Relativistic distortions in large-scale structure Camille Bonvin CERN, Switzerland University of Sussex March 2015 Galaxy survey Credit: M. Blanton, SDSS The distribution of galaxies is determined by: The initial conditions The theory of gravity The content of the universe To interpret properly the information from large-scale structure, we need to understand what we are measuring. University of Sussex Camille Bonvin p. 2 /55 Galaxy survey N − N̄ We count the number of galaxies per pixel: ∆ = N̄ How is ∆ related to: the initial conditions, the theory of Credit: M. Blanton, SDSS gravity and dark energy? University of Sussex Camille Bonvin p. 3 /55 Galaxy distribution Simple picture: dark matter is inhomogeneously distributed it creates gravitational potential wells baryons fall into them and form galaxies. More dark matter Less dark matter δρ ∆= ≡δ ρ University of Sussex Camille Bonvin p. 4 /55 Complications Bias: the distribution of galaxies does not trace directly the distribution of dark matter ∆ = b · δ We never observe directly the position of galaxies, we observe the redshift and the direction of incoming photons. In a homogeneous universe: (x1 , x2 , x3 ) we calculate r(z) light propagates on straight lines r(z) Observer n University of Sussex Camille Bonvin p. 5 /55 Redshift In an inhomogeneous universe: the redshift is affected by fluctuations, e.g. Doppler effect due to peculiar velocities. radial shift in the galaxy position More dark matter Less dark matter Redshift distortions Observer University of Sussex Camille Bonvin p. 6 /55 Lensing In an inhomogeneous universe: light is lensed by matter between the galaxies and the observer transverse shift in the galaxy position More dark matter Less dark matter Lensing distortions Observer University of Sussex Camille Bonvin p. 7 /55 Galaxy distribution Credit: M. Blanton, SDSS The structures seen on a galaxy map do not reflect directly the underlying dark matter structures. The observed positions of galaxies are shifted radially and transversally. To extract information from a galaxy map, we need to understand exactly what the distortions are. University of Sussex Camille Bonvin p. 8 /55 Outline Calculate the distortions that affect the large-scale structure: number density ∆ and convergence κ (galaxy’s size). ∆ = density + redshift distortions + lensing + relativistic distortions κ = lensing + relativistic distortions The relativistic distortions should not be considered as a noise but rather as a new signal. Impact of the different terms on the correlation function: the relativistic distortions change the properties of the twopoint function we can isolate them. We can combine the relativistic distortions with standard observables to test the theory of gravity. University of Sussex Camille Bonvin p. 9 /55 The over-density of galaxies We count N (z, n) galaxies in a pixel of volume V (z, n) We want to calculate the fluctuations in N (z, n) with respect to the average number. At each redshift, we average over the direction: N̄ (z) The observed over-density is: N (z, n) − N̄ (z) ∆(z, n) = N̄ (z) Relation with the dark matter density: N (z, n) = ρ(z, n) · V (z, n) and N̄ (z) = ρ̄(z) · V̄ (z) University of Sussex Camille Bonvin p. 10/55 Derivation ρ̄ + δρ V̄ + δV ρ(z, n) · V (z, n) − ρ̄(z) · V̄ (z) ∆= ρ̄(z) · V̄ (z) We keep only linear terms: δρ(z, n) δV (z, n) ∆= + ρ̄(z) V̄ (z) the background redshift is different from the observed redshift ρ(z, n) − ρ̄(z̄) δ(z, n) ≡ ρ̄(z̄) != ρ(z, n) − ρ̄(z) δρ(z, n) = ρ̄(z) ρ̄(z) University of Sussex Camille Bonvin p. 11/55 Derivation ρ̄ + δρ V̄ + δV ρ(z, n) · V (z, n) − ρ̄(z) · V̄ (z) ∆= ρ̄(z) · V̄ (z) We keep only linear terms: δρ(z, n) δV (z, n) ∆= + ρ̄(z) V̄ (z) δ the background redshift is different from the observed redshift ρ(z, n) − ρ̄(z̄) δ(z, n) ≡ ρ̄(z̄) != ρ(z, n) − ρ̄(z) δρ(z, n) = ρ̄(z) ρ̄(z) University of Sussex Camille Bonvin p. 12/55 Derivation z = z̄ + δz Taylor: ρ̄(z) = ρ̄(z̄ + δz) ≃ ρ̄(z̄) + ∂z ρ̄ · δz ρ(z, n) − ρ̄(z) ρ(z, n) − ρ̄(z̄) − ∂z ρ̄ · δz δρ(z, n) = ≃ ρ̄(z) ρ̄(z) ρ̄(z̄) δz δρ(z, n) = δ(z, n) − 3 ρ̄(z) 1+z δz δV (z, n) −3 ∆(z, n) = b · δ(z, n) + V 1+z describes what we observe in the linear regime University of Sussex Camille Bonvin p. 13/55 Derivation z = z̄ + δz Taylor: ρ̄(z) = ρ̄(z̄ + δz) ≃ ρ̄(z̄) + ∂z ρ̄ · δz same redshift bin ρ(z, n) − ρ̄(z) ρ(z, n) − ρ̄(z̄) − ∂different δρ(z, n) z ρ̄ · δz physical volume = ≃ ρ̄(z) ρ̄(z) ρ̄(z̄) δz δρ(z, n) = δ(z, n) − 3 ρ̄(z) 1+z Observer δz δV (z, n) −3 ∆(z, n) = b · δ(z, n) + V 1+z dzdΩ describes what we observe in the linear regime University of Sussex Camille Bonvin p. 14/55 Derivation z = z̄ + δz Taylor: ρ̄(z) = ρ̄(z̄ + δz) ≃ ρ̄(z̄) + ∂z ρ̄ · δz same solid angle ρ(z, n) − ρ̄(z) ρ(z, n) − ρ̄(z̄) − ∂different δρ(z, n) z ρ̄ · δz physical volume = ≃ ρ̄(z) ρ̄(z) ρ̄(z̄) δz δρ(z, n) = δ(z, n) − 3 ρ̄(z) 1+z Observer δz δV (z, n) −3 ∆(z, n) = b · δ(z, n) + V 1+z dzdΩ describes what we observe in the linear regime University of Sussex Camille Bonvin p. 15/55 Derivation z = z̄ + δz Taylor: ρ̄(z) = ρ̄(z̄ + δz) ≃ ρ̄(z̄) + ∂z ρ̄ · δz same radial bin ρ(z, n) − ρ̄(z) ρ(z, n) − ρ̄(z̄) − ∂z ρ̄ different δρ(z, n) · δz distance = ≃ ρ̄(z) ρ̄(z) ρ̄(z̄) δz δρ(z, n) = δ(z, n) − 3 ρ̄(z) 1+z Observer δz δV (z, n) −3 ∆(z, n) = b · δ(z, n) + V 1+z dzdΩ describes what we observe in the linear regime University of Sussex Camille Bonvin p. 16/55 Redshift !" CB and Durrer (2011) ds2 = −a2 1 + 2Ψ dη 2 + 1 − 2Φ δij dxi dxj # " # $ νS ES = Effect of inhomogeneities on the redshift: 1 + z = νO EO Photons travel on null geodesics. " rS ! # aO 1+z = 1 + VS · n − VO · n + Ψ O − Ψ S − dr(Φ̇ + Ψ̇) aS 0 Doppler Gravitational redshift: Gravitational redshift Integrated Sachs-Wolfe Observer University of Sussex Camille Bonvin p. 17/55 Redshift !" CB and Durrer (2011) ds2 = −a2 1 + 2Ψ dη 2 + 1 − 2Φ δij dxi dxj # " # $ νS ES = Effect of inhomogeneities on the redshift: 1 + z = νO EO Photons travel on null geodesics. " rS ! # aO 1+z = 1 + VS · n − VO · n + Ψ O − Ψ S − dr(Φ̇ + Ψ̇) aS 0 Doppler Gravitational redshift Integrated Sachs-Wolfe ISW: integrated along the trajectory, sensitive to dark energy. Observer University of Sussex Camille Bonvin p. 18/55 Volume fluctuation CB and Durrer (2011) We want to calculate the relation between a physical volume element at the position of the galaxies and an observed pixel. dz dx dΩ galaxy nµ The null geodesic equation tells us how directions and distances are perturbed. θS = θO + δθ ϕS = ϕO + δϕ r = r̄ + δr Observer University of Sussex Camille Bonvin p. 19/55 Result density Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) redshift space distortion 1 ∆(z, n) = b · δ − ∂r (V · n) H lensing ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − gravitational ′ rr 0 # redshift