DUE TO EXTERNAL LOAD DYNAMIC EARTH PRESSURE Bina Nusantara COULOMB METHOD ACTIVE LATERAL PRESSURE Assumption: -Fill material is granular -Friction of wall and fill material is considered -The failure surface in the soil mass would be a plane (BC1, BC2 …) Pa = ½ Ka . . H2 Ka Bina Nusantara sin 2 ( ) sin( ). sin( ) 2 sin . sin 1 sin( ). sin( ) 2 EXAMPLE Consider the retaining wall shown in the following figure. Given - H = 4.6 m - = 16.5 kN/m3 - = 30 o - = 2/3 -c=0 -=0 - = 90 o Calculate the Coulomb’s active force per unit length of the wall Bina Nusantara SOLUTION Ka sin 2 ( ) sin( ). sin( ) 2 sin . sin 1 sin( ). sin( ) Ka = 0.297 Pa 1 2 . . H 2 . Ka Pa = 51.85 kN/m Bina Nusantara 2 COULOMB METHOD PASSIVE LATERAL PRESSURE Kp sin2 ( ) sin( ). sin( ) sin2 . sin 1 sin( ). sin( ) Pp = ½ Kp . . H2 Bina Nusantara 2 COULOMB METHOD WITH A SURCHARGE ON THE BACKFILL Bina Nusantara LATERAL EARTH PRESSURE DUE TO SURCHARGE 2q a 2b . nH a 2 b 2 2 a > 0,4 4q a 2b . nH a 2 b 2 2 a 0,4 q 0,203b . H 0,16 b 2 Bina Nusantara 2 LATERAL EARTH PRESSURE DUE TO SURCHARGE q sin . cos 2 H P q H2 1 90 b' 1 tan 1 H a'b' 2 tan 1 H H 2 1 R Q 57,30a' H z 2H 2 1 2 Bina Nusantara R a' b' 90 2 2 Q b'2 90 1 LATERAL EARTH PRESSURE FOR EARTHQUAKE CONDITIONS Pae 1 2 1 k v K ae . . H 2 kh ' tan 1 1 k v K ae Bina Nusantara sin 2 ' sin sin ' 2 cos '. sin . sin ' 1 sin ' sin 2 LATERAL EARTH PRESSURE FOR EARTHQUAKE CONDITIONS Bina Nusantara LATERAL EARTH PRESSURE FOR EARTHQUAKE CONDITIONS z 0.6 H Pae H Pa 3 Pae Pae Pae Pa Bina Nusantara LATERAL EARTH PRESSURE FOR EARTHQUAKE CONDITIONS Ppe 1 2 . .H 2 1 k v K pe K pe Bina Nusantara sin 2 ' sin sin ' cos '. sin 2 . sin '901 sin ' sin 2 LATERAL EARTH PRESSURE FOR EARTHQUAKE CONDITIONS Bina Nusantara EXAMPLE Refer to the following figure. For kv = 0 and kh = 0.3, determine : a. Pae b. The location of the resultant, z, from the bottom of the wall = 35 o = 18 kN/m3 5m Bina Nusantara = 17.5 o SOLUTION Part a. Pae 1 2 1 k v K ae . . H 2 Kae = 0.47 Pae 1 2 . 18 . 52 1 0 . 0.47 Pae 105.75 kN / m Bina Nusantara SOLUTION • Part b. Where : Pa 1 2 . . H 2 . Ka Ka = 0.25 = 90o = 17.5o = 0o Pa = 56.25 kN/m Pae = Pae – Pa = 105.75 – 56.25 = 49.5 kN/m z Bina Nusantara 0.6H Pae H Pa 3 Pae 2.29 m
© Copyright 2026 Paperzz