Discovery potential for T ′ → tZ in the trilepton channel at the LHC Lorenzo Basso IPHC, Strasbourg Based on LB, J. Andrea, JHEP 1502 (2015) 032 arXiv:1411.7587 [hep-ph]. Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 1 / 27 Outline Simplified model for T ′ analyses Analysis - Simulation details - Cut-based - Multi-variate (BDT) Results - Discovery potential - Comparison to dilepton channel Reinterpretation for top anomalous couplings Conclusions Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 2 / 27 Introduction √ s = 7/8 TeV: found the Higgs boson √ LHC run-II at s = 13(14) TeV: (among others) study Higgs boson properties, clarify if SM boson, search for New Physics LHC run-I at Which NP? To stay with the scalar sector, many BSM theories predicts new heavy fermions to stabilise the Higgs boson mass and to protect it from dangerous quadratic divergences Generally, heavy partners of the third generation quarks with vector-like couplings: Extra Dimensions, Little Higgs Models, Composite Higgs Models They are vector-like because their LH and RH chiralities couple to the gauge boson vectors in the same way → LH and RH couplings are equal, as for a vector Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 3 / 27 Examples of models Very quick review: J. Reuter and M. Tonini, JHEP 1501 (2015) 088 [arXiv:1409.6962] Composite Higgs models: Higgs boson is a composite state tR ∼ 14 , complete rep. of SO(4) Minimal case: SO(5)/SO(4) qL ∼ incomplete rep. of SO(5) 14 : T ′ New fermions: Ψ 44 : (T ′ , B ′ ), (X5/3 , X2/3 ) Little Higgs models: Higgs is a pseudo-Goldstone boson from a global spontaneous breaking of SU (5)/SO(5) (Littlest Higgs model) A vector-like heavy top is required to cancel loop quadratic divergences Many models, many similarities → simplified model Here, singlet top partner: T ′ Typically, BR(T ′ → qW ± ) : BR(T ′ → qZ) : BR(T ′ → qh) ∼ 2 : 1 : 1 Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 4 / 27 Simplified model M. Buchkremer et al. Nucl.Phys. B876, 376 (2013) [1305.4172] LT ′ = g ∗ q nq RL √g + µ ′ 1+RL 2 [T L Wµ γ dL ] g RL 1+RL 2 cos θW [T ′ L Zµ γ µ uL ] + q + q 1 + µ ′ √g 1+RL 2 [T L Wµ γ bL ]+ g 1 1+RL 2 cos θW o [T ′ L Zµ γ µ tL ] + h.c. We allow for generic mixing to 1st generation quarks Only 3 parameters: - MT ′ , the vector-like mass of the top partner - g ∗ , the coupling strength to SM quarks, only relevant in single production. σ ∝ (g ∗ )2 - RL , the mixing coupling to first generation quarks. RL = 0 corresponds to coupling to t/b only This talk: single decay mode via T ′ → tZ, √ top partner production, trilepton −1 at the LHC at s = 13 TeV and L = 100 fb Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 5 / 27 Single production and T ′ → tZ σpp→T ′ (MT ′ , RL ) = BRT ′ →tZ (MT ′ , RL ) = MT ′ (GeV) 800 1000 1200 1400 1600 Lorenzo Basso (IPHC) RL 1 + A3 (MT ′ ) 1 + RL 1 + RL 1 B(MT ′ ) 1 + RL A1 (MT ′ ) A1 (MT ′ ) (pb) 1.2614 0.7752 0.5001 0.3331 0.2265 A3 (MT ′ ) (pb) 0.07242 0.03518 0.01826 0.00994 0.00561 TPP Seminar B(MT ′ ) (%) 22.4 23.5 24.0 24.2 24.4 March 04, 2015 6 / 27 Monte Carlo simulation details LO samples simulation with parton level: MG5_aMC@NLO (CTEQ6L1) Hadronisation/showering: Pythia6 Tune Z2 FastSim: Delphes3 ma5Tune Analysis: MadAnalysis5 Signal: 5 benchmark points of T ′ mass in steps of 200 GeV: MT ′ ∈ [800; 1600] GeV, with g ∗ = 0.1 and RL = 0.5. No k-factors Backgrounds (plus up to 2 jets): - 3 prompt leptons: ttW , ttZ, tZj, and W Z - non-prompt leptons: tt and Z/W + jets Samples normalised to NLO cross sections where available CMS detector emulation Anti−kT algorithm with R = 0.5 b-tagging CVS medium working point: b−tag = 70%, mistag = 1% Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 7 / 27 Courtesy of Eric Conte Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 8 / 27 More simulation details Massive background event generation to gather enough statistics: Process SingleTop_W_madspin SingleTop_t_5FS_madspin TTdilep_WWToLLNuNu_madspin TTdilep_ZToLL_madspin TTdilep_madspin TTsemilep_WToLNu_madspin_2 TTsemilep_WWToLLNuNu_madspin_2 TTsemilep_ZToLL_madspin_1 TTsemilep_ZZToLLLL_madspin_1 TTsemilep_madspin_1 TZq2_W_trilep1 TZq2_s_trilep WToLNu-0Jet_sm-no_masses WToLNu-1Jet_sm-no_masses WToLNu-3Jets_sm-no_masses WZToLLJJ WZToLNuNuNu ZToLL10-50-0Jet_sm-no_masses ZToLL10-50-2Jets_sm-no_masses ZToLL50-0Jet_sm-no_masses ZToLL50-2Jets_sm-no_masses ZToLL50-4Jets_sm-no_masses_split ZZToLLLL # Files 189 83 1 1 200 1 1 1 1 172 100 94 592 586 488 5 1 1 1 9 9 1 92 # Events 18898481 8299246 99999 99989 9427953 59771 99997 99995 99993 8105465 9999157 9393276 52785449 32827404 12931463 306339 59147 97701 38998 784399 350088 2884 6222800 Process SingleTop_s_madspin TTdilep_WToLNu_madspin TTdilep_WZToLLLNu_madspin TTdilep_ZZToLLLL_madspin TTsemilep_WToLNu_madspin_1 TTsemilep_WWToLLNuNu_madspin_1 TTsemilep_WZToLLLNu_madspin_1 TTsemilep_ZToLL_madspin_2 TTsemilep_ZZToLLLL_madspin_2 TTsemilep_madspin_2 TZq2_W_trilep2 TZq2_t5FS_trilep WToLNu-0Jet_sm-no_masses-run2 WToLNu-2Jets_sm-no_masses WWToLLNuNu WZToLLLNu WZToNuNuJJ ZToLL10-50-1Jet_sm-no_masses ZToLL10-50-3Jets_sm-no_masses ZToLL50-1Jet_sm-no_masses ZToLL50-3Jets_sm-no_masses_split ZZTo4Nu ZZToLLNuNu # Files 188 1 1 1 1 1 2 1 1 173 97 97 482 396 194 120 1 1 1 10 8 1 1 # Events 18771372 64191 99991 99993 59694 99989 199988 99987 99990 8156688 9672987 9699081 42972689 15769022 11221071 7666801 59420 45361 5690 549567 115396 35808 64305 Monte Carlo errors below permil: neglected Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 9 / 27 Objects selection Objects identification pT (ℓ) > 20 GeV, pT (j) > 40 GeV, |η(j)| < 5, Background tt(+X) tZj WZ Total MT ′ (GeV) 800 1000 1200 1400 1600 no cuts 7.5 106 (100%) 3521 (100%) 1.4 105 (100%) 7.6 106 (100%) no cuts 119.7 (100%) 77.1 (100%) 52.0 (100%) 35.3 (100%) 24.5 (100%) |η(e/µ)| < 2.5/2.4 , ∆R(ℓ, j) > 0.4 , (1) (2) |η(b)| < 2.4, (3) 1 ≤ nj ≤ 3 6.1 106 (81.2%) 2953 (83.9%) 5.7 104 (41.9%) 6.1 106 (80.5%) 1 ≤ nj ≤ 3 105.0 (87.8%) 67.8 (87.9%) 45.3 (87.2%) 30.5 (86.6%) 21.1 (86.0%) nℓ ≡ 3 514.9 (0.09%) 290.6 (9.8%) 3883 (6.9%) 4689 (0.08%) nℓ ≡ 3 39.3 (37.4%) 26.0 (38.4%) 16.1 (35.6%) 8.0 (26.1%) 3.8 (18.0%) nb ≡ 1 243.8 (47.3%) 170.0 (58.5%) 164.3 (4.2%) 578.0 (12.3%) nb ≡ 1 25.5 (64.8%) 16.4 (63.2%) 10.1 (62.4%) 4.8 (60.1%) 2.2 (58.3%) Signal generated