ThompsonDonald1983

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE
A MICROPROCESSOR CONTROL SYSTEM
FOR UHF TELEVISION TRANSMITTERS
A graduate project submitted in partial satisfaction
of the requirements for the degree of Master of Science in
Engineering
by
Donald Richard Thompson II
May
1983
The Graduate Project of Donald Richard Thompson II is approved:
Professor Sharlene Ka z
Chairman
California State University, Northridge
ii
In memoriam:
Anthony Gregg Thompson
The student would like to acknowledge the expert advice and
enthusiastic cooperation of Mr. Gene Harris, Chief Transmitter
Engineer of KWHY-TV.
iii
TABLE OF CONTENTS
DEDICATION AND ACKNOWLEDGEMENTS
iii
LIST OF TABLES
vii
LIST OF FIGURES
viii
ABSTRACT
X
Chapter
1
INTRODUCTION
1.1
1.2
2
Objectives . . . . . . . . . . . . . . . .
Typical UHF Television Transmitter Layout
1
PRELIMINARY CONSIDERATIONS FOR CONTROLLER DESIGN .
7
2.1
2.2
2.3
2.4
2.5
2.6
2.7
3
1
Definition of Tasks
I/0 Requirements . . . .
A/D Conversion Technique
Software Development and CPU Selection .
CRT Display . . . . .
Keyboard . . . . . . .
Additional Hardware
INTERFACE HARDWARE . . . . . .
Reserved I/0 Port Assignments
PWM Multiplexer . . . . . . .
Pulse Width Modulator . . . . .
Annunciator Panel Interface . .
I/0 Ports and Port Select Logic
3.5
Frequency Meter Interface
3.6
3.7 Alarm Interface
3.8 EBS Interface
Printer Interface
3.9
3.10 Relay Interface
3.11 Exciter Interface
3.12 Power Supply . . .
3.1
3.2
3.3
3.4
4
FLOW CHARTS OF MAJOR SOFTWARE BLOCKS
4.1
4.2
4.3
4.4
Initialization Routine . . .
Conversational Mode Warm Start Entry Point
Automatic Control Mode .
Subroutine PONE
iv
2
7
9
9
12
15
16
16
17
17
18
18
21
21
26
28
29
30
30
33
34
36
36
38
40
40
TABLE OF CONTENTS (continued)
Chapter
4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
5
36
FLOW CHARTS OF MAJOR SOFTWARE BLOCKS (continued)
Subroutine BEAM
Subroutine ANNP
Subroutine EBS .
Subroutine DATAl
Subroutine DATA2
Subroutine METER
Subroutine STATUS .
Subroutines VFRQ/AFRQ .
Interrupt Service Routine
Subroutine PTWO
Diagnostic Mode . . . .
EPROM Program . . . . .
40
41
41
41
41
50
50
54
54
58
58
61
CONTROLLER OPERATING PROCEDURES
5.1
5.2
5.3
5.4
64
64
65
65
66
Command Summary . . . .
Initialization . . . . .
Control Mode Operation .
Diagnostic Mode Operation
67
REFERENCES
APPENDIX
A
IEEE S-100 BUS SIGNAL DEFINITIONS
69
B
SOFTWARE FLAG DEFINITIONS
74
B.l
B.2
B.3
C
74
74
75
ERFS Flag Byte .
MEST Flag Byte
MDST Flag Byte .
76
HARDWARE DEFINITIONS SUMMARY
C.l
C.2
C.3
C.4
C.5
76
76
76
EPROM/RAM Memory Map .
I/0 Port Assignments .
TA-55 NV Hardware Data
Keyboard Connections .
Printer Connections
D
EPROM PROGRAM LISTING
E
CONTROLLER PROGRAM LISTING
77
77
. .
v
78
....
86
TABLE OF CONTENTS (continued}
APPENDIX
F
PWM COMPONENT SELECTION AND CALIBRATION
F.l
F.2
F.3
Definitions and Analysis
Component Selection . .
Calibration . . .
vi
149
149
149
150
LIST OF TABLES
Table
1.1.1
Desired Controller Functions
2.2.1
I/0 Specifications
10
2.3.1
Meter Protocol . .
12
3 .1.1
Reserved I/0 Port Addresses
17
3.5.1
Component Values . . . . .
25
3.6.1
Frequency Meter Addressing
26
vii
2
LIST OF FIGURES
Figure
....
....
....
2.3.1
Example PWM Sampling Routine
3.2.1
PWM Multiplexer
3.3.1
Pulse Width Modulator
3.4.1
Annunciator Panel Interface
22
3.5.1
I/0 Port 3 and Output Port 2 .
