The renormalization group and Weyl invariance Roberto Percacci SISSA Trieste Based in part on: New J. Phys. 13 125013 (2011) arXiv:1110.6758 [hep-th] FRGE I: D EFINITIONS e−Wk [J] = Z Z (Dφ) exp(−(S + ∆Sk + ∆Sk (φ) = 1 2 Z Jφ)) d 4 qφ(−q)Rk (q 2 )φ(q) with Rk (q 2 ) → 0 for k → ∞, Rk (q 2 ) → k 2 for k → 0 Z Γk [φ] = Wk [J] − Jφ − ∆Sk note limk →0 Γk = Γ FRGE II 1 ∂t Γk = Tr 2 δ 2 Γk + Rk δφδφ −1 ∂t Rk C. Wetterich, Phys. Lett. B 301 (1993) 90. Trace is over momenta and all quantum numbers FRGE III: O NE LOOP Γ(1) = S + 1 ln det O ; 2 1 (1) Γk = S+∆Sk + ln det Ok −∆Sk ; 2 (1) ∂t Γk = O= Ok = δ2S δφδφ δ 2 (S + ∆Sk ) = O+Rk δφδφ 1 1 (det Ok )−1 ∂t det Ok = TrOk−1 ∂t Ok 2 2 One–loop RG equation (1) ∂t Γk 1 = Tr 2 δ2S + Rk δφδφ −1 ∂t Rk FRGE IV: B ETA FUNCTIONS Γk (φ) = X gi (k )Oi (φ) i ∂t Γk = X ∂t gi Oi = i X βgi Oi i compare with 1 ∂t Γk = Tr 2 δ 2 Γk + Rk δφδφ −1 ∂t Rk use to calculate Γ or to investigate the UV properties of the theory Dimensional analysis Choose dimensionless coordinates. Invariance under global Weyl transformations gµν → Ω2 gµν , ψa → Ωda ψa , gi → Ωdi gi S(gµν , ψa , gi ) = S(Ω2 gµν , Ωda ψa , Ωdi gi ) fixes da , di . ALWAYS true. Global scale transformations S(gµν , ψa , gi ) = S(Ω2 gµν , Ωda ψa , gi ) not always true, must be di = 0. Weyl’s idea Interpret scale transformations as changes of the unit of length. Allow choice of unit to depend on position. “It is evident that two rods side by side, stationary with respect to each other, can be intercompared....this cannot be done for....rods with either a space- or time-like separation”. “A statement such as “a hydrogen atom on Sirius has the same diameter as one on the Earth” is either a definition or else meaningless” (Dicke 1962) Physics must be formulated in a way that is invariant under local changes of units, i.e. under local rescalings of the metric. Furthermore: allow parallel transport to affect norm of vectors. Weyl gauging Abelian gauge field bµ 7→ bµ + Ω−1 ∂µ Ω scalar field φ transforming as φ → Ωd φ Dµ φ = ∂µ φ − dbµ φ More generally Γ̂µ λ ν = Γµ λ ν − δµλ bν − δνλ bµ + gµν bλ is invariant under local Weyl transformations, hence for a tensor of dimension d ˆ µ t − dbµ t Dµ t = ∇ is diffeomorphism and Weyl covariant. Weyl curvature [Dµ , Dν ]v ρ = Rµν ρ σ v σ Rµνρσ = Rµνρσ + (d − 1)Fµν gρσ +gµρ (∇ν bσ + bν bσ ) − gµσ (∇ν bρ + bν bρ ) −gνρ (∇µ bσ + bµ bσ ) + gνσ (∇µ bρ + bµ bρ ) − (gµρ gνσ − gµσ gνρ ) b2 Fµν = ∂µ bν − ∂ν bµ Weyl’s failed unification idea Weyl regarded bµ as e.m. field. Einstein’s critique: spectral lines would be blurred. Weyl’s theory still viable if bµ interpreted as a piece of the spacetime connection and its curvature is sufficiently weak. Assume curvature of bµ is zero. Then bµ = −χ−1 ∂µ χ where the field χ transforming as χ → Ω−1 χ is.... ...the dilaton Starting from any action S(gµν , ψa , gi ), replace gi → χdi ĝi , ∇ → D and all curvatures R → R. Resulting action Ŝ(gµν , χ, ψa , ĝi ) is Weyl invariant and agrees with original action in the gauge where χ is constant Ŝ(gµν , χ0 , ψa , ĝi ) = S(gµν , ψa , gi ) Dilaton acts as classical compensator field (Stückelberg) Motivation: scalar-tensor theory Z 4 √ d x g 1 (∇φ)2 + V (φ2 ) + F (φ2 )R 2 V (φ2 ) = λ0 + λ2 φ2 + λ4 φ4 + . . . F (φ2 ) = ξ0 + ξ2 φ2 + . . . Z 1 4 √ 4 2 2 d x g λ4 φ + (∇φ) + ξ2 φ R 2 1 . Weyl-invariant for ξ2 = 12 Not preserved by RG flow D. Perini and R.P. Phys. Rev. D68 044018 (2003) hep-th/0304222; G. Narain and R.P. Cl. Q. Grav. 27 075001 (2010) arXiv:0911.0386 [hep-th]) The conformal anomaly Cutoff breaks scale invariance, but anomaly can be avoided in theories with dilaton Englert, C. Truffin and R. Gastmans, “Conformal invariance in quantum gravity”, Nucl. Phys. B117, 407 (1976) R.Floreanini and R. P., “Average effective potential for the conformal factor”, Nucl. Phys. B436, 141 (1995) M. Shaposhnikov and I. Tkachev, “Quantum scale invariance on the lattice”, Phys. Lett. B675, 403 (2009) Example: matter in background metric and dilaton 1 S(φ, gµν ) = 2 Z √ d 4 x g φ∆(1/6) φ , Z √ d 4 x g ψ̄Dψ Z √ d 4 x g Fµν F µν S(ψ, gµν ) = 1 S(A, gµν ) = 4 ∆(1/6) = − + R 6 Trace anomaly 2 δΓ hT µ µ i = √ g µν µν = b C 2 + b0 E g δg E = Rµνρσ R µνρσ − 4Rµν R µν + R 2 C 2 = Cµνρσ C µνρσ b= 1 (nS + 6nD + 12nM ) 120(4π)2 b0 = − 1 (nS + 11nD + 62nM ) 360(4π)2 The scalar and fermion measure (dφ) = Y dφ(x) x Z Γ(gµν ) = (dφ)e− R µ √ d 4 x gφ∆(1/6) φ (dψ) = 1 = ln det 2 Y dψ(x) x µ3/2 ∆(1/6) µ2 ! The Maxwell theory measure (dAµ ) = Y dAµ (x) x S + SGF Z √ 1 d 4 x g(∇µ Aµ )2 SGF = 2α Z p 1 d 4 x |g| Aµ −∇2 g µν + R µν Aν = 2 Z p Sgh = d 4 x |g|C̄(−∇2 )C Z (dAd C̄dC)e−Sem (A,g)−SGF (A,g)−Sgh (C̄,C,g) ! ! 1 log ∆(1) ∆(0) Tr − Tr log 2 µ2 µ2 Γ(g) = log = The Weyl-invariant scalar measure Y φ(x) (dφ) = d χ(x) x Z Γ(gµν ) = (dφ)e − R √ d 4 x gφ∆(1/6) φ 1 = ln det 2 1 (1/6) ∆ χ2 1 (1/6) ∆ φ Ω−2 χ2 χ2 eigenvalues are Weyl invariant → det χ12 ∆(1/6) is Weyl invariant 1 (1/6) ∆Ω2 g (Ω−1 φ) = Ω−1 Weyl-covariant gauge fixing SGF S + SGF 1 = 2 Z √ d 4 x g(D µ Aµ )2 √ 1 d 4 x gχ2 g µν Aµ 2 −D 2 δνσ + Rσν Aσ χ 1 (−D 2 δνµ + Rµν ) are Weyl χ2 1 (−D 2 δνµ + Rµν ) is Weyl invariant χ2 eigenvalues of → det Z 1 = 2α invariant Weyl invariant quantization dilaton acts as compensator (Stückelberg) field in the quantum effective action µ has been promoted to a field Stückelberg trick commutes with quantization Another point of view ΓI (g χ ) − ΓI (g) = ΓWZ (g, χ) Wess-Zumino consistency condition: ΓWZ (g Ω , χΩ ) − ΓWZ (g, χ) = −ΓWZ (g, Ω) where g Ω = Ω2 g, χΩ = Ω−1 χ If we identify ΓI (g) with ΓII (g, χ = µ), ΓII (g, χ) = ΓI (g) + ΓWZ (g, χ) Dynamical metric and dilaton Z S= √ 1 d x g λZ χ − Z ξχ2 R + g µν ∂µ χ∂ν χ 2 4 2 4 for ξ = 1/6 Z S= √ 1 2 d x g λZ χ − Zχ R 12 4 2 4 can choose Weyl gauge (i.e. units) where