without taus Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 10 / 27 Cut-based analysis: optimisation Z-boson reco by minimising distance of OSSF leptons to MZ s = 13 TeV 3 10 2 10 10 WZ TT (+X) TZj MT’ = 0.8 TeV MT’ = 1.0 TeV MT’ = 1.2 TeV MT’ = 1.4 TeV MT’ = 1.6 TeV 1 -1 10 -2 10 -3 10 10-4 0 50 100 150 200 250 + 300 M(l l ) (GeV) |M (ℓ+ ℓ− )/ GeV − MZ | < 15 Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 11 / 27 Cut-based analysis: optimisation W reco with remaining lepton s = 13 TeV 10 1 WZ TT (+X) TZj MT’ = 0.8 TeV MT’ = 1.0 TeV MT’ = 1.2 TeV MT’ = 1.4 TeV MT’ = 1.6 TeV -1 10 -2 10 -3 10 -4 10 0 50 100 150 200 250 300 MT (lW ) (GeV) 10 < MT (ℓW )/GeV < 150 Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 11 / 27 Cut-based analysis: optimisation top reco with remaining lepton and b-tagged jet 10 1 -1 10 -2 10 WZ TT (+X) TZj MT’ = 0.8 TeV MT’ = 1.0 TeV MT’ = 1.2 TeV MT’ = 1.4 TeV MT’ = 1.6 TeV -3 10 -4 10 0 50 100 150 s = 13 TeV 200 250 300 MT (blW ) (GeV) 0 < MT (ℓW b)/GeV < 220 Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 11 / 27 Cut-based analysis Selections |M (ℓ+ ℓ− )/ GeV − MZ | 10 < MT (ℓW )/GeV 0 < MT (ℓW b)/GeV Background tt(+X) tZj WZ Total MT ′ (GeV) 800 1000 1200 1400 1600 nb ≡ 1 243.8 (47.3%) 170.0 (58.5%) 164.3 (4.2%) 578.0 (12.3%) nb ≡ 1 25.5 (64.8%) 16.4 (63.2%) 10.1 (62.4%) 4.8 (60.1%) 2.2 (58.3%) cut (4) 154.8 (63.5%) 155.6 (67.2%) 146.9 (89.4%) 457.2 (79.1%) cut (4) 23.8 (93.6%) 15.4 (93.8%) 9.5 (94.2%) 4.5 (93.5%) 2.1 (93.3%) < 15 , (4) < 150 , < 220 . (5) (6) cut (5) 135.1 (87.3%) 148.7 (95.6%) 138.2 (94.1%) 422.0 (92.3%) cut (5) 22.2 (93.2%) 14.3 (92.4%) 8.7 (92.3%) 4.1 (92.1%) 1.9 (92.2%) cut (6) 83.0 (61.5%) 139.8 (63.7%) 71.5 (51.7%) 294.3 (69.8%) cut (6) 20.8 (93.6%) 13.4 (94.0%) 8.1 (92.3%) 3.8 (91.3%) 1.7 (90.0%) Cuts optimised to retain ≥ 90% of signal Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 12 / 27 Cutflow 7 10 s = 13 TeV 6 10 5 10 4 10 TTsLL TTdLL TT TZq TTLNu WZ Tp_800 Tp_1000 Tp_1200 Tp_1400 Tp_1600 3 10 2 10 10 1 no c uts 0<N Lorenzo Basso (IPHC) j<4. lep= 3 nbje ts = |Mll M Tl -MZ M Tl<1 b<2 50 |<15 20 1 TPP Seminar March 04, 2015 13 / 27 Events (L=100 fb-1) MT (b 3ℓ) s = 13 TeV 10 WZ TT (+X) TZj MT’ = 0.8 TeV MT’ = 1.0 TeV MT’ = 1.2 TeV MT’ = 1.4 TeV MT’ = 1.6 TeV 1 10-1 -2 10 200 400 600 800 1000 1200 1400 1600 1800 MT (b3l) (GeV) Signal clearly visible over background Distribution in transverse mass, sharper peaks than invariant mass Q: can we do better? Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 14 / 27 Multi-Variate Analysis (MVA) Cut-based strategy: suitable cuts on the most straightforward distributions Is it the best strategy? Many additional variables to distinguish signal from background Recall the kinematics: T ′ very heavy, t − Z back-to-back and boosted However, cutting on any of these variables unavoidably reduce also the signal Solution: combine several variables using a multivariate analysis (MVA) to obtain the best signal/background discrimination Here we used Boosted Decision Tree (BDT) Variables drawn after Z mass cut: MT (ℓW ), MT (ℓW b); MET, HT , ST ; pT , η; ∆η, ∆φ, angular correlations, . . . Some variables