23
3.5.2
Port Select Logic
3.6.1
Frequency Meter
3.7.1
Alarm Interface
28
3.8.1
EBS Interface
29
3.10.1
Relay Interface
31
3.10.2
Input Interface
3.11.1
Exciter Interface
33
3.12.1
Power Supply .
35
4.1.1
Initialization Routine .
36
4.2.1
Warm Start Entry Point .
4.3.1
Control Mode .
4.4.1
Subroutine PONE
4.5.1
Subroutine BEAM
4.6.1
Subroutine ANNP
4.7.1
Subroutine EBS
4.8.1
Subroutine
4.9.1
Subroutine DATA2
....
.. ....
Interface
....
13
19
20
24
. . . .
. . . .
27
32
....
.
39
42
43
....
....
..
DATAl . .
44
46
.....
47
48
49.
viii
LIST OF FIGURES (continued)
Figure
4.10.1 Subroutine METER .
.
51
....
4.11.1 Subroutine STATUS
....
53
55
4.12.1 Subroutine VFRQ
.....
4.13.1
Interrupt Service Routine
4.14.1
Subroutine PTWO
59
4.15.1
Diagnostic Mode
60
4.16.1
EPROM Routine
62
4.16.2
EPROM Console Output
63
E.1
Example Log Format .
105
ix
56
ABSTRACT
A MICROPROCESSOR CONTROL SYSTEM
FOR UHF TELEVISION TRANSMITTERS
by
Donald Richard Thompson II
Master of Science in Engineering
This graduate project describes the analysis and design of a
microprocessor control system for UHF television transmitters.
The
controller is designed specifically for the transmitter facility of
KWHY-TV at Mount Wilson, California.
Hardware includes a single-board computer, video display, printer,
power supply, and the appropriate supplementary I/0 and interfacing.
Software is written in Intel 8080 assembly mnemonics, with additional
Z80 instructions inserted to utilize Mode 2 interrupt structure.
Code
resides in 8K of EPROM, with data storage provided by lK of RAM.
System features include automatic logging of meter data, postfault restoration of carriers, and continuous monitoring of selected
transmitter parameters.
A diagnostic software mode is provided to
assist in performance of routine transmitter maintenance.
X
CHAPTER 1
INTRODUCTION
1.1 Objectives
High power UHF television transmitters are often situated in remote locations and manned by a single operator.
This operator must
periodically check and log the transmitter operating parameters, perform routine maintenance, and be prepared to rapidly diagnose and
correct any abnormal conditions or faults.
Modern television transmitters are generally well-designed and
reliable, and incorporate many automatic control features to prevent
any serious transmitter damage in the event of a catastrophic fault.
These control features generally do not assist the operator in restoring normal transmitter operation after an automatic shutdown or utility
power failure.
Some transmitters provide no warning signals of margin-
al operating conditions.
A lack of audible alarms results in the
possibility that the operator, while engaged in activities away from
the transmitter control point, may be temporarily unaware of such
serious events as off-frequency operation, improper power output, or
even complete loss of the aural or visual carrier.
The objective of this project was the design and construction of a
microprocessor controller for the UHF transmitter of KWHY-TV, at Mount
Wilson, California.
The controller was to include the capabilities
listed in Table 1.1.1.
1
Table 1.1.1
Desired Controller Functions
1. Automatic logging of FCC-required parameters {visual/
aural power, klystron beam voltage/current, deviation
from assigned carrier frequencies, etc.).
2. Continuous monitoring of critical transmitter parameters, with CRT display of the nature and duration of
irregularities.
3. Automatic restoration of carriers after a utility
power failure or correctable fault.
4. Transmitter control and observation of operating
parameters from a centralized point.
5. Diagnostic subroutines to assist in maintenance of
transmitter subsystems.
Actual measurement of FCC log data is performed by existing KWHY
equipment, which has been subjected to type-acceptance and proof of
performance evaluation.
The controller function is to read the data
and print it in an acceptable log format.
The controller also must
interpret the data to determine if it lies within an acceptable range.
Other system inputs are obtained directly from the transmitter hardware.
While the controller is specifically for the Townsend Associates
TA-55 NV transmitter, an attempt has been made to make the software and
interface devices as general in nature as possible.
1.2 Typical UHF Television Transmitter Layout
A typical UHF television transmitting facility will include the
following subsystems:
1. Microwave receivers and antennas
Program information is generally received at remote
3
transmitter sites by means of primary and secondary studiotransmitter links (STL).
Automatic switching to the backup
link upon failure of the primary is desirable.
In the event of
a complete loss of program feed, automatic switching to an al=
ternate video source (test pattern generator) would prevent the
potential difficulties associated with prolonged transmitter
operation at a reference black (high power) level.