Z χ2 = 12 ; 16πG S reduces to Hilbert action. For ξ 6= 1/6 scalar field is physical. λ= 2π GΛ 9 Expansion of action Let δgµν = hµν , δχ = η. S (2) = = 1 Z H((h, η), (h, η)) 2 Z √ 1 Z d 4 x g hµν η 2 µνρσ µν Hhh Hhη ρσ Hηh Hηη ! hρσ η For ξ = 1/6 µνρσ Hhh " 1 2 1 1 1 = χ − 1µνρσ D 2 + g (ν|σ D |µ) D ρ − g µν D ρ D σ − g ρσ D (µ D ν) 12 2 2 2 1 1 + g µν g ρσ D 2 − Rµρνσ − g (µ|ρ R|ν)σ + (g µν Rρσ + Rµν g ρσ ) 2 2 # + R − 12λZ χ2 K µνρσ µν µν Hhη =Hηh = 1 1 χ g µν D 2 − D µ D ν + Rµν − Rg µν + 2λZ χ3 g µν 6 2 1 Hηη =D 2 − R + 12λZ χ2 . 6 background Weyl transformations gµν 7→ Ω2 gµν ; χ 7→ Ω−1 χ ; hµν 7→ Ω2 hµν ; η 7→ Ω−1 η Wave operators Z G((h1 , η1 ), (h2 , η2 )) = S (2) = i √ h d 4 x g χ4 h1µν g µρ g νσ h2ρσ + χ2 η1 η2 1 1 Z H(θ, θ) = Z G(θ, Oθ) 2 2 αβρσ (Ohh )µν ρσ = χ−4 gµα gνβ Hhh , αβ (Ohη )µν = χ−4 gµα gνβ Hhη , ρσ ρσ Oηh = χ−2 Hηh , Oηη = χ−2 Hηη . Weyl covariance of wave operators (Ohh(Ω2 gµν ,Ω−1 χ) )µν ρσ (Ω2 hρσ ) = Ω2 (Ohh(gµν ,χ) )µν ρσ hρσ , (Ohη(Ω2 gµν ,Ω−1 χ) )µν (Ω−1 η) = Ω2 (Ohη(gµν ,χ) )µν η , (Oηh(Ω2 gµν ,Ω−1 χ) )ρσ (Ω2 hρσ ) = Ω−1 (Oηh(gµν ,χ) )ρσ hρσ , Oηη(Ω2 gµν ,Ω−1 χ) (Ω−1 η) = Ω−1 Oηη(gµν ,χ) η . Gauge fixing SGF = 1 2α Z where √ 1 d 4 x g Z ξχ2 Fµ ḡ µν Fν , 2 β+1 Dν h 4 C̄, Ogh C . Fν = Dµ hµ ν − Sgh = Ggh Z √ Ggh (A, B) = d 4 x g χ2 Aµ g µν Bν (Ogh )νµ = − 1 χ2 Weyl-gauge-fixing η = 0 1−β δµν D 2 + Dµ D ν + Rµ ν 2 Weyl invariance of one loop effective action 1 Γ(1) (gµν , χ) = S(gµν , χ) + Tr log Ohh − Tr log Ogh 2 If ∆(gµν ,χ) hµν = λhµν then ∆(Ω2 gµν ,Ω−1 χ) Ω2 hµν = Ω2 ∆(gµν ,χ) hµν = λΩ2 hµν The spectrum of ∆ is Weyl invariant, so Γ(1) is Weyl invariant. FRGE ∆Sk = 1 1 1 1 2 2 Z G h, Rk (χ Ohh )h + Ggh C̄, 2 Rk (χ Ogh )C 2 12 χ2 χ ∂t Γk = 1 TrF (Ohh ) − TrF (Ogh ) 2 r.h.s. of FRGE is Weyl invariant if initial point is Weyl invariant also Γ is Weyl invariant Beta functions Example: Z Γk = dZ du dλ u du u √ 1 d 4 x g λZ 2 χ4 − Z χ2 R 12 = = 23 2 u 4π 2 u2 2 u − 184Z λ 16π 2 Z 2 where u = k /χ is assumed constant Solutions Z (u) = Z0 + λ(u) = 23 2 23 2 u → u 2 8π 8π 2 π 2 (u 4 + 64π 2 Z02 λ0 ) π2 → 529 (8π 2 Z0 + 23u 2 )2 note: Z is redundant coupling and does not reach a FP, λ is essential coupling and reaches a FP. m̃P2 = Z χ2 Z 23 = 2 → 2 k u 8π 2 Summary in presence of a dilaton, it is possible to quantize theory preserving Weyl invariance. RG flow also preserves Weyl invariance. trace anomaly still present ξ = 1/6 is a fixed point of RG flow. fixed point of the Einstein-Hilbert formulation appears in different guise since all couplings are dimensionless, situation similar to usual renormalizable QFT Further work cutoff and renormalization scale can depend on position. Theory with nonconstant cutoff equivalent to theory with constant cutoff but conformally related metric. relation between f (R) and scalar-tensor theories generalize to nonflat Weyl connection
© Copyright 2026 Paperzz