correlated, like pT (Z) and pT (ℓ1 ): choose a reduced and uncorrelated set with still large sensitivity Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 15 / 27 0.22 0.2 0.18 0.12 0.08 0.12 0.1 0.06 0.08 0.1 0.04 0.05 0.02 1000 1500 0.045 0.04 1 1.5 2 2.5 3 3.5 4 4.5 5 ∆ R(b l ) 0.3 0.25 0.2 0.03 0.15 0.02 0.1 0.015 0.01 0.05 0.005 0 2 0 4 max η (j) 0.16 1 2 3 4 5 6 ∆ φ (ll ) 0.4 0.6 0.8 0.1 0.08 0.08 0.06 0 1 1.2 1.4 p (Z)/M (b3l) (GeV) T -6 -4 -2 0 2 4 T 0.14 6 ∆ φ (t Z) Background 0.12 MT’ = 1.0 TeV 0.1 0.08 0.06 0.04 0.02 1 2 3 4 5 0 6 ∆ φ (Z MET) 0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 p (j )/M (b3l) (GeV) T 1 T 0.1 0.08 0.1 0.12 0.2 Z 0.12 0.14 0.05 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 1/N dN -2 1/N dN -4 1/N dN 0 0.04 0.02 0 W 0.035 0.025 0.1 0.06 0 0.5 2000 2500 MT(b3l) (GeV) 1/N dN 500 1/N dN 0 0.2 0.15 1/N dN 0.2 0.3 0.25 0.16 0.14 0.1 0.15 1/N dN 0.16 0.14 1/N dN MT’ = 1.0 TeV 0.25 1/N dN Background 0.3 1/N dN 0.35 1/N dN 1/N dN MVA variables 0.08 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0 -3 -2 -1 0 1 2 3 ∆ η (ll ) Z 0 0.02 0.02 0.02 0.02 -4 -3 -2 -1 0 1 2 3 4 ∆ η (b l ) 0 -6 W -4 -2 0 2 4 6 8 η (top) 0 1 2 3 4 5 6 ∆ φ (Z l ) W + ηZ pT (Z)/MT (b 3ℓ), pT (j1 )/MT (b 3ℓ), and MT (b 3ℓ) are decorrelated Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 16 / 27 MVA variables II Variable MT (b 3ℓ) pT (Z)/MT (b 3ℓ) η max (j) ∆ϕ(Z, p /T ) ∆η(ℓℓ|Z ) η(t) η(Z) Importance 2.60 10−1 9.41 10−2 6.02 10−2 5.37 10−2 5.05 10−2 4.99 10−2 4.61 10−2 Variable ∆R(b, ℓW ) ∆ϕ(t, Z) ∆ϕ(ℓℓ|Z ) pT (j1 )/MT (b 3ℓ) ∆η(b, ℓW ) ∆ϕ(Z, ℓW ) Importance 9.77 10−2 8.17 10−2 5.89 10−2 5.08 10−2 5.03 10−2 4.63 10−2 (ℓℓ|Z ): the pair of leptons reconstructing the Z boson η max (j): jet with largest rapidity (to account for associated jet) pT (j1 )/MT (b 3ℓ) and pT (Z)/MT (b 3ℓ) effectively decorrelated from MT (b 3ℓ) Angular variables from fully reconstructing the neutrino 4-momentum Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 17 / 27 Correlations - MT ′ = 1 TeV Correlation Matrix (signal) Linear correlation coefficients in % tree_MtZ -1 tree_hdphitZ tree_dRblW tree_detablW -2 1 -17 -2 -9 6 1 1 -1 1 1 -29 8 7 tree_dphiZlW -5 tree_dphiZMET 1 -31 tree_DetaZll -4 21 1 100 -4 -2 -17 100 1 100 -17 tree_ptZratio -2 7 tree_etaZ 18 -1 tree_etaJhrec -10 tree_ptJ1ratio 100 100 tree_etaTop 100 6 100 1 3 100 6 12 -1 -9 1 -4 -1 11 13 -29 2 7 1 6 -1 7 -2 -31 -5 -4 -1 1 -2 40 20 -20 -40 1 -60 -2 -10 18 60 0 -1 8 -2 4 1 1 1 -15 3 100 80 1 -25 100 11 -1 tree_dphiZll 100 1 100 100 1 100 -1 13 2 -1 12 -25 4 -15 -17 21 1 -1 -80 -100 tree tree tree tree tree tree tree tree tree tree tree tree tree _eta _ptJ _eta _eta _ptZ _dp _De _dp _dp _de _dR _hd _Mt Top 1rat Jhre Z ratio hiZll taZll hiZM hiZlWtablW blW phitZ Z io ET c Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 18 / 27 BDT output (1/N) dN / dx TMVA overtraining check for classifier: BDT 6 Signal (test sample) Signal (training sample) Background (test sample) Background (training sample) Kolmogorov-Smirnov test: signal (background) probability = 0.921 (0.336) 5 U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)% 4 3 2 1 