Scale Setting for Self-consistent Quantum Backgrounds Benjamin Kocha in collaboration with Carlos Contrerasc , and Paola Riosecoa [email protected] c a PUC, Chile UFSM Valparaiso, Chile Sussex January 2015 Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 1 / 50 Outline I Introduction Γk II Improving solutions III Self-consistent scale setting IV Example: “inoffensive” V Examples: “offensive” VI Summary and outlook Based on arXiv:1409.4443 (accepted by PRD) and arXiv:1501.00904 Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 2 / 50 I Introduction I I Introduction Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 3 / 50 I Introduction Γk Ideal case Γk (φ) (1) In “Pleasantville” Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 4 / 50 I Introduction Γk Effective action Generating functional Z Z [J] = Connected diagrams Z Dφ exp −i dx(L(φ) − φJ) (2) W [J] = ln Z [J] (3) Z Γ[φ] = supJ ( Jφ − W [J]) (4) Effective action (1PI) Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 5 / 50 I Introduction Γk Wilsons flow What happens if one integrates out only certain Momentum shell ? k → k + δk? ⇒ RG-Flow ∂ k Γk = . . . (5) Solve: Running couplings λk and effective action Γk = Γk (λk , φ) Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 (6) 6 / 50 I Introduction Γk Wilsons flow dangers gauge redundance φ → e iα φ Fadeev Popov Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 7 / 50 I Introduction Γk Wilsons flow dangers Infrared divergencies k → 0, Γ0 =? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 8 / 50 I Introduction Γk Wilsons flow dangers Infrared divergencies k → 0, Γ0 =? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 9 / 50 I Introduction Γk Wilsons flow dangers Ultra violet divergencies k → ∞, Γ∞ =? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 10 / 50 I Introduction Γk Wilsons flow dangers Ultra violet divergencies k → ∞, Γ∞ =? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 11 / 50 I Introduction Γk Wilsons flow dangers Renormalization: Live with the problems Absorb Infinities ∼ Λ in definition of couplings λ at scale M0 λi,0 = λi (M0 ) Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 (7) 12 / 50 I Introduction Γk Wilsons flow after Renormalization AFTER renormalization can pretend to be back in “Pleasantville” Coupling flow λi (k) and effective action Γk Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 13 / 50 I Introduction Γk Wilsons flow At the end effective quantum action: Z √ Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k)) (8) Quantum background? δΓk =0 δφi . (9) “GAP EQUATION” solutions? quantum solitons? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 14 / 50 I Introduction Γk Wilsons flow At the end effective quantum action: Z √ Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k)) (8) Quantum background? δΓk =0 δφi . (9) “GAP EQUATION” solutions? quantum solitons? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 14 / 50 II Improving solutions II II Improving solutions Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 15 / 50 Improving solutions II Improving solutions II δΓk δφi = 0 is too hard ⇒ first solve classical eom δS =0 δφi . (10) and take λ0 → λk as small correction of those solutionsi,ii i ) Uehling potential: in QED textbooks ii ) Improved black holes: B.K. and Frank Saueressig; Int.J.Mod.Phys. A29 (2014) 8, 1430011 ... Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 16 / 50 Improving solutions II Improving solutions II δΓk δφi = 0 is too hard ⇒ first solve classical eom δS =0 δφi . (10) and take λ0 → λk as small correction of those solutionsi,ii i ) Uehling potential: in QED textbooks ii ) Improved black holes: B.K. and Frank Saueressig; Int.J.Mod.Phys. A29 (2014) 8, 1430011 ... Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 16 / 50 Improving solutions II More general consideration “Improved solution” - fully consistent? No Problem: Scale setting k →? k(r ) (typically k ∼ 1/r ) (11) Implies Improved classical solution does not solve “gap equations” Typically not even T µν conserved ⇒ Propose different scale setting Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 17 / 50 III Self-consistent scale setting III III Self-consistent scale setting Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 18 / 50 Self-consistent scale setting III Proposal Effective action and running couplings Z √ Γk (φi (x), λn (k)) = d 4 x −g Lk (φi (x), λn (k)) , (12) “Gap equations” for quantum background δΓk =0 δφi . (13) Scale setting for this background? