Benjamin Koch, 13th January 2015 [PDF 1.36MB]

Scale Setting for Self-consistent Quantum
Backgrounds
Benjamin Kocha
in collaboration with
Carlos Contrerasc , and Paola Riosecoa
[email protected]
c
a PUC, Chile
UFSM Valparaiso, Chile
Sussex
January 2015
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
1 / 50
Outline
I Introduction Γk
II Improving solutions
III Self-consistent scale setting
IV Example: “inoffensive”
V Examples: “offensive”
VI Summary and outlook
Based on arXiv:1409.4443 (accepted by PRD) and arXiv:1501.00904
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
2 / 50
I
Introduction I
I
Introduction
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
3 / 50
I Introduction Γk
Ideal case
Γk (φ)
(1)
In “Pleasantville”
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
4 / 50
I Introduction Γk
Effective action
Generating functional
Z
Z [J] =
Connected diagrams
Z
Dφ exp −i dx(L(φ) − φJ)
(2)
W [J] = ln Z [J]
(3)
Z
Γ[φ] = supJ ( Jφ − W [J])
(4)
Effective action (1PI)
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
5 / 50
I Introduction Γk
Wilsons flow
What happens if one integrates out only certain Momentum shell ?
k → k + δk?
⇒ RG-Flow
∂ k Γk = . . .
(5)
Solve:
Running couplings λk and
effective action
Γk = Γk (λk , φ)
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
(6)
6 / 50
I Introduction Γk
Wilsons flow dangers
gauge redundance
φ → e iα φ
Fadeev Popov
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
7 / 50
I Introduction Γk
Wilsons flow dangers
Infrared divergencies
k → 0, Γ0 =?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
8 / 50
I Introduction Γk
Wilsons flow dangers
Infrared divergencies
k → 0, Γ0 =?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
9 / 50
I Introduction Γk
Wilsons flow dangers
Ultra violet divergencies
k → ∞, Γ∞ =?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
10 / 50
I Introduction Γk
Wilsons flow dangers
Ultra violet divergencies
k → ∞, Γ∞ =?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
11 / 50
I Introduction Γk
Wilsons flow dangers
Renormalization:
Live with the problems
Absorb Infinities ∼ Λ in
definition of couplings λ at
scale M0
λi,0 = λi (M0 )
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
(7)
12 / 50
I Introduction Γk
Wilsons flow after Renormalization
AFTER renormalization can
pretend to be back in
“Pleasantville”
Coupling flow λi (k) and
effective action Γk
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
13 / 50
I Introduction Γk
Wilsons flow
At the end effective quantum action:
Z
√
Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k))
(8)
Quantum background?
δΓk
=0
δφi
.
(9)
“GAP EQUATION”
solutions?
quantum solitons?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
14 / 50
I Introduction Γk
Wilsons flow
At the end effective quantum action:
Z
√
Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k))
(8)
Quantum background?
δΓk
=0
δφi
.
(9)
“GAP EQUATION”
solutions?
quantum solitons?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
14 / 50
II
Improving solutions II
II
Improving solutions
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
15 / 50
Improving solutions II
Improving solutions II
δΓk
δφi
= 0 is too hard
⇒ first solve classical eom
δS
=0
δφi
.
(10)
and take λ0 → λk as small correction of those solutionsi,ii
i ) Uehling potential: in QED textbooks
ii ) Improved black holes: B.K. and Frank Saueressig; Int.J.Mod.Phys. A29 (2014) 8, 1430011 ...
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
16 / 50
Improving solutions II
Improving solutions II
δΓk
δφi
= 0 is too hard
⇒ first solve classical eom
δS
=0
δφi
.
(10)
and take λ0 → λk as small correction of those solutionsi,ii
i ) Uehling potential: in QED textbooks
ii ) Improved black holes: B.K. and Frank Saueressig; Int.J.Mod.Phys. A29 (2014) 8, 1430011 ...
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
16 / 50
Improving solutions II
More general consideration
“Improved solution” - fully consistent?