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 BDT response Allows to check for “overtraining”: 2 random samples, one used for training and the other one for comparison, should get similar output Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 19 / 27 Discovery power: benchmarks Surviving events and significances for signal benchmark points (g ∗ = 0.1, RL = 0.5) C&C: select a window around the peak in MT (b3ℓ) MVA: perform a LH cut on BDT output √ to maximise the significance: σ = S/ S + B Analysis MT (b3ℓ) cut (GeV) S (ev.) C&C B (ev.) σ cut MVA σ MT ′ = 0.8 TeV [800 − 860] 18.00 8.90 3.47 0.07 3.64 MT ′ = 1.0 TeV [840 − 1200] 12.28 4.88 2.96 0.08 3.10 MT ′ = 1.2 TeV [1000 − 1340] 7.16 1.74 2.40 0.11 2.50 MT ′ = 1.4 TeV [1120 − 1640] 3.40 0.90 1.64 0.12 1.62 MT ′ = 1.6 TeV [1200 − 1800] 1.57 0.63 1.06 0.12 1.15 MVA: non-significant improvement (5%–8%) Significance depends on g ∗ and RL per fixed T ′ mass Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 20 / 27 Discovery power: parameter space g* vs M g* vs R L g* g* T’ 0.5 0.45 0.5 0.45 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 RL=0 (0%) 0.1 0.1 RL=1.0 (50%) 0.05 0 800 0.05 RL=3.0 (75%) RL=9.0 (90%) 1000 1200 1400 1600 1800 2000 2200 MT’ (GeV) 0 0 1 2 3 4 5 6 MTp=1.6 TeV MTp=1.4 TeV MTp=1.2 TeV MTp=1.0 TeV MTp=800 GeV 7 8 9 RL (dashed lines: 5σ, solid lines: 3σ) T ′ masses up to 2 TeV can be observed Increased reach when RL is non-vanishing (maximum for RL ≃ 1, corresponding to 50%–50% mixing) Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 21 / 27 Comparison to dilepton channel We set ourselves in similar conditions: L = 300 fb−1 , κf = 1.14, RL = 0 g* vs M g* T’ J. Reuter and M. Tonini, 0.5 JHEP 1501 (2015) 088 [arXiv:1409.6962] 0.45 0.4 0.35 0.3 0.25 0.2 0.15 RL=0 (0%) 0.1 RL=1.0 (50%) 0.05 0 800 RL=3.0 (75%) RL=9.0 (10%) 1000 1200 1400 1600 1800 2000 2200 MT’ (GeV) (dashed lines: 5σ, solid lines: 3σ) Comparable reach at low T ′ masses (no pair-prod. here) 200 ÷ 300 GeV better sensitivity at high T ′ masses Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 22 / 27 Reinterpretation: top anomalous couplings The top-quark couplings can be parametrised in an effective field theory The SM Lagrangian is extended by gauge-invariant (non-renormalisable) operators, obtained by integrating out heavy modes L = LSM + X Ci Oi i Λ2 Here we consider only dimension 6 operators, the first non-vanishing terms in 1/Λ expansion: total of 59 operators W. Buchmuller, D. Wyler, Nucl.Phys. B268 (1986) 621 Not all possible dim-6 operators that one can write are independent Redundant operators can be reduced by using equation of motions and other relations due to gauge invariance J. A. Aguilar-Saavedra, Nucl. Phys. B812, 181 (2009) [0811.3842] L= g κtZq µν L R √ tσ fZq PL + fZq PR q Zµν , Λ 2cW q=u,c X where Λ is the scale of new physics. Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 23 / 27 Reinterpretation: optimisation tZq coupling gives similar final state as T ′ → tZ → t ℓ+ ℓ− s = 13 TeV 3 10 102 WZ TT (+X) TZj K zct -BR=1% K zut-lim K γ ut -lim 10 1 -1 10 -2 10 -3 10 10-4 0 50 100 150 200 250 + 300 M(l l ) (GeV) tγq coupling (with γ ∗ ) too. However, the cut around MZ removes it Here, couplings at best limit: κtZ(γ)q -lim= 0.2(0.1) TeV−1 Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 24 / 27 Events (L=100 fb-1) Reinterpretation: C&C s = 13 TeV 10 WZ TT (+X) TZj K zct -BR=1% K zut-lim 1 -1 10 Cut no cuts 1 ≤ nj ≤ 3 nℓ ≡ 3 nb ≡ 1 cut (4) cut (5) cut (6) MT (b3ℓ) S B σ κtZu 2263(100%) 1765(78.0%) 191.8(10.9%) 113.8(59.3%) 103.2(90.7%) 96.2(93.3%) 91.1(94.7%) > 400 GeV 68.0 102.9 5.2 κtZc 5360(100%) 4452(83.0%) 623.3(14.0%) 381.0(61.1%) 342.7(90.0%) 323.6(94.4%) 304.7(94.1%) > 200 GeV 304.5 241.7 13.0 -2 10 200 400 600 800 1000 1200 1400 1600 1800 MT (b3l) [GeV] MVA trained on T ′ signals and applied to top anomalous couplings does not lead to improvements In progress: training on the top anomalous signal Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 25 / 27 Reinterpretation: parameter space BR(t->Zc) (%) σ BRs -1 9 L = 300 fb 8 L = 100 fb-1 0.3 10 0.25 8 7 0.2 6 6 5 0.15 5σ 4 3 4 3σ 0.1 2 2 0.05 2σ 1 0 0.05 0.1 0.15 0.2 0.25 KtZu (TeV-1) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 BR(t->Zu) (%) Actual limits: BR(t → Zq) < 0.05% (inclusive, from tt) ⇒ κtZu < 0.2 TeV−1 BR(t → Zu) < 0.51% Otherwise from single top: BR(t → Zc) < 11.4% See CMS-TOP-12-037 and CMS-TOP-12-021, respectively Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 26 / 27 Conclusions Singlet top partners T ′ common to many BSM models trying to address the Higgs stability Simplified model: only 3 parameters, simple rescaling to cover whole phase space T ′ → tZ: study of the trilepton signature at mode √ s = 13 TeV in single production T ′ masses up to 2.0 TeV and couplings down to g ∗ = 0.1 can be probed. Large gain if mixing with light generation is accounted for Results from cut-based analysis: simple and effective, no substantial improvements from MVA Reinterpretation to top anomalous couplings sharing similar signature Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 27 / 27 Backup slides Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 28 / 27 ∆R(ℓ+ ℓ− ) for T ′ signals WZ TT (+X) TZj MT’ = 0.8 TeV MT’ = 1.0 TeV MT’ = 1.2 TeV MT’ = 1.4 TeV MT’ = 1.6 TeV 102 10 1 -1 10 -2 10 -3 10 -4 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ∆ R(ll) (GeV) Z T ′ is very massive, hence the decay products are boosted Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 29 / 27 Correlations - Background Correlation Matrix (background) Linear correlation coefficients in % tree_MtZ 16 -29 -11 tree_hdphitZ 7 -19 6 5 -18 10 100 -7 100 -11 7 7 -2 100 -18 7 tree_dphiZMET -22 -14 4 100 -2 5 4 -29 2 -42 100 4 7 10 tree_ptZratio 10 100 -42 -14 7 -21 tree_etaZ 21 39 100 10 tree_etaJhrec 23 100 39 2 100 tree_etaTop 100 10 23 2 20 0 100 tree_dphiZll tree_ptJ1ratio 60 40 tree_dphiZlW tree_DetaZll 100 80 100 -21 10 2 100 -7 1 tree_dRblW tree_detablW 4 6 -20 16 -40 -60 -19 -22 -11 21 1 -11 -80 -100 tree tree tree tree tree tree tree tree tree tree tree tree tree _eta _ptJ _eta _eta _ptZ _dp _De _dp _dp _de _dR _hd _Mt Top 1rat Jhre Z ratio hiZll taZll hiZM hiZlWtablW blW phitZ Z io ET c Lorenzo Basso (IPHC) TPP Seminar March 04, 2015 30 / 27
© Copyright 2026 Paperzz