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 19 / 50 Self-consistent scale setting III Proposal Scale setting for this background k = k(r )? Idea: Minimal k sensitivity (just like Callan-Symanzik equations d dk hT φ1 (x1 )φ2 (x2 ) . . . ik k=kopt ≡ 0) Realization: Promote k to field in Γk Γk (φi (x), λn (k)) → Γ(φi (x), k(x), λn (k)) . Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 (14) 20 / 50 Self-consistent scale setting III Proposal Realization: “Scale field” k(x) coupled equations of motion δΓ(φi (x), k(x)) =0 δφi , d L(φi (x), k(x), λn (k)) =0 dk k=kopt . (15) The simultaneous solution of (15) assures optimal scale setting Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 21 / 50 Self-consistent scale setting III Proposal First questions on proposal Consistent set of equations? Solves ∇µ T µν ↔ k(r ) problem? Examples? Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 22 / 50 IV Examples IV IV Examples: “inoffensive” Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 23 / 50 IV Examples IV Inoffensive: Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 24 / 50 Examples IV φ4 Effective action Z m̃k2 2 g̃k 4 αk 2 4 (∂φ) − φ − φ Γ= d x 2 2 4! Eom δφ: g̃k 3 φ =0 6 (17) 1 0 4 g̃ φ = 0 , 12 k (18) ∂µ (αk ∂µ φ) + m̃k2 φ + eom k: αk0 (∂φ)2 − (m̃k2 )0 φ2 − implies conservation Benjamin Koch (PUC, Chile) (16) ∇µ T µν = 0 Scale Setting (19) Sussex, January 2015 25 / 50 Examples IV φ4 loops Example: Self-consistent scale setting for φ4 at 1 loop: γZ = βg = βm 2 d ln Zk =0 , d ln k 2 dgk 3 g2 = d ln k 16π 2 k dm2 k = d ln k = (−2 + , gk )mk2 16π 2 . Run proposed machine for spherical symmetry ... ! r 14 k0 c1 k(r ) = ki + exp −2 m0 r · 3 ki r Benjamin Koch (PUC, Chile) Scale Setting .... . Sussex, January 2015 (20) 26 / 50 Examples IV φ4 loops Example: Self-consistent scale setting for φ4 at 1 loop: Self-consistent Like classical for small r Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 27 / 50 IV Examples IV V Examples: “offensive” Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 28 / 50 IV Examples IV Offensive: Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 29 / 50 Examples V Gravity and gauge Effective action Z Γk [gµν , Aα ] = M √ d 4 x −g 1 R − 2Λk − 2 Fµν F µν 16πGk 4ek , (21) Einstein-Hilbert-Maxwell Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 30 / 50 Examples V Gravity and gauge Equations of motion eom δgµν : Gµν = −gµν Λk − ∆tµν + 8πGk Tµν with ∆tµν = Gk gµν − ∇µ ∇ν and Dµ Benjamin Koch (PUC, Chile) 1 Gk 1 Tµν = Fνα Fµα − gµν Fµν F µν 4 eom δAµ : 1 µν F ek2 , (22) . (23) . (24) =0 Scale Setting , (25) Sussex, January 2015 31 / 50 Examples V Gravity and gauge Conservation and symmetry Symmetry coordintates: Symmetry U(1): Benjamin Koch (PUC, Chile) ∇µ Gµν = 0 (26) ∇[µ Fαβ] = 0 . (27) Scale Setting Sussex, January 2015 32 / 50 Examples V Gravity and gauge Consistency: Using everybody . . . one can actually show that Scale setting eom δk: Λ(k) 4π 1 αβ Fαβ F · (∂µ k) = 0 . (28) R∇µ − 2∇µ − ∇µ Gk Gk ek2 is actually self-consistent consequence of eoms and conservation laws Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 33 / 50 Examples V Gravity and gauge Background solutions? Actually, yes: Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 34 / 50 Examples V Gravity and gauge Background solutions? Actually, yes: Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 34 / 50 Examples V de Sitter black hole De Sitter case: eom gµν : Gµν = −gµν Λk − ∆tµν eom k: R∇µ 1 Gk − 2∇µ Λk Gk , (29) =0 . (30) unknown functions: g00 (r ), g11 (r ), and k(r ) known (with caveat): Λk , and Gk Don’t like caveat ... Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 35 / 50 Examples V de Sitter black hole Trade (trick): g00 (r ), g11 (r ), k(r ), Λk , and Gk ⇒ g00 (r ), g11 (r ), Λ(r ), and G (r ) Too many unknowns: Schwarzschild ansatz: g00 = 1/g11 ≡ f ⇒ f (r ), Λ(r ), and G (r ) Can be solved Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 36 / 50 Examples V de Sitter black hole generalized de Sitter solution: G (r ) = f (r ) = Λ(r ) = G0 εr + 1 (31) 2G0 M0 Λ0 r 2 c4 (εr + 1) 1 + 3G0 M0 ε − − (1 + 6εG0 M0 )εr − + r 2 ε 2 (6εG0 M0 + 1) ln r 3 r 1 G M ε + 1 ln c4 (εr +1) + 4r 3 Λ ε 2 + 12ε 3 + 6Λ ε + 72ε 4 G M r 2 −72ε 2 r (εr + 1) εr + 2 0 0 0 0 0 0 6 r 2r (εr + 1)2 72ε 3 G 0 M0 + + 11ε 2 + 2Λ0 r 2r (εr + 1)2 + 6ε 2 G 0 M0 (32) (33) . Constants of integration: G0 , M0 , Λ0 , ε, c4 Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 37 / 50 Examples V de Sitter black hole Classical limit: G (r )|ε→0 = G0 Λ(r )|ε→0 = Λ0 f (r )|ε→0 = − (34) . Λ0 r 2 2G0 M0 − +1 3 r (35) , (36) ε parametrizes scale dependence of the couplings Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 38 / 50 Examples V de Sitter black hole Asymptotics and horizons: +r →0 Rµναβ R µναβ = 48G02 M02 48G02 M02 ε − + O(r −4 ) . r6 r5 (37) ⇒ Singularity persists +r →∞ f (r ) = −r 2 1 Λ0 − 3ε 2 (6εG0 M0 + 1) ln (c4 ε) + O(r ) , 3 (38) ⇒ shift of effective cosmological constant Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 39 / 50 Examples V de Sitter black hole f (r ) for var. ε Benjamin Koch (PUC, Chile) Horizons for var. ε Scale Setting Sussex, January 2015 40 / 50 Examples V Reissner Nordstrom black hole Reissner Nordstrom case: eom gµν : Gµν = −∆tµν + 8π eom Aµ Dµ eom k: R∇µ Benjamin Koch (PUC, Chile) 1 Gk 1 µν F ek2 − ∇µ 4π ek2 Gk Tµν ek 2 , (39) =0 Fαβ F Scale Setting . αβ (40) · (∂µ k) = 0 . Sussex, January 2015 (41) 41 / 50 Examples V Reissner Nordstrom black hole Unknown functions: g00 (r ) ≡ f (r ), g11 (r ), k(r ), F01 = q(r ), Known Gk , ek Same trade as before g11 (r ) ≡ 1/f (r ) and k(r ) versus G (r ), e(r ), ⇒ f (r ), q(r ), G (r ), e(r ) Can be solved ... Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 42 / 50 Examples V Reissner Nordstrom black hole Solution: G (r ) = f (r ) = e 2 (r ) = q(r ) = G0 εr + 1 (42) r 4 ε 2 e0 2 + 4εr 3 e0 2 + 4(1 − G0 M0 ε)e0 2 r 2 − 8rG0 M0 e0 2 + 16πG0 Q0 2 4r 2 (εr + 1)2 e0 2 r 6 ε 4 e0 2 + 3r 5 ε 3 e0 2 + 3r 4 e0 2 − 4r 3 e0 2 G0 M0 + 48r 2 πG0 Q0 2 ε 2 + 48εr πG0 Q0 2 + 16πG0 Q0 2 e0 2 π Q0 2 G0 (εr + 1)3 Q0 4πe02 e 2 (r ) r2 . Integration constants: G0 , Q0 , e0 , and ε Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 43 / 50 Examples V Reissner Nordstrom black hole Classical limit: f (r )|ε→0 = 1 − 2G0 M0 4πG0 Q02 + 2 2 r r e0 , (43) e 2 (r )|ε→0 = (4π)2 e02 (44) 4πQ0 . r2 ε parametrizes scale dependence of the couplings (again) q(r )|ε→0 = Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 (45) 44 / 50 Examples V Reissner Nordstrom black hole Asymptotics: +r →0 Rαβγδ R αβγδ = 27 7 G02 π 2 Q04 + O 1/r 7 4 8 e0 r . (46) ⇒ Singularity persists +r →∞ line element 1 2 ds∞ = − dt 2 + 4dr 2 + r 2 d θ 2 + r 2 sin2 θd φ2 4 . ⇒ like global monopole Z Q= (still charge is unchanged) q Q0 F µν 2 d z γ S2 nµ σν 2 = 2 , e e0 ∂Σ Benjamin Koch (PUC, Chile) Scale Setting (47) (48) Sussex, January 2015 45 / 50 Examples V Reissner Nordstrom black hole f (r ) for var. ε Horizons r± (M0 ) for var. ε Observe that cosmic censureship unchanged √ Q0 M0 = 2 π e0 G0 Benjamin Koch (PUC, Chile) Scale Setting , (49) Sussex, January 2015 46 / 50 Examples V Reissner Nordstrom black hole Temperature slightly increased for ε 6= 0 ∼ ε 2 s G0 G0 M0 2 + M0 T = T0 + ε 2 s 8π Benjamin Koch (PUC, Chile) G0 e0 2 G0 M0 2 −4πQ0 2 e0 2 G0 e0 2 G0 M0 2 −4πQ0 2 e0 2 Scale Setting − 4π Q0 2 2 e0 + O(ε 3 ) . (50) + G0 M0 Sussex, January 2015 47 / 50 V Summary V Summary Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 48 / 50 Summary Context: Self-consistent quantum backgrounds δΓk /δφi = 0 Problem: Scale setting and consistency Proposal: Self-consistent scale setting k → k(x) δΓk /δφi = 0 and δΓk /δk = 0 Examples: Studied φ4 , and de Sitter-, RN black holes Outlook: Hopefully to be applied in many more contexts ;-) Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 49 / 50 Summary Thank you Benjamin Koch (PUC, Chile) Scale Setting Sussex, January 2015 50 / 50
© Copyright 2026 Paperzz