Infrared conformal gauge theory and composite Higgs Kari Rummukainen University of Helsinki and Helsinki Institute of Physics Work done in collaboration with: Ari Hietanen, Tuomas Karavirta, Viljami Leino, Anne-Mari Mykkänen, Jarno Rantaharju, Teemu Rantalaiho, Kimmo Tuominen University of Sussex 2/2015 K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 1 / 34 Introduction: strongly coupled BSM physics? The Higgs particle has been found! the Standard Model is in excellent shape I Higgs field is centrally important: drives the EW symmetry breaking! I Scalar → theoretical problems: ⇒ naturalness, vacuum stability, unitarity bound . . . I There is still room (and need!) for BSM physics. Most BSM models aim to ameliorate the problems in the SM by e.g. I I I Pairing bosons with fermions (SUSY) Cutoff (extra dimensions) No scalars: composite Higgs, Technicolor and related models K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 2 / 34 Motivation Infrared conformality: gauge theories with with large enough (but not too large!) number of fermions generically feature an infrared fixed point. phenomenology: may enable light composite Higgs theoretical curiosity: strongly coupled conformal phase, sQGP, “unparticles” Lot of recent activity both on and off the lattice (non-perturbative → lattice) On LATTICE 2013 conference, 38 contributions on this topic! Slow running of the coupling g 2 → Lattice studies technically very difficult Here we mostly discuss SU(2) gauge with different fermion contents K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 3 / 34 Introduction: Conformal Window Consider 2-loop perturbative β-function SU(3) with Nf massless fermions 0.4 β(g ) = µ g3 g5 dg = −β0 − β 1 dµ 16π 2 (16π 2 )2 0.2 Small Nf : β0 > 0, β1 > 0 running coupling, confinement and χSB (QCD-like) Medium Nf : β0 > 0, β1 < 0 IR fixed point, no χSB β = µ dg/dµ Generically 3 different behaviours: 18 14 13 0 12 -0.2 0 3 10 [Banks,Zaks] Large Nf : β0 < 0 Asymptotic freedom lost -0.4 0 K. Rummukainen (Helsinki) 2 4 6 8 10 2 g Conformal window: range of Nf where IRFP exists Conformal gauge Sussex 2015 4 / 34 Walking coupling What happens when we approach the lower edge of the conformal window from below? Competition between IR conformal behaviour and non-perturbative confinement/χSB The β-function may get close to zero at finite coupling ⇒ The coupling evolves slowly, walks. β g2 IR fixed point walking g2 g*2 QCD−like walking IR fixed point QCD−like µ Typically at strong coupling: perturbation theory not applicable, lattice simulations needed K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 5 / 34 Technicolor Technigauge + massless techniquarks Q Techniquarks have both technicolor and EW charge (exactly like quarks in the SM) Chiral symmetry breaking in technicolor −→ Electroweak symmetry breaking Scale: ΛTC ∼ fTC ∼ ΛEW After chiral symmetry breaking looks like SM: ⇒ decay constant fTC scalar Q̄Q σ-meson Goldstone pseudoscalars, “pions” exotic technihadrons (observable!) ↔ ↔ ↔ Higgs expectation value v Higgs particle W,Z -longitudinal modes Describes well the W , Z +Higgs sector (depending on the model, may have too many Goldstone bosons) Does not explain fermion masses (Yukawa). For that, we need additional structure → Extended technicolor K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 6 / 34 Extended technicolor In addition to the “pure” technicolor, introduce a new higher-energy interaction coupling Standard Model fermions q (quarks, leptons) and techniquarks (Q): extended technicolor (ETC) Several options, e.g. massive gauge boson, METC : METC q,Q q,Q [Eichten,Lane,Holdom,Appelquist,Sannino,Luty. . . ] 1 Q̄Q q̄q −→ SM fermion mass mq ∝ 2 hQ̄QiETC 2 METC METC 1 q̄qq̄q −→ extra FCNC’s (harmful!) 