No
Problem: Scale setting
k →? k(r )
(typically k ∼ 1/r )
(11)
Implies
Improved classical solution does not solve “gap equations”
Typically not even T µν conserved
⇒ Propose different scale setting
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
17 / 50
III
Self-consistent scale setting III
III
Self-consistent scale setting
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
18 / 50
Self-consistent scale setting III
Proposal
Effective action and running couplings
Z
√
Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k)) ,
(12)
“Gap equations” for quantum background
δΓk
=0
δφi
.
(13)
Scale setting for this background?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
19 / 50
Self-consistent scale setting III
Proposal
Scale setting for this background k = k(r )?
Idea: Minimal k sensitivity
(just like Callan-Symanzik equations
d
dk hT φ1 (x1 )φ2 (x2 ) . . . ik k=kopt
≡ 0)
Realization: Promote k to field in Γk
Γk (φi (x), λn (k)) → Γ(φi (x), k(x), λn (k)) .
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
(14)
20 / 50
Self-consistent scale setting III
Proposal
Realization:
“Scale field” k(x)
coupled equations of motion
δΓ(φi (x), k(x))
=0
δφi
,
d
L(φi (x), k(x), λn (k))
=0
dk
k=kopt
.
(15)
The simultaneous solution of (15) assures optimal scale setting
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
21 / 50
Self-consistent scale setting III
Proposal
First questions on proposal
Consistent set of equations?
Solves ∇µ T µν ↔ k(r ) problem?
Examples?
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
22 / 50
IV
Examples IV
IV
Examples: “inoffensive”
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
23 / 50
IV
Examples IV
Inoffensive:
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
24 / 50
Examples IV
φ4
Effective action
Z
m̃k2 2 g̃k 4
αk
2
4
(∂φ) −
φ − φ
Γ= d x
2
2
4!
Eom δφ:
g̃k 3
φ =0
6
(17)
1 0 4
g̃ φ = 0 ,
12 k
(18)
∂µ (αk ∂µ φ) + m̃k2 φ +
eom k:
αk0 (∂φ)2 − (m̃k2 )0 φ2 −
implies conservation
Benjamin Koch (PUC, Chile)
(16)
∇µ T µν = 0
Scale Setting
(19)
Sussex, January 2015
25 / 50
Examples IV
φ4 loops
Example: Self-consistent scale setting for φ4 at 1 loop:
γZ
=
βg
=
βm 2
d ln Zk
=0 ,
d ln k 2
dgk
3
g2
=
d ln k
16π 2 k
dm2
k
=
d ln k
= (−2 +
,
gk
)mk2
16π 2
.
Run proposed machine for spherical symmetry ...
!
r
14 k0
c1
k(r ) = ki + exp −2
m0 r ·
3 ki
r
Benjamin Koch (PUC, Chile)
Scale Setting
....
.
Sussex, January 2015
(20)
26 / 50
Examples IV
φ4 loops
Example: Self-consistent scale setting for φ4 at 1 loop:
Self-consistent
Like classical for small r
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
27 / 50
IV
Examples IV
V
Examples: “offensive”
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
28 / 50
IV
Examples IV
Offensive:
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
29 / 50
Examples V
Gravity and gauge
Effective action
Z
Γk [gµν , Aα ] =
M
√
d 4 x −g
1
R − 2Λk
− 2 Fµν F µν
16πGk
4ek
,
(21)
Einstein-Hilbert-Maxwell
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
30 / 50
Examples V
Gravity and gauge
Equations of motion
eom δgµν :
Gµν = −gµν Λk − ∆tµν + 8πGk Tµν
with
∆tµν = Gk gµν − ∇µ ∇ν
and
Dµ
Benjamin Koch (PUC, Chile)
1
Gk
1
Tµν = Fνα Fµα − gµν Fµν F µν
4
eom δAµ :
1 µν
F
ek2
,
(22)
.
(23)
.