These auto-
matic functions have not been included in this project, as they
may be implemented more efficiently by discrete logic.
2. Processing amplifiers, correctors, and video IF unit
The processing amplifier allows the operator to set video
waveform parameters (AGC, sync, burst, chroma, setup) to their
proper values.
The processing amplifier and phase and linear-
ity correctors are used to precorrect the video signal for
subsequent distortion encountered in the video exciter and the
klystron power amplifier.
The processed video is applied to
the video IF unit, where low level DSB modulation is accomplished at a suitable IF.
The DSB signal is processed through
a VSB filter which properly shapes the upper and lower sidebands.
KWHY-TV also uses encoding devices prior to the aural
and visual IF units to generate signals for over the air subscription television (STV).
Incidental phase modulation (ICPM)
correctors may also be inserted in the video path.
3. Upconverter unit
The upconverter shifts the visual and aural IF signals to
their final carrier frequencies, prior to input to the klystron
power amplifiers.
KWHY-TV broadcasts on Channel 22; the
4
visual and aural carrier frequencies are 519.25 MHz and 523.75
MHz, respectively.
4. Klystron power amplifiers
Modern vapor-cooled klystron amplifiers (such as the
Varian 950 series) are capable of delivering in excess of fifty
kilowatts output with input drive of less than one watt.
ciency is on the order of thirty percent.
Effi-
High voltage and
current levels are required to supply the klystron, and these
levels must be periodically monitored to verify proper operation and to satisfy requirements of the FCC.
As supplied by the manufacturer, the amplifier system
normally includes devices designed to remove power from the
klystron if certain operating limits (beam voltage/current,
focus, temperature, VSWR, etc.) are exceeded.
Interlocks are
provided to insure that cooling water is present, and to prevent operator contact with high voltage points inside the
enclosure.
Circuitry is provided for control of modulating
anode bias voltage and magnet current, and to display such
parameters as water flow rate, heater and body current, and
beam voltage and current.
5. Limiter/compressor and aural IF unit
Audio program feed from the STL may be processed through
a limiter/compressor to insure that a suitable level is present
at the input of the aural IF unit.
The IF unit provides an
adjustable attenuator and a high pass filter to produce the
standard 75 microsecond preemphasis characteristic.
cessed audio is applied to an FM modulator.
The pro-
The FM signal
5
modulation (at the output of the upconverter) is defined to be
100 percent at ~25 kHz deviation.
Calibration of the FM modu-
lation monitor is generally accomplished by the Bessel null
method, utilizing a spectrum analyzer and crystal-controlled
audio oscillator of 10.396 kHz.
6. Diplexer, antenna, and dummy load
The outputs of the aural and visual klystron amplifiers
are combined in the diplexer to produce the composite television signal.
The diplexer inputs and outputs are routed
through a waveguide patch panel, which allows the signals to be
transmitted to either the broadcast antenna or to a watercooled dummy load for testing or power calibration purposes.
7. Heat exchanger
The heat exchanger system pumps distilled cooling water
to the klystrons, magnets, and dummy load.
The return flow is
cooled and recirculated.
8. Peak detectors and power meters
Samples from the klystron outputs are supplied to RF peak
detectors, which in turn drive ordinary ammeters as an indication of relative power output.
Calibration is accomplished at
values of 80, 100, and 110 percent of authorized power output,
by means of careful measurements conducted with standard input
signals, dummy load, and RF wattmeter.
Commonly~
a series
potentiometer is used to set the ammeter scale at the measured
100 percent output.
External markings are placed on the meter
face to indicate the measured 80 and 110 percent points.
The
external marks typically do not agree with the linear ammeter
6
I
scales due to the nonlinear characteristics of the RF peak
detector.
9. Monitoring instruments
All broadcast television facilities include certain
instruments to monitor the quality of the transmitted
sign~l.
FM deviation monitorss frequency monitors, spectrum analyzerss
vectorscopes, and high-quality demodulators and waveform monitors are essential equipment.
Additional gear will often be
present, such as an FM modulation analyzer, distortion analyzers and line frequency monitor.
10. Power supplies
High voltage klystron power supplies are often the most
troublesome portion of the transmitting system, particularly
at installations located at high elevations.
Switching is
typically accomplished by means of a three-phase vacuum contactor at the regulated 440 volt input to the high voltage
transformer.
The transformer output commonly exceeds 20 kilo-
volts, and feeds a three-phase full-wave rectifier system and
single section choke-input filter.
A step-start circuit is
often employed to temporarily insert a resistance in series
with the filter capacitor, to limit the large initial surge
current.
The high voltage conductors utilize special insula-
ting materials and are heavily shielded.