Doppler " Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r potential 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 20/55 Result Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) density 1 ∆(z, n) = b · δ − ∂r (V · n) H lensing ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − ′ rr 0 " # Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 21/55 Result redshift space distortion Kaiser 1987, Hamilton 1992 ρ − ρ̄ Real space∆ = δ = Redshift space ρ̄ Two well known corrections: 1 ∆(z, n) = b · δ − ∂r (V · n) Bias between luminous and dark H lensing ! r ′ matter. r − r ′ dr ∆Ω (Φ + Ψ) − gravitational ′ rr Observer Observer 0 " # redshift Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 22/55 Result 1 ∆(z, n) = b · δ − ∂r (V · n) H lensing ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − ′ rr Observer 0 " # Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 23/55 Result Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) 1 ∆(z, n) = b · δ − ∂r (V · n) H ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − ′ rr 0 # Doppler " Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H HObserver ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 24/55 Result Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) 1 ∆(z, n) = b · δ − ∂r (V · n) H ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − gravitational ′ rr 0 " # redshift Ḣ 2 1 1 Observer + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 25/55 Result Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) 1 ∆(z, n) = b · δ − ∂r (V · n) H ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − ′ rr 0 " # Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Observer potential Camille Bonvin p. 26/55 Result density Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) redshift space distortion 1 ∆(z, n) = b · δ − ∂r (V · n) H lensing ! r ′ r − r dr′ ∆Ω (Φ + Ψ) − gravitational ′ rr 0 # redshift Doppler " Ḣ 2 1 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + H k r 0 " #$ % ! r potential 2 Ḣ ′ + dr (Φ̇ + Ψ̇) + Ψ + 2 H rH 0 University of Sussex Camille Bonvin p. 27/55 Result Yoo et al (2010) CB and Durrer (2011) Challinor and Lewis (2011) standard expression 1 lensing: important at high z ∆(z, n) = b · δ − ∂r (V · n) H ! r ′ relativistic distortions: r − r − dr′ ∆Ω (Φ + Ψ) important at large scale ′ rr 0 # " 1 1 2 Ḣ H V · n + V̇ · n + ∂r Ψ + 1− 2 − δ H rH H H k ! r H 2 1 dr′ (Φ + Ψ) + Ψ − 2Φ + Φ̇ − 3 V + ! "2 H k r 0 H " #$ % ! r δ 2 Ḣ ′ k + dr ( Φ̇ + Ψ̇) + Ψ + H2 rH 0 University of Sussex Camille Bonvin p. 28/55 Convergence Galaxy surveys observe also the shape and the luminosity et al (2012) of galaxies measure of the convergence. Schmidt Alsing et al (2014) The convergence κ measures distortions in the size. The shear γ measures distortions in the shape. Relativistic distortions affect the convergence at linear order. We solve the geodesic deviation equation D2 δxα (λ) α β µ ν = R k k δx βµν Dλ2 University of Sussex Camille Bonvin p. 29/55 Convergence Gravitational lensing 1 κ= 2r Doppler lensing ′ " CB (2008) Bolejko et al (2013) Bacon et al (2014) # 1 −r dr ∆Ω (Φ + Ψ) + −1 V·n ′ r rH 0 #! r " ! r 1 1 ′ − dr (Φ + Ψ) + 1 − dr′ (Φ̇ + Ψ̇) r 0 rH 0 # " Integrated terms 1 Ψ+Φ + 1− Sachs Wolfe rH ! r ′r University of Sussex Camille Bonvin p. 30/55 Convergence Gravitational lensing 1 κ= 2r Doppler lensing ′ " CB (2008) Bolejko et al (2013) Bacon et al (2014) # 1 −r dr ∆Ω (Φ + Ψ) + −1 V·n ′ r rH 0 #! r " ! r 1 1 ′ − dr (Φ + Ψ) + 1 − dr′ (Φ̇ + Ψ̇) r 0 rH 0 # " Integrated terms 1 Ψ+Φ + 1− Sachs Wolfe rH ! r ′r Gravitational lensing Observer University of Sussex Camille Bonvin p. 31/55 Convergence Gravitational lensing 1 κ= 2r Doppler lensing ′ " CB (2008) Bolejko et al (2013) Bacon et al (2014) # 1 −r dr ∆Ω (Φ + Ψ) + −1 V·n ′ r rH 0 #! r " ! r 1 1 ′ − dr (Φ + Ψ) + 1 − dr′ (Φ̇ + Ψ̇) r 0 rH 0 # " Integrated terms 1 Ψ+Φ + 1− Sachs Wolfe rH ! r ′r Gravitational lensing Doppler lensing The moving galaxy is further away it looks smaller, i.e. demagnified Observer Observer University of Sussex Camille Bonvin p. 32/55 Observations Due to relativistic effects, ∆ and κ contain additional information. δ, V, Φ, Ψ (Φ + Ψ), V, Φ, Ψ This can help testing gravity by probing the relations between density, velocity and gravitational potentials. Two difficulties: The relativistic effects are small: we need to go to large scales. We always measure the sum of all the effects. We need a way of isolating the relativistic effects. Method: look for anti-symmetries in the correlation function. University of Sussex Camille Bonvin p. 33/55 Correlation function Credit: M. Blanton, SDSS We do not compare ∆(n, z) with observations, because we do not know the values of the density, velocity and gravitational potentials at (n, z) We compare ensemble averages ξ = !∆(x)∆(x′ )" University of Sussex Camille Bonvin p. 34/55 Density x′ The density contribution ∆ = b · δ , generates an isotropic correlation function. s x ξ(s) = !∆(x)∆(x′ )" depends only on the separation s = |x − x′ | 2 ξ(s) = Ab D12 2π 2 ! dk k " n Observer #ns −1 k Tδ2 (k) j0 (k · s) H0 University of Sussex Camille Bonvin p. 35/55 Density The density contribution ∆ = b · δ , generates an isotropic correlation function. s x ξ(s) = !∆(x)∆(x′ )" depends only on the separation s = |x − x′ | 2 ξ(s) = Ab D12 2π 2 ! dk k " x′ n Observer #ns −1 k Tδ2 (k) j0 (k · s) H0 University of Sussex Camille Bonvin p. 36/55 Redshift distortions Real space Redshift space Redshift distor tions break the isotropy of the correlation function. 1 ∆ = b · δ − ∂r (V · n) H n n Observer Quadrupole Hamilton (1992) P2 (cos β) = A µℓ (s) = 2π 2 4f 4f + 3 7 ! dk k " 2 " 1 3 cos2 β − 2 2 1.0 µ2 (s)P2 (cos β) #ns −1 k Tδ2 (k) jℓ (k · s) H0 P2!cosΒ" ξ2 = −D12 ! Observer 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 37/55 Redshift distortions x′ β Redshift distor tions break the isotropy of the correlation function. x s 1 ∆ = b · δ − ∂r (V · n) H Observer Quadrupole n Hamilton (1992) P2 (cos β) = A µℓ (s) = 2π 2 4f 4f + 3 7 ! dk k " 2 " 1.0 µ2 (s)P2 (cos β) #ns −1 k Tδ2 (k) jℓ (k · s) H0 P2!cosΒ" ξ2 = −D12 ! 1 3 cos2 β − 2 2 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 38/55 Redshift distortions x′ Redshift distor tions break the isotropy of the correlation function. max distortion x 1 ∆ = b · δ − ∂r (V · n) H Observer Quadrupole n Hamilton (1992) P2 (cos β) = A µℓ (s) = 2π 2 4f 4f + 3 7 ! dk k " 2 " 1.0 µ2 (s)P2 (cos β) #ns −1 k Tδ2 (k) jℓ (k · s) H0 P2!cosΒ" ξ2 = −D12 ! 1 3 cos2 β − 2 2 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 39/55 Redshift distortions Redshift distor tions break the isotropy of the correlation function. x′ x min distortion 1 ∆ = b · δ − ∂r (V · n) H Observer Quadrupole n Hamilton (1992) P2 (cos β) = A µℓ (s) = 2π 2 4f 4f + 3 7 ! dk k " 2 " 1.0 µ2 (s)P2 (cos β) #ns −1 k Tδ2 (k) jℓ (k · s) H0 P2!cosΒ" ξ2 = −D12 ! 