(24)
=0
Scale Setting
,
(25)
Sussex, January 2015
31 / 50
Examples V
Gravity and gauge
Conservation and symmetry
Symmetry coordintates:
Symmetry U(1):
Benjamin Koch (PUC, Chile)
∇µ Gµν = 0
(26)
∇[µ Fαβ] = 0 .
(27)
Scale Setting
Sussex, January 2015
32 / 50
Examples V
Gravity and gauge
Consistency:
Using everybody . . . one can actually show that
Scale setting eom δk:
Λ(k)
4π
1
αβ
Fαβ F
· (∂µ k) = 0 . (28)
R∇µ
− 2∇µ
− ∇µ
Gk
Gk
ek2
is actually self-consistent consequence of eoms and conservation laws
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
33 / 50
Examples V
Gravity and gauge
Background solutions?
Actually, yes:
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
34 / 50
Examples V
Gravity and gauge
Background solutions?
Actually, yes:
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
34 / 50
Examples V
de Sitter black hole
De Sitter case:
eom gµν :
Gµν = −gµν Λk − ∆tµν
eom k:
R∇µ
1
Gk
− 2∇µ
Λk
Gk
,
(29)
=0
.
(30)
unknown functions: g00 (r ), g11 (r ), and k(r )
known (with caveat): Λk , and Gk
Don’t like caveat ...
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
35 / 50
Examples V
de Sitter black hole
Trade (trick):
g00 (r ), g11 (r ), k(r ), Λk , and Gk
⇒
g00 (r ), g11 (r ), Λ(r ), and G (r )
Too many unknowns: Schwarzschild ansatz: g00 = 1/g11 ≡ f
⇒
f (r ), Λ(r ), and G (r )
Can be solved
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
36 / 50
Examples V
de Sitter black hole
generalized de Sitter solution:
G (r )
=
f (r )
=
Λ(r )
=
G0
εr + 1
(31)
2G0 M0
Λ0 r 2
c4 (εr + 1)
1 + 3G0 M0 ε −
− (1 + 6εG0 M0 )εr −
+ r 2 ε 2 (6εG0 M0 + 1) ln
r
3
r
1 G M ε + 1 ln c4 (εr +1) + 4r 3 Λ ε 2 + 12ε 3 + 6Λ ε + 72ε 4 G M r 2
−72ε 2 r (εr + 1) εr + 2
0
0 0
0
0 0
6
r
2r (εr + 1)2
72ε 3 G
0 M0
+
+ 11ε 2
+ 2Λ0 r
2r (εr + 1)2
+ 6ε 2 G
0 M0
(32)
(33)
.
Constants of integration: G0 , M0 , Λ0 , ε, c4
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
37 / 50
Examples V
de Sitter black hole
Classical limit:
G (r )|ε→0 = G0
Λ(r )|ε→0 = Λ0
f (r )|ε→0 = −
(34)
.
Λ0 r 2 2G0 M0
−
+1
3
r
(35)
,
(36)
ε parametrizes scale dependence of the couplings
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
38 / 50
Examples V
de Sitter black hole
Asymptotics and horizons:
+r →0
Rµναβ R µναβ =
48G02 M02 48G02 M02 ε
−
+ O(r −4 ) .
r6
r5
(37)
⇒ Singularity persists
+r →∞
f (r ) = −r 2
1
Λ0 − 3ε 2 (6εG0 M0 + 1) ln (c4 ε) + O(r ) ,
3
(38)
⇒ shift of effective cosmological constant
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
39 / 50
Examples V
de Sitter black hole
f (r ) for var. ε
Benjamin Koch (PUC, Chile)
Horizons for var. ε
Scale Setting
Sussex, January 2015
40 / 50
Examples V
Reissner Nordstrom black hole
Reissner Nordstrom case:
eom gµν :
Gµν = −∆tµν + 8π
eom Aµ
Dµ
eom k:
R∇µ
Benjamin Koch (PUC, Chile)
1
Gk
1 µν
F
ek2
− ∇µ
4π
ek2
Gk
Tµν
ek 2
,
(39)
=0
Fαβ F
Scale Setting
.