The conductors are
terminated with special stress relief cones and wrappings to
reduce corona.
The high-voltage enclosures must be kept as
clean and dust-free as possible, if arcing is to be prevented.
'
CHAPTER 2
PRELIMINARY CONSIDERATIONS FOR CONTROLLER DESIGN
2.1
Definition of Tasks
The first consideration in controller design is: how many tasks
must the controller perform, and how rapidly must they be accomplished? Section 1.1 listed five primary controller objectives, which are
considered individually below.
1. Automatic logging functions
FCC regulations permit a maximum interval of three hours
between log entries of transmitter parameters.
The minimum
possible interval between entries will be limited by the speed
of the printer mechanism, if the controller is not required to
continuously store the accumulated data.
A default logging
period of one hour has been chosen here, with the option of
operator selection of a shorter period by keyboard command.
2. Continuous monitoring of transmitter parameters
The highest priority controller inputs are the signals
indicating the status of the klystron beams.
If the beams are
down, obviously all other inputs are irrelevant.
The beam
status signals should therefore be the most frequently-checked
inputs.
A meter-reading scheme has been selected in which the
analog meters drive voltage-controlled pulse-width modulators
(PWM).
The controller determines the meter reading by measur-
ing the duration of the PWM output pulses.
7
Since several
8
meters must be read, a system has been implemented in which
the selected PWM signal is periodically sampled, and the interval between samples is primarily occupied by checks of the
beam status signals.
The arbitrary design goal was that all
meters should be read and interpreted at intervals of less than
one second.
To simplify the software and maintenance of the
controller, meter-reading functions are suspended during data
transfer to the CRT or printer.
A loss of beam signal will
interrupt data transfer until two automatic attempts to restart
the beams have been accomplished.
3. Automatic restoration of carriers
Upon a loss of beam signal, the controller will sample the
utility power line to determine if the beam loss is due to a
power failure or system fault.
In the event of a system fault,
two attempts will be made to restart the beams.
If a power
failure has occurred, the controller will determine when power
has been restored and wait a suitable period to allow for the
dissipation of line transients before attempting to restart the
beams.
4. Transmitter control from a central point
Controller software is designed to include three modes:
conversational, control, and diagnostic.
The conversational
mode allows the operator to turn the transmitter on and off,
start or drop the klystron beams, set the clock, and display
current meter readings or transmitter status on the CRT display
or printer.
The control mode is the normal operating mode
where the controller continuously checks the input signals for
9
irregularities, signals alarm conditions, prints log data, and
attempts to restart the beams if a failure occurs.
In the
control mode, the controller ignores all keyboard entries except for the log data function and the command to exit from the
control mode.
The diagnostic mode allows execution of specific
stored subroutines to assist in the adjustment of relay timing.
5. Diagnostic subroutines
The controller diagnostic subroutines will be dependent on
the specific transmitter hardware.
This project includes a
routine to measure the opening and closing of four sets of
time-delay relay contacts.
2.2
I/0 Requirements
The second controller consideration is: how many lines of input
and output are required? The necessary I/0 lines have been specified
and assigned to 8-bit ports as indicated in Table 2.2.1.
Several spare lines have been reserved in anticipation of software
modification and future expansion.
Note that the four address lines of
Output Port 2 serve a dual purpose: selection of one of sixteen PWM
inputs from analog meters at line 4 of Input Port 2, or the selection
of 4-bit BCD data from one of eight frequency meter digits on lines 0-3
of Input Port 2.
This permits the frequency meter to be read while
simultaneously sampling the PWM output of the selected meter, providing
more rapid system throughput.
2.3 A/D Conversion Technique
At this point, the sampling period of the meter PWM inputs should
be considered.
A stable sampling period should be employed, small
10
Table 2.2 .1
I/0 Specifications
Line
--0
1
2
3
4
5
6
7
Line
--0
1
2
3
4
5
6
7
Line
--0
1
2
3
4
5
6
7
lnQut Port 1 (7EH)
visual beam status 1=UP
aural beam status 1=UP
utility power
1=UP
CTV/STV mode
1=STV
visual annunciator 1=0K
aural annunciator 1=0K
O=TEST
EBS test
diagnostic input
OutEut Port 1 (7EH)
exciter reset
exciter off
transmitter on
visual beam on
aural beam on
beams down
transmitter off
amplifier reset
1=RESET
1=0FF
1=0N
1=0N
1=0N
1=00HN
1=0FF
1=RESET
lnQut Port 2 (01H}
A frequency meter
B BCD data input
C 1 i nes
0
PWM signal in
diagnostic input
diagnostic input
diagnostic input
OutQUt Port 2 {02H)
A address data to
B frequency meter
C and meter select
0 interfaces
major alarm
minor alarm
barker cart
STV encoder reset
1=CHANGE
1=CHANGE
1=CHANGE
1=RESET
lnEut Port 3 {03H)
spare
spare
spare
spare
spare
spare
spare
spare
OutQUt Port 3 {03H}
CTV/STV mode select 1=STV
spare
spare
spare
spare
spare
spare
spare
enough to provide adequate resolution of the PWM pulse duration.