1 3 cos2 β − 2 2 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 40/55 Redshift distortions x′ β Redshift distor tions break the isotropy of the correlation function. x s 1 ∆ = b · δ − ∂r (V · n) H Observer Quadrupole n Hamilton (1992) P2 (cos β) = A µℓ (s) = 2π 2 4f 4f + 3 7 ! dk k " 2 " 1.0 µ2 (s)P2 (cos β) #ns −1 k Tδ2 (k) jℓ (k · s) H0 P2!cosΒ" ξ2 = −D12 ! 1 3 cos2 β − 2 2 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 41/55 Redshift distortions x′ β Redshift distor tions break the isotropy of the correlation function. x s 1 ∆ = b · δ − ∂r (V · n) H Observer Hamilton (1992) 2 8f µ4 (s)P4 (cos β) ξ4 = D12 35 A µ4 (s) = 2 2π ! dk k " " 1! P4 (cos β) = 35 cos4 β − 30 cos2 β + 3 8 1.0 P4!cosΒ" Hexadecapole n #ns −1 k Tδ2 (k) j4 (k · s) H0 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 42/55 Redshift distortions 1 ξ0 (s) = 2 ! 9 ξ4 (s) = 2 1 x A µ4 (s) = 2 2π s dµ ξ(s, µ) −1 Measure separately: b Observer · σ8 and nf · σ8 1Hamilton (1992) dµ ξ(s, µ)P4 (µ) d ln D1 f= d ln a 1.0 −1 P4!cosΒ" µ = cos β ! x′ β 1 ! ∆ = b · δ 1− ∂r (V · n) 5 H ξ2 (s) = dµ ξ(s, µ)P2 (µ) 2 −1 ! Samushia et al (2014) dk k " #ns −1 k Tδ2 (k) j4 (k · s) H0 0.5 0.0 !0.5 0 45 90 135 180 Β University of Sussex Camille Bonvin p. 43/55 Relativistic distortions The relativistic distortions break the symmetry of the correlation function. The correlation function differs for galaxies behind or in front of the central one. CB, Hui and Gaztanaga (2013) McDonald (2009) x′ x Observer n This differs from the breaking of isotropy, which is symmetric: redshift distortions have even powers of cos β . The amplitude is the same for β = 0 and β = π To measure the asymmetry, we need two populations of galaxies: faint and bright. University of Sussex Camille Bonvin p. 44/55 Relativistic distortions The relativistic distortions break the symmetry of the correlation function. The correlation function differs for galaxies behind or in front of the central one. CB, Hui and Gaztanaga (2013) McDonald (2009) x x′ Observer n This differs from the breaking of isotropy, which is symmetric: redshift distortions have even powers of cos β . The amplitude is the same for β = 0 and β = π To measure the asymmetry, we need two populations of galaxies: faint and bright. University of Sussex Camille Bonvin p. 45/55 Relativistic distortions CB, Hui and Gaztanaga (2013) McDonald (2009) F The relativistic distortions break the symmetry of the correlation function. The correlation function differs for galaxies behind or in front of the central one. B F Observer n This differs from the breaking of isotropy, which is symmetric: redshift distortions have even powers of cos β . The amplitude is the same for β = 0 and β = π To measure the asymmetry, we need two populations of galaxies: faint and bright. University of Sussex Camille Bonvin p. 46/55 Anti-symmetries density redshift space distortion 1 ∆(z, n) = b · δ − ∂r (V · n) H lensing ! r ′ r − r ∆Ω (Φ + Ψ) − dr′ gravitational ′ rr 0 # redshift Doppler " Ḣ 1 2 1 + 1− 2 − V · n + V̇ · n + ∂r Ψ H rH H H ! r 1 H 2 + Ψ − 2Φ + Φ̇ − 3 V + dr′ (Φ + Ψ) H k r 0 #$ " % ! r potential 2 Ḣ ′ dr (Φ̇ + Ψ̇) + Ψ + + 2 H rH 0 University of Sussex Camille Bonvin p. 47/55 Cross-correlation The following terms break the symmetry: ∆rel = ! Ḣ 2 1− 2 − H rH " 1 1 V · n + V̇ · n + ∂r Ψ H H University of Sussex Camille Bonvin p. 48/55 Dipole in the correlation function F CB, Hui and Gaztanaga (2013) H 2 ξ(s, β) = D1 f H0 A ν1 (s) = 2 2π ! dk k ! β Ḣ 2 + 2 H rH " " B (bB − bF )ν1 (s) · cos(β) #ns −1 k Tδ (k)TΨ (k) j1 (k · s) H0 Observer n By fitting for a dipole in the correlation function, we can measure relativistic distortions, and separate them from the density and redshift space distortions. 