2 METC 1 Q̄Q Q̄Q −→ explicit χSB in the techniquark sector 2 METC 1 hQ̄QiETC : condensate evaluated at the ETC scale hQ̄QiEW : condensate at TC∼EW) scale K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 7 / 34 Extended technicolor I) In order to avoid unwanted FCNC’s need to push ΛETC ≈ METC > ∼1000 × ΛEW (ΛTC ≈ ΛEW ) II) For EWSB we must have hQ̄QiEW ∝ Λ3EW 2 (top quark!) III) On the other hand, hQ̄QiETC ∝ mq METC Using RG evolution "Z METC hQ̄QiETC = hQ̄QiEW exp ΛEW # γ(g 2 ) dµ µ where γ(g 2 ) is the mass anomalous dimension. In weakly coupled theory γ is small, and hQ̄Qi is ∼ constant. Thus, it is not possible to satisfy the constraints I), II), II) in a QCD-like theory, where the coupling is large only on a narrow energy range above χSB. K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 8 / 34 Walking coupling If the coupling walks, i.e. if g 2 ≈ g∗2 (constant) over the range from TC to γ(g∗2 ) ΛETC hQ̄QiTC (condensate ETC, then we can solve hQ̄QiETC ≈ ΛTC enhancement) Inserting II) and III) we obtain γ(g∗2 ) ≈ 1 − 2 g2 g*2 β QCD−like IR fixed point walking walking g2 IR fixed point QCD−like Λ EW Λ ETC µ Walking → Higgs naturally light, “dilatonic” K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 9 / 34 Conformal window in SU(N) gauge fundamental [Appelquist, Lane, Mahanta, Cohen, Georgi, Yamawaki, Schrock, Sannino, Tuominen, Dietrich] 2-index antisymmetric 2-index symmetric adjoint Upper edge of band: asymptotic freedom lost Lower edge of band: ladder approximation Walking can be found near the lower edge of the conformal window: large coupling, non-perturbative - lattice simulations needed! In higher reps it is easier to satisfy EW constraints [Sannino,Tuominen,Dietrich] → recent interest K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 10 / 34 Existence of the IRFP essentially non-perturbative Example: Perturbative β-function of SU(2) gauge with Nf = 6 fundamental rep fermions 2 3-loop 0 4-loop β -2 2-loop -4 1-loop -6 -8 0 2 4 6 2 g /4π 8 10 12 [4-loop MS: Ritbergen, Vermaseren, Larin] Results from lattice: existence of IRFP inconclusive K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 11 / 34 “Walking” at Nf < ∼6 Interestingly, the fixed point vanishes from 4-loop MS beta function if Nf is slightly lowered from 6: 2 0 4-loop, Nf = 6 4-loop, Nf = 5.945 β -2 -4 -6 -8 0 1 2 3 4 5 2 g /4π K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 12 / 34 Goals: Take SU(N) gauge theory with Nf fermions in some representation. Locate the lower edge of the conformal window Measure β(g 2 )-function Measure γ(g 2 ) Can we find IRFP? Or walking? (how to define it?) How IRFP appears? More fixed points? The most interesting case is a theory which I I I is walking or is just within conformal window (easy to deform into walking) has large anomalous exponent γ near FP F AdS-QFT: Indications that γ = 1 at the lower edge of the conformal window [Järvinen et al.] I Can it have “light” scalar (Higgs)? Walking should help! “Hadron” spectrum, chiral symmetry breaking pattern K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 13 / 34 Models studied Red: conformal Blue: χSB Black: unclear SU(3) + Nf = 8–16 fundamental rep: I Nf = 8: Appelquist et al; Deuzeman et al; Fodor et al; Jin et al; Aoki et al; Schaich et al; Gelzer et al I I I Nf = 9: Fodor et al Nf = 10: Hayakawa et al; Appelquist et al Nf = 12: Hasenfratz; Appelquist et al; Deuzeman et al; Xin and Mawhinney; Fodor et al; Okawa et al; Aoki et al; Cheng et al; Itou; Lin et al; Gelzer et al I Nf = 16: Damgaard et al; Heller; Hasenfratz; Fodor et al; Deuzemann et al SU(2) + fundamental rep fermions: I I I I Nf Nf Nf Nf = 4: Karavirta et al = 6: Del Debbio et al; Karavirta et al; Appelquist et al; = 8: Iwasaki et al; Lin et al = 10: Karavirta et al K. Rummukainen (Helsinki) Conformal gauge Tomii et al; Voronov et al Sussex 2015 14 / 34 Models studied Red: conformal Blue: χSB Black: unclear SU(2) + Nf = 1 adjoint rep: Athenodorou et al SU(2) + Nf = 2 adjoint rep: Catterall et al; Bursa et al; Hietanen et al; Rantaharju et al; De Grand et al; Del Debbio et al; August and Maas; Arthur et al SU(3) + Nf = 2 2-index symmetric rep: SU(3) + Nf = 2 adjoint rep: DeGrand et al; Sinclair and Kogut; Fodor et al DeGrand et al SU(4) + Nf = 2 2-index symmetric rep: DeGrand et al SU(4) + Nf = 2 2-index antisymmetric rep: SO(4) + Nf = 2 vector rep: K. Rummukainen (Helsinki) DeGrand et al Hietanen et al Conformal gauge Sussex 2015 15 / 34 Classifying conformal / χ SB ? Measure β-function directly I I I Schrödinger functional MCRG Gradient flow methods Measure technihadron and glueball masses and string tension as functions of the techniquark mass mQ : I I I Non-zero mQ takes us away from the (possible) IRFP 1/(1+γ) Conformal: M ∝ mQ , incl. string tension 1/2 χSB: Mπ ∝ mQ , others remain massive Dirac operator eigenvalue distribution: scales with γ K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 16 / 34 Evolution of the coupling: Schrödinger functional K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 17 / 34 Evolution of the coupling Schrödinger functional: Generate a background chromoelectric field using non-trivial fixed boundary conditions, parametrised by a twist angle η At the classical level, we have dSclass. A = 2 dη g t=T where A(η) is a known constant. At the quantum level, we define the coupling through 1 g2 = = E 1 dS A dη const. × h(boundary plaq.)i special fixed boundaries t=0 Evaluates g 2 directly at scale µ = 1/L, the lattice size Can use mQ = 0 Has been used very succesfully in QCD by the Alpha collaboration K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 18 / 34 Evolution of the coupling: QCD-like Test with Nf = 2 fundamental representation, QCD-like test case: fundamental rep. βL=2.2 12 L/a grows, k ∼ a/L decreases, g 2 (L) increases: asymptotic freedom, OK! βL=2.5 βL=2.8 βL=3.1 βL=3.5 9 Large βL → small lattice spacing → small volume g 2 6 Continuous line: coupling evaluated from the 2-loop β-function (integration constant fixed to measurement at L/a = 16) Not a continuum limit, but shows consistency K. Rummukainen (Helsinki) 3 0 0 Conformal gauge 5 10 15 20 L/a Sussex 2015 19 / 34 Evolution of the coupling: QCD-like Test with Nf = 2 fundamental representation, QCD-like test case: fundamental rep. 12 L/a grows, k ∼ a/L decreases, g 2 (L) increases: asymptotic freedom, OK! βL=2.5 βL=2.8 9 Large βL → small lattice spacing → small volume Continuous line: coupling evaluated from the 2-loop β-function (integration constant fixed to measurement at L/a = 16) Not a