The
interrupt-driven clock has been selected to provide regular updates at
a period of ten milliseconds.
If the various PWM pulse widths are
properly selected, the controller can determine meter readings by a
simple binary to decimal conversion of a stored count.
This implies a
certain complexity of the meter/PWM interface hardware, but this
approach was considered preferable to software manipulation of data
which has originated from a nonlinear analog source.
11
As the acceptable range of a single meter reading is small, software may be implemented to allow high resolution of readings which fall
within that proper range.
Assume that the PWM provides pulses which
may range from 50 to 100 counts of the sampling period per reading, for
a 2:1 ratio.
A one percent resolution for power meters is sufficient,
since the analog meter has only three calibration points.
The follow-
ing process would be followed to allow readings to be obtained ranging
from 70 to 120 percent:
1. Lines 0-3 of Output Port 2 transmit the proper meter address
to the PWM multiplexer, which selects the desired PWM power
meter input.
2. After a short delay, the proper PWM signal appears at line 4
of Input Port 2.
3. A count of 20 (0014H) is stored in a register pair.
The con-
troller waits until a new pulse appears, then samples the
signal at a fixed rate and increments the register pair with
each sampling until the pulse is completed.
If 80 samplings
occur, the register pair will contain a count of 100 (0064H).
4. Power meter alarm limits have been defined here as 95 and 105
percent.
Thus, if the final register pair count is less than
0060H, or greater than 0068H, a minor alarm is initiated and
data is sent to the CRT to indicate which meter has provided a
bad reading.
A listing of the selected address, initial count,
alarm limits, decimal range of measurement, and resolution for
six meters is indicated in Table 2.3.1.
The meter-reading process should be started upon conclusion of a
12
clock update, and must conclude prior to the next update.
Since the
clock interrupts occur at an interval of 10 milliseconds, the PWM
repetition rate has been selected as 330 Hz.
With a 90 percent duty
cycle limit, the maximum pulse duration is 2.7 milliseconds.
With the
2:1 ratio assumed, the minimum pulse duration is 1.35 milliseconds.
The sampling period must be 27.0 microseconds to allow 100 samples
during the maximum pulse.
A flow chart and 8080 assembly listing of a
27 microsecond sampling routine are shown in Figure 2.3.1.
Table 2.3.1
Meter Protocol
Meter
Address Count Range Alarm Limits Resolution
70-120 0060-0068H 1.00%
CTV Visual Power OOH 0014H
02H 0014H
Aural Power
70-120 0060-0068H 1.00%
Visual Kilovolts 03H OOAOH 21.0-26.0 OODC-OOFAH 0.10 KV
04H 0226H 6.0-6.5 0262-0280H 0.01 Amp
Visual Amps
05H 05B4H 15.1-15.6 05EB-0613H 0.01 KV
Aural Kilovolts
06H 0082H 1.8-2.3 OOAF-OODCH 0.01 Amp
Aural Amps
2.4 Software Development and CPU Selection
The CPU hardware should be chosen with regard to the available
software development tools.
The equipment available to the student
.for this project consisted of:
1. IMSAI S-100 mainframe with 36K RAM and 8080 CPU
2. Micropolis double-density
5-~
inch disk drive and controller,
with Micropolis Disk Operating System (MOOS) Version 4.0
3. SSM Microcomputer Products PB1 EPROM Programmer
4. Spectronics PE-14T EPROM Erasing Ultraviolet Lamp
5. Polymorphic Systems Video Terminal Interface
6. Radio Shack Line Printer VIII
13
p '
11/UEIIIIII'T' .,.
CNEC.K SEAitiS
lll'ljiS'n. 1'1fll
An D£1.-tY
YU
LBLA IN PORT2
ANI 10H
JNZ LBLB
IN PORTl
ANI 03H
CPI 03H
JNZ BEAM (Restart beams)
JMP LBLA
LBLB INX D
(5)
LXI H,ERFS (10)
MOV A,M
(7)
ANI 7FH
(7)
JNZ GOOF (10) (Jump on error)
IN PORT2
(10)
ANI 10H
( 7)
JNZ LBLB
(10)
66 clock cycles per loop
clock
= 2.4576
loop interval
Figure 2.3.1
MHz
= 26.9
usee
Example PWM Sampling Routine
14
With the given software development tools, it was apparent that
the chosen CPU had to execute code generated by MOOS from Intel 8080
assembly language mnemonics.
