Subject Year : S0695 / STATICS : 2008 Cables & Arches Session 11 - 12 4.1. Cables high strength steel wires are completely flexible Cables constructed of with high Bina Nusantara tensile strength Sources : Daniel L Schodek. (2004). Structures. 5th Ed. Pearson Prentice Hall. New Jersey. 4.1. Cables Engineer use cables to construct long span structures, suspension bridges and roof ( large area e.g arena, convention hall etc ) Bina Nusantara 4.1. Cables Bina Nusantara Sources : Daniel L Schodek. (2004). Structures. 5th Ed. Pearson Prentice Hall. New Jersey. 4.1. Cables Variation in cable force : If cable support vertical load only….. Horizontal forces H of cable tension T is constant at all section along the axis of the cable. Va Ta Σ Fx = 0 Æ to a segment of cable Hb Tb Bina Nusantara αb a αa w b Vb Ha 4.1. Cables Variation in cable force : If cable tension is expressed in Horizontal forces H and the cable slope α Æ H = T cos α Since : cos α = 1 Æ H=T The maximum value of T -Æ where the cable slope is largest Bina Nusantara 4.2. Arches Arch construction uses material effectively becauce….. Applied load create mostly axial compression on all cross section Bina Nusantara 4.2. Arches Designer uses arches as the main structural elements in long span bridge & large coulumnfree areas ( airplane Hangers, convention hall, etc) Bina Nusantara 4.2. Arches Types of Arches : 1. Three Hinged Arch : Hinged 3rd S A Hinged 1st ( Supported ) Bina Nusantara B Hinged 2nd ( Supported ) 4.2. Arches Types of Arches : 2. Two Hinged Arch : indeterminate structure 1st degree A Hinged 1st ( Supported ) Bina Nusantara B Hinged 2nd ( Supported ) 4.2. Arches Types of Arches : 3. Fixed-end Arch : indeterminate structure 3rd degree Fixed-end 1st ( Supported ) Bina Nusantara Fixed-end 2nd ( Supported ) 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables Problem : l1 = l2 = 3.00 m l3 = 4.00 m h1 = 3.00 m A B α1 h2 h1 α3 C α2 D P P l1 Bina Nusantara l2 l3 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables TA H A TB B α1 h2 h1 α3 C P1 VA l1 Bina Nusantara α2 P1 l2 D VB l3 H 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables Step 1 : Compute force Vertical Reactions Æ VA , VB TA H A TB B α1 H h2 h1 α3 C α2 VA P l1 Bina Nusantara P l2 D VB l3 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables TA Step 1 : Compute Vertical Reactions Æ VA , VB H A TB 3.0 C α3 α2 VA ΣMB = 0 -P.3m –P.7m + VA.10m = 0 10 P = 10 VA Bina Nusantara H h2 P 3.0 VA = +P B α1 P 4.0 D VB 3.0 ΣMA = 0 P.3m P.7m - VB.10m = 0 10 P = 10 VB VB = +P 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables TA Step 2 : Compute Horizontal Reaction ÆH H ΣMC = 0 VA.3m + H. 3m= 0 3P=3H H = +3 P Bina Nusantara A TB B α1 H h2 3.0 C α3 α2 VA P 3.0 P 4.0 D VB 3.0 ΣMD = 0 - VB.3m –H.h2 = 0 3 m = 3 h2 h2 = 1.00 m 4.3. Structural Analysis for Cables & Arches 4.3.1. Structural Analysis for Cables Step 3 : Compute The cable’s forces Æ TAC & TDC & TBD TBD TAC B A H h2 = 1m α1 h2 = 1m 3.0 3.0 3.0 tan α1 = 3/3 = 1 H =TAC Cos α1 TAC = +3 P TDC C VA Bina Nusantara D C TDC D α3 3.0 α2 4.0 TAC tan α2 = (3-1)/4 = ½ H =TDC Cos α2 TDC = +1 ½ 5 P TBD VB tan α3 = 1/3 H =TBD Cos α3 TBD = + 10 P H 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches q[t/m] S ½L A B L Bina Nusantara 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches 1 [t/m] S ½L HA A B 10 VA Bina Nusantara VB HB 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches Step 1 : 1 [t/m] Equilibrium Eq. at A Æ Eq.(1) ΣMA = 0 (1 t/m.10).5m –VB.10m+ HB.0 = 0 50 t = 10 VB HA S ½L A VB = 5 t 10 VA Bina Nusantara B VB HB 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches Step 2: 1 [t/m] Equilibrium Eq. at A Æ Eq.(2) ΣMB = 0 -(1 t/m.10).5m –VA.10m +HA.0 = 0 50 t = 10 VA HA S ½L A VA = 5 t 10 VA Bina Nusantara B VB HB 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches Step 3 : 1 [t/m] Equilibrium Eq. at SR Æ Eq.(3) ΣMSR= 0 -(1 t/m.10).5m –VA.10m = 0 50 t = 10 VA HA S ½L A VA = 5 t 10 VA Bina Nusantara B VB HB 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches Step 4 : 1 [t/m] Equilibrium Eq. at SR Æ Eq.(3) ΣMSR= 0 (1 t/m.5).2.5m –VA.5m + HA.5 = 0 -12.5 t + HA.5 = 0 5 t = 12.5 HA SR ½L HA A 5 HA = 2.5 t Bina Nusantara VA 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches 1 [t/m] Step 5: Equilibrium Eq. at SL Æ Eq.(4) ΣMSL= 0 (1 t/m.5).2.5m –VB.5m + HB.5 = 0 -12.5 t + HB.5 = 0 5 t = 12.5 HB SL ½L B 5 VB HB = 5 t Bina Nusantara HB 4.3. Structural Analysis for Cables & Arches 4.3.2. Structural Analysis for Arches Step 6: 1 [t/m] Check all the Equilibrium Eq. ΣV = 0 VA + VB = 1 t/m . 10 m 5 t + 5 t = 10 t 10 t = 10 t ΣH= 0 HA = HB 2.5 t = 2.5 t Bina Nusantara S ½L HA =2.5 t A B HB =2.5 t 10 OK !!! VA = 5 t VB = 5 t SR 1 [t/m] 1 [t/m] SR SL ½L HA ½L A B 5 VA Bina Nusantara 5 VB HB
© Copyright 2026 Paperzz