3 ξ1 (s) = 2 ! 1 dµ ξ(s, µ) · µ µ = cos β −1 University of Sussex Camille Bonvin p. 49/55 Multipoles z = 0.25 Monopole Quadrupole 0 120 100 !20 80 s 2 Ξ2 s 2 Ξ0 60 40 !40 !60 20 0 !80 !20 50 100 150 200 50 s !Mpc"h# Hexadecapole 200 150 200 Dipole 2.0 6 1.5 s 2 Ξ1 s 2 Ξ4 150 s !Mpc"h# 8 4 1.0 0.5 2 0 100 50 100 s !Mpc"h# 150 200 0.0 50 100 s !Mpc"h# University of Sussex Camille Bonvin p. 50/55 1 κg = 2r ! Convergence r dr ′r 0 ′ −r ∆Ω (Φ + Ψ) ′ r κv = ! " 1 −1 V·n rH We can isolate the Doppler lensing by looking for anti-symmetries in !∆κ" redshift space real space demagnified κ κ ∆ ∆ κ magnified κ Observer n Observer n University of Sussex Camille Bonvin p. 51/55 κ Dipole β ∆ CB, Bacon, Andrianomena, Clarkson and Maartens (in preparation) 2A 2 H ξ(s, β) = 2 2 D1 f 9π Ωm H0 ! "! " 3f 1 b+ ν1 (s)cos(β) 1− Hr 5 Observer z = 0.1 n z = 0.5 0.5 CB 0 Gravitational lensing 0.0 Gravitational lensing !0.5 !4 s 2 Ξ1 s 2 Ξ1 !2 Doppler lensing !6 !1.0 !1.5 !8 !10 50 100 s !Mpc"h# 150 200 !2.0 Doppler lensing 50 100 150 200 s !Mpc"h# The dipole due to gravitational lensing is completely subdominant. University of Sussex Camille Bonvin p. 52/55 Testing Euler equation The monopole and quadrupole in ∆ allow to measure V The dipole allows to measure: ∆rel 1 = ∂r Ψ + H ! Ḣ 2 1− 2 − H rH " 1 V · n + V̇ · n H If Euler equation is valid: V̇ · n + HV · n + ∂r Ψ = 0 ∆rel = − ! Ḣ 2 + 2 H rH " V·n With the dipole, we can test the Euler equation. University of Sussex Camille Bonvin p. 53/55 Measuring the anisotropic stress The dipole in the convergence is sensitive to: κv = ! " 1 −1 V·n rH 1 The standard part κg = 2r ! r 0 ′ r − r dr′ ′ ∆Ω (Φ + Ψ) r can be measure through !κκ" and !γγ" Assuming Euler equation, we can test the relation between the two metric potentials Φ and Ψ . University of Sussex Camille Bonvin p. 54/55 Conclusion Our observables are affected by relativistic effects. These effects have a different signature in the correlation function: they induce anti-symmetries. By measuring these anti-symmetries we can isolate the relativistic effects and use them to test the relations between the density, velocity and gravitational potentials. University of Sussex Camille Bonvin p. 55/55 Contamination The density and velocity evolve with time: the density of the faint galaxies in front of the bright is larger than the density behind. This also induces a dipole in the correlation function. Larger redshift smaller density F 2 relativistic 1 s 2 Ξ1 B !1 F Observer !2 n total 0 evolution 50 100 150 200 s !Mpc"h# University of Sussex Camille Bonvin p. 56/55 Dipole in the correlation function ξ(s, β) = D12 A ν1 (s) = 2 2π H f H0 ! ! " dk k 2 Ḣ + 2 H rH " F B #ns −1 k Tδ (k)TΨ (k) j1 (k · s) H0 Observer 2.0 1.5 s 2 Ξ1 β (bB − bF )ν1 (s) · cos(β) n z = 0.25 1.0 z = 0.5 0.5 0.0 z=1 50 100 s !Mpc"h# 150 200 bB − bF ≃ 0.5 University of Sussex Camille Bonvin p. 57/55
© Copyright 2026 Paperzz