However, the Zilog Z80 CPU has the
advantage of Mode 2 interrupt structure, while retaining the ability
to execute 8080 code.
bly language.
It was decided to use a Z80 CPU and 8080 assem-
The appropriate Z80 code required to initialize the
Mode 2 interrupts could be inserted into the 8080 assembly language by
means of Define Byte (DB) mnemonics.
The memory capacity of the software development system is also an
important factor.
While it was anticipated that the final controller
code would fit into an 8K space, the assembly language required to
generate that code requires a much larger memory space.
The 36K de-
velopment system used was unable to accommodate both the MOOS and the
entire assembly language program, so that multiple disk files were
necessary.
Complexity arises when software must be debugged in blocks
which are indistinct, as it is often necessary to call a subroutine
which is not on the same disk file, or has not yet been written.
This
difficulty may be overcome by several methods, but should be taken
into consideration in the early stages of software development.
The software designer may save time by using or modifying available public domain software.
Several portions of the operating system
for this project were adapted from the IMSAI 8080 Self-Contained
System, Revision Two. 1 The status of much available software is unclear, however, and the designer of software for resale must be aware
1
This software is a modified version of a package written by
Microtek for Processor Technology of Berkeley, California.
15
of the legal implications of adapting the work of another person.
It was decided to utilize a commercial CPU board for the S-100
bus, so that it could be initially tested in the IMSAI mainframe.
The
SBC-100 Single Board Computer, manufactured by SD Systems, was an
acceptable choice.
The SBC-100 includes the following features:
1. Z80 microprocessor
2. 1K RAM
3. 8K EPROM capacity (using 2716 EPROMs)
4. synchronous/asynchronous I/0 interface
5. software programmable baud rate
6. 8-bit input and output ports (one each)
7. four channel counter/timer (CTC) using the Mostek MK3882
8. four maskable vectored interrupts, one non-maskable interrupt
The CTC may be used to generate both the 16X USART clock and the
periodic interrupts for the real-time clock.
The USART may simul-
taneously input serial data from the keyboard and output serial data to
the printer.
The 1K RAM is sufficient for the stack and storage re-
quirements of the controller.
2.5
CRT Display
The video interface board was desired to have two particular char-
acteristics: a hardware cursor (to eliminate driver software), and I/0
mapping (to facilitate initial testing in the IMSAI mainframe, which
already contained a memory-mapped video board).
A suitable product was
obtained in the SSM Microcomputer Products VB2 Video Board, which includes the following features:
16
1. 64x16 upper case display
2. hardware cursor, line feed, carriage return, backspace, and
clear-screen functions
3. selectable black on white or white on black display
4. full-interlace scanning
5. adjustable margins and character widths
6. full duplex interface
7. driver for external tone signal
8. one 8-bit input port
2.6
Keyboard
The George Risk Industries GRI 756 Keyboard was selected from
the available spectrum of keyboard products.
The serial output option
was implemented by adding a USART and baud rate generator to the components supplied in the kit.
The serial option was preferred due to
the high ambient RF levels at the transmitter site, and the necessity
of a long cable between the keyboard and controller enclosures.
The
data rate was selected as 300 baud.
2.7 Additional Hardware
It was decided to postpone design of the power supply until all
system components were fully specified.
Likewise, design of the re-
maining I/0 interfacing was considered a trivial task which could be
postponed until the controller software was approaching final form.
CHAPTER 3
INTERFACE HARDWARE
3.1
Reserved I/0 Port Assignments
With the selection of the SBC-100 and VB2 boards, certain I/0 port
These assignments are listed in Table 3.1.1.
assignments are reserved.
Table 3.1.1
Reserved I/0 Port Addresses
CTC ................... 78,79,7A,7BH
USART ....•.................. 7C,7DH
I/0 Port 1 ..................... 7EH
VB2 Status ..................... OOH
VB2 Data ....................... 01H
Input Por.t 2 ................... OlH
SBC-100 Handshake .............. 7FH
I/0 Port 3 ..................... 03H
Output Port 2 .................. 02H
Note that the address for Input Port 2 is not the same as the
address of Output Port 2.
as Input Port 2.
This is due to the use of the VB2 input port
Output to address 01H is reserved for transmission of
data to the video display.
Users of older S-100 bus boards should note that the newer IEEE
Standard CPU boards provide I/0 adressing on the LSB of the address bus
only, while some older accessory boards expect I/0 addressing on the
MSB of the address bus.
cation.