αβ
(40)
· (∂µ k) = 0
.
Sussex, January 2015
(41)
41 / 50
Examples V
Reissner Nordstrom black hole
Unknown functions:
g00 (r ) ≡ f (r ), g11 (r ), k(r ), F01 = q(r ),
Known
Gk , ek
Same trade as before g11 (r ) ≡ 1/f (r ) and k(r ) versus G (r ), e(r ),
⇒
f (r ), q(r ), G (r ), e(r )
Can be solved ...
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
42 / 50
Examples V
Reissner Nordstrom black hole
Solution:
G (r )
=
f (r )
=
e 2 (r )
=
q(r )
=
G0
εr + 1
(42)
r 4 ε 2 e0 2 + 4εr 3 e0 2 + 4(1 − G0 M0 ε)e0 2 r 2 − 8rG0 M0 e0 2 + 16πG0 Q0 2
4r 2 (εr + 1)2 e0 2
r 6 ε 4 e0 2 + 3r 5 ε 3 e0 2 + 3r 4 e0 2 − 4r 3 e0 2 G0 M0 + 48r 2 πG0 Q0 2 ε 2 + 48εr πG0 Q0 2 + 16πG0 Q0 2 e0 2 π
Q0 2 G0 (εr + 1)3
Q0
4πe02
e 2 (r )
r2
.
Integration constants: G0 , Q0 , e0 , and ε
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
43 / 50
Examples V
Reissner Nordstrom black hole
Classical limit:
f (r )|ε→0 = 1 −
2G0 M0 4πG0 Q02
+ 2 2
r
r e0
,
(43)
e 2 (r )|ε→0 = (4π)2 e02
(44)
4πQ0
.
r2
ε parametrizes scale dependence of the couplings (again)
q(r )|ε→0 =
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
(45)
44 / 50
Examples V
Reissner Nordstrom black hole
Asymptotics:
+r →0
Rαβγδ R αβγδ = 27 7
G02 π 2 Q04
+ O 1/r 7
4
8
e0 r
.
(46)
⇒ Singularity persists
+r →∞
line element
1
2
ds∞
= − dt 2 + 4dr 2 + r 2 d θ 2 + r 2 sin2 θd φ2
4
.
⇒ like global monopole
Z
Q=
(still charge is unchanged)
q
Q0
F µν
2
d z γ S2 nµ σν 2 = 2 ,
e
e0
∂Σ
Benjamin Koch (PUC, Chile)
Scale Setting
(47)
(48)
Sussex, January 2015
45 / 50
Examples V
Reissner Nordstrom black hole
f (r ) for var. ε
Horizons r± (M0 ) for var. ε
Observe that cosmic censureship unchanged
√ Q0
M0 = 2 π
e0 G0
Benjamin Koch (PUC, Chile)
Scale Setting
,
(49)
Sussex, January 2015
46 / 50
Examples V
Reissner Nordstrom black hole
Temperature slightly increased for ε 6= 0 ∼ ε 2
s

G0 G0 M0 2 + M0
T = T0 + ε 2
s
8π 
Benjamin Koch (PUC, Chile)
G0 e0 2 G0 M0 2 −4πQ0 2
e0 2
G0 e0 2 G0 M0 2 −4πQ0 2
e0 2
Scale Setting
− 4π

Q0 2
2
e0


+ O(ε 3 ) .
(50)
+ G0 M0 
Sussex, January 2015
47 / 50
V
Summary
V
Summary
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
48 / 50
Summary
Context: Self-consistent quantum backgrounds δΓk /δφi = 0
Problem: Scale setting and consistency
Proposal: Self-consistent scale setting k → k(x)
δΓk /δφi = 0 and δΓk /δk = 0
Examples: Studied φ4 , and de Sitter-, RN black holes
Outlook: Hopefully to be applied in many more contexts ;-)
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
49 / 50
Summary
Thank you
Benjamin Koch (PUC, Chile)
Scale Setting
Sussex, January 2015
50 / 50