continuum limit, but shows consistency K. Rummukainen (Helsinki) βL=2.2 g βL=3.1 βL=3.5 2 6 3 0 Conformal gauge 1 10 2 10 3 10 L/L0 Sussex 2015 19 / 34 Evolution of the coupling: SU(2) + Nf = 2 adjoint 7 With two adjoint representation fermions: 6 At small g 2 (L): increases with L (asymptotic freedom) At large g 2 (L): decreases as L increases ⇒ β-function positive here! As L/a → ∞, apparently g 2 (L) → g∗2 ≈ 3. ⇒ IRFP Here: using “HEX” improved Wilson-Clover action 4 2 Agrees with 2-loop β-function g I 5 3 A β=1 β=1.05 β=1.1 β=1.2 β=1.3 β=1.5 β=2 β=4 β=5 β=6 β=8 2 1 A 0 0 4 A 8 A A 12 A A 16 20 24 28 L/a [Karavirta, Rantaharju, Rantalaiho, KR, Tuominen, to be published] K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 20 / 34 Evolution of the coupling: SU(2) + Nf = 2 adjoint 0.69 β=6 With two adjoint representation fermions: g 2 0.68 At small g 2 (L): increases with L (asymptotic freedom) Agrees with 2-loop β-function As L/a → ∞, apparently g 2 (L) → g∗2 ≈ 3. ⇒ IRFP Here: using “HEX” improved Wilson-Clover action β=8 0.51 2 At large g 2 (L): decreases as L increases ⇒ β-function positive here! 0.66 0.515 g I 0.67 0.505 0.5 0.495 5 10 15 20 L/a [Karavirta, Rantaharju, Rantalaiho, KR, Tuominen, to be published] K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 20 / 34 Step scaling function Step scaling: coupling when the lattice size is (e.g.) doubled Σ(u, L/a) = g 2 (g02 , 2L/a)u=g 2 (g02 ,L/a) Continuum limit: σ(u) = lim Σ(u, L/a) a/L→0 Step scaling is related to β-function: Z σ(u) √ −2 ln 2 = u dx √ xβ( x) Close to the fixed point: β(g ) ≈ g 2 ln 2 σ(g 2 ) 1− g2 1-loop analysis indicates that finite lattice spacing effects large (∼ 50% at L/a = 10) ⇒ improvement! [Alpha; Karavirta et al.] K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 21 / 34 Schrödinger functional in SU(2)+Nf = 2 adjoint fermions [Rantaharju et al; preliminary] Step scaling with volume pairs L/a = 6-12, 8-16, 10-20 Raw step scaling Interpolation + continuum extrap. 1.05 L/a=6 L/a=8 L/a=10 2-loop 1.02 1.02 0.99 2 2 σ(g )/g 2 σ(g ,2)/g 2 0.96 0.96 0.9 L/a=Continuum L/a=10 2-loop 0.93 0.84 0 4 2) (g 8 0 1 2 3 4 5 2 g Questionable continuum extrapolation? Lattice artifacts on small volumes? 2 Largest volume: IRFP at gSF = 2 – 2.5. Compatible with previous results [Hietanen et al; Del Debbio et al; DeGrand et al]. K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 22 / 34 Modern alternative: Gradient flow coupling Is currently being applied to QCD, more exotic theories... Gradient flow coupling in SU(2) + 8 Fundamental flavours 1.1 v=8 v=10 v=12 2-loop 2 σ(g ,2)/g 2 1.05 1 0.95 0 1 2 3 4 2 g 5 6 7 8 [Rantaharju et al, LATTICE 2014] K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 23 / 34 Mass spectrum and anomalous exponent γ K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 24 / 34 Example: mass spectrum of SU(2)+Nf = 2 adjoint fermions [Del Debbio et al 09] 1/(1+γ) As “quark” mass mQ → 0, masses vanish with M ∝ mQ very different from QCD-like More recent measurements, taking into account Finite volume scaling: γ ≈ 0.371 at estimated IRFP value of coupling [Del Debbio et al, Lattice 2013] Problem: scalar (“Higgs”) mass very difficult to measure technically! K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 25 / 34 SU(3) Nf = 12 spectrum Fπ : non-zero intercept as mQ → 0? Looks QCD-like (χSB) F/ linear fit 0.1 F/ = F + c1 m 0.08 0.06 F= 0.00784 ± 0.00050 c1= 1.600 ± 0.021 F/ r2/dof= 0.52 0.04 r2 sum = 3.10 0.02 m fit range: 0.01 ï 0.035 0 0 0.01 0.02 m 0.03 0.04 [Fodor, Holland, Kuti, Nogradi, Schroeder, 2011] Expect IRFP, but the results do not look like it? K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 26 / 34 Mass spectrum measurement 1/(1+γ) If the massless mQ = 0 theory has an IRFP, excitation masses M ∝ mQ Excitation size ∝ M −1 , diverges as mq → 0 [Del Debbio and Zwicky] All excited states in a given channel become massless → excitation spectrum ∼ continuous, “unparticles”. → great care needed in mass spectrum measurment – not yet fully under control. K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 27 / 34 Other measurements of γ K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 28 / 34 Dirac operator eigenvalues Eigenvalue density of the lattice (D † D + m2 ): [DeGrand; Del Debbio and Zwicky; Patella] hQ̄Qi ∝ mη ⇔ ρ(λ) ∝ λη ⇒ Mode number ν(Ω) = C + (Ω2 − m2 )2/(1+γ) In SU(2) + Nf = 2 adjoint rep fermions, γ = 0.37(2): 1e-01 3 64x24 am0=-1.15 -4 a [ν(Ω) - ν0] 1e-02 1e-03 1e-04 1e-05 1e-06 0.01 0.1 2 1 2 1/2 [ (aΩ) - (am) ] K. Rummukainen (Helsinki) Conformal gauge [Patella] Sussex 2015 29 / 34 Determining γ(g 2 ) using Schrödinger functional The mass scaling exponent γ can be determined with Schrödinger functional methods in SU(2) + Nf = 2 adjoint fermions: 0.5 Continuum L=12 1-loop 0.4 * 2 γ (g ) 0.3 0.2 0.1 0 0 1 2 3 4 5 2 g ∗2 ∗2 At IRFP gSF ≈ 2.5 – 3.5, γ(gSF ) ≈ 0.2 – 0.3 ∗ Smaller than the one from the eigenvalue ≈ 0.37 K. Rummukainen (Helsinki) Conformal gauge spectrum γ [Patella] Sussex 2015 30 / 34 What do the results imply? Lattice analysis is significantly more difficult than in QCD-like theories: Slow evolution → small signal Slow evolution → strong bare coupling ⇒ Conflicting results, unknown systematics I I Improvement is needed: better actions, better methodology, understanding of limitations Schrödinger functional is running out of steam at (L/a)4 ≈ 244 : Noisy signal, huge statistics required (several ×105 trajectories per point) Gradient flow is a promising new tool I I Can reach larger volumes than with SF - potentially less lattice artifacts Preliminary studies in this context by Nogradi et al; Fritzsch and Ramos; Rantaharju; Cheng et al; Hasenfratz et al K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 31 / 34 Conclusions Status of the field: not yet quite conclusive results. No full consensus yet of the “best practices” – getting there Interesting new tools Mapping out the theory space: IRFP, χSB Walking has not been unambiguously observed (except in toy models) Not yet clear quantitative phenomenology: Higgs and exotica masses, branching ratios . . . Theories are considered in isolation: coupling to EW? I I Has an effect on the physics Axial gauge coupling: we do not even know how to do it! K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 32 / 34 Walking in 2d O(3) 2-d O(3) model with topological charge Z 1 S= d 2 x ∂i ua ∂i ua + iθQ 2g 2 [de Forcrand, Pepe, Wiese] with |u| = 1 Z Q= d 2 xij abc Ua ∂i Ub ∂j Uc asymptotically free mass gap has a IR fixed point at θ = π! (integrable model) Adjusting θ the degree of “walking” can be changed K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 33 / 34 Walking in 2-d O(3) 0 -0.5 β(α) -1 -1.5 IRFP θ=0 θ=π/2 θ=3π/4 θ=0.92 π θ=π -2 -2.5 -3 0 0.5 1 1.5 2 2.5 3 3.5 α K. Rummukainen (Helsinki) Conformal gauge Sussex 2015 34 / 34
© Copyright 2026 Paperzz