Such boards are not compatible without modifi-
An example is the Polymorphic Video Terminal Interface board
used in the software development system for this project.
Mirrored I/0
addressing is an old IMSAI/80890 convention in which I/0 addresses were
17
18
supplied redundantly on the MSB and LSB of the address bus, while newer
IEEE Standard boards use the MSB to provide a byte count to peripherals
during Z80 block move I/0 instructions.
3.2
PWM Multiplexer
A schematic of the PWM multiplexer is shown in Figure 3.2.1. -This
device allows one of sixteen PWM signals to be selected by lines 0-3 of
Output Port 2 (02H).
The selected signal is applied to line 4 of Input
Port 2 (01H).
3.3
Pulse Width Modulator
The pulse width modulator of Figure 3.3.1 is driven by an analog
signal to produce pulses ranging from 1.35 to 2.7 milliseconds.
pulse repetition rate is 330 Hz.
The
The input stage is a Class 2E 2 low
pass filter with gain -R2/R1, cutoff of 20 Hz, and damping factor of
0.707.
The next stage is a level translator which drives the control
input of the pulse width modulator.
Potentiometer R8 adjusts the repe-
titian rate.
For linear input signals, R1 may be a fixed resistor.
For
non~
linear input signals from power meters, the interaction of R1, R5, R6,
and R7 allows the monostable portion of the 556 timer to be operated in
the nonlinear region (near the control voltage limits) for best matching of the meter characteristic.
See Appendix F for additional data on
component selection, and Table 3.5.1 for a list of component values.
2c.s. Lindquist, Active Network Design with Signal Filtering
Applications, Steward & Sons, Long Beach, 1977, p. 456
19
,.
IS
/3
I~
SP.
II
SP.
/o
'
SP.
SP.
a
SP.
7
IIUP IIIIIPS
'__;_
AU/l I<V
s_:!
Vts AMf'J
4
Vl.s KV
3
J3
74C ts-o
~
s
VIS ~WR
,,
2o
Ul
C.TV VIS PWR
",.,
7
I
32
l/
:l ___i.
AUR P~lt
STV
~+SV
I
¢ ___!.
_:!.
16
/0
IS
,!!.
14
PWM
,_ -.!!
LJIIe¢
LINE/
13
£/1/E ~
£/IIE3
-.a=-
1'5V
c~
SC,.IK
IWPI/T
/OK
1\
Figure 3.2.1
.... LINE 4
1.N:Z2U
PWM Multiplexer
Pt~RT
:Z
}
OUTPUT
PoRT~
(¢'-II)
20
@ •
(see Table 3.5.1 for components)
~ESIGN Fr;uttTtuls:
W,
2
(
~ c, ~~~ Ca) ~
~ = ~ (c2;c,) 12 [(A'z/~)~(!rA'~JR,)+(A>.f~/~J
v+ =7i
~
11211!
R,,f.,
{Rt+
V,
ll,
+ R4
vs
J,f,)C,
'·""
Figure 3.3.1
Pulse Width Modulator
21
3.4 Annunciator Panel Interface
The visual/aural amplifiers of the Townsend Associates TA-55 NV
include a panel of supervisory lights which indicate amplifier status
or beam trip conditions.
The annunciator panel interface provides an
active low signal to line 4 or 5 of Input Port 1 if any of the selected
annunciator lamps are activiated.
The interface power source is deriv-
ed from the internal +28V supply of theTA-55 NV.
The schematic of the
annunciator panel interface is shown in Figure 3.4.1.
3.5
I/0 Ports and Port Select Logic
I/0 Port 1 is included in the hardware of the SBC-100 CPU board.
Input Port 2 is obtained from the keyboard input port included in the
VB2 video interface board.
I/0 Port 3 and Output Port 2 are wire-
wrapped on a custom S-100 prototype board, along with the PWM
multiplexer and certain other components.
The schematic of I/0 Port 3
and Output Port 2 is indicated in Figure 3.5.1.
Select logic is shown in Figure 3.5.2.
The additional Port
22
AIIIF'LI t:t£/t
1' Jl
ANNU/JCIATO/l
v
/0()/(
Lllfi1P5
IN7~11f
/()() /(
1/
f:J.cw"
Ul:l
II
4078
13
'
/()
OUTPUT To
!AlP/IT
po~r
4
o~S
'-INE
&.'
t
/()(} /(
~
=
/OWNSEIJD
A~soC. TASS NV
'TERtttltiiAL $P~~I,ICArloNS
Figure 3.4.1
Annunciator Panel Interface
23
+~V
14
('ts)
S-too
1JATA
BUS
!>I~
(-II)
lli:l
.,,
~I3
N~J
IN
( )
(1:1.)
('13)
{43)
IN'P3 ~Et.~CT
(4t.)
.,., )
(
3
4
,'
DII
8~1~
/0
{)).
2I~
1JI!r
~r"
Zli7
/7
II
19
:;
,,
13
/J.
21
5-/CO
lJtJ5
~Af"A
aur
J)O?
"
INPUT
P"~T
3
{¢3H)
~s
'D"
rn
1-
irs
(3&) 1)0 I
(il) ;1)0~
(i'f) J)Q3
(31) JJ-' ~
(3'1) 1)05
(4o) t>o
(9o) D07
.
:u
'.f.- '7-f.OO
(:SG.)
.D/
D:l
ll3
J).f.
SN!'P
(79) l'D8ul
]j.;
+
"r
~1
t-L-
"s
7
9').1~
""
U3
I
J-LrL-
OUTPUT
~
PoRT 2.
rLL~
(¢:1.11)
J.!._
~0
::•
21
14
J::.
~
oun 5ELECT
JJj
":"
-.fv
21 ,tf
.z~l
~~
._.!,
....__£
7
921~
,,
'I
U4
/8
:lo
(45) souT
Figure 3.5.1
...!..-~
~l)
rLLr!Zr1L-
~
'J:J
14-
0117'3 SE4ECT
~D
.:1
131
rt
I/0 Port 3 and Output Port 2
OUTPU'T
J'oRr 3
(¢311)
24
(See Table 3.5.1 for components)
A'7
A G.
A5"
A~
113
...
U98
.f
AI
iNP.3 SELECT
(tJ3 11)
G.
At/
U9C
S·too
sus
our.:.
JEL.fCT
(?~It}
9
/()
I
Figure 3.5.2
'"
U7B
/3
Port Select Logic
OUT3 SE.LECT
(¢2H)
25
Table 3.5.1
Component Va 1ues
U6
U7
U8
U9
U10
Ull
74S260 Dual 5-Input NOR
7420 Dual 4-Input NAND
7402 Quad 2-Input NOR
7404 Hex Inverter
LM358 Dual Op-Amp
XR-556 Dual Timer
C1
C2
C3
C4
C5
C6
0.68 uF
0.0033 uF
0.1 uF
0.01 uF
0.015 uF
0.1 uF
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rll
10K pot
select - see Appendix F
33K
4. 7K
10K pot
10K pot
10K pot
50K pot
4. 7K
1K
2.2K
01
1N34A
26
3.6
Frequency Meter Interface
The Frequency Meter Interface of Figure 3.6.1 allows BCD data from
the Belar TVM 3 Frequency Monitor to be scanned by the controller.
Digit address data is supplied to the interface by Lines 0-2 of Output
Port 2.
The selected data is read in on Lines 0-3 of Input Port 2.
The addressing scheme is indicated in Table 3.6.1.
Table 3.6 .1
Frequency Meter Addressing
Output Port 2 Data
Input Port 2 Data
XX XXX0 0 0
Line 0: Visual Sign Bit
X XXXX0 0 1
Lines 0-3: Visual KHz
XXXXX0 1 0
Lines 0-3: Visual .1 KHz
X X X X X 01 1
Lines 0-3: Visual .01 KHz
X X XXX1 0 0
Line 0: Aural Sign Bit
Lines 0-3: Aural KHz
X X XX X1 0 1
XXXXX1 1 0
Lines 0-3: Aural .1 KHz
XX XX X1 1 1
Lines 0-3: Aural .01 KHz
Power for the interface is taken directly from the TVM 3 unit.
See Section 4.12 for a flow chart of software subroutines VFRQ and
AFRQ which read the TVM 3 frequency data.
27
p •
CoMJIEcrloNS: IJELII/t TV/113 F!iEt;UENCY /Y1PIIITriR
Zl151'~~y
/3
'f
VIS.
,,
HUll.
IS
'/
VIS.
,,
T'fN.
Jo
15
17
IS
'/
VIS.
/P
OHf'.
I'
{
{
IS
I -+ "+"
0
... ,~,
~s
cs
-
85'
AS
~4
C4
-
84-
A+
P3
1
IM~
/0
Hvll.
c-.
{
Ill
II
=
=
-
IS"
10
#PTE: Sttj/11
(tfG 19:1
8.3
A3
15'
'I
,,
/0
15
,,'
/0
1J/
Au~.
ONE.
Ct
{
81
AI
II.
//,
VIS. St,.H
''
1
/lt.JTI. SltiN
3
'
13
13
o!IT1'UT
'Po 1fT' I
$'
/J
r~·
+SV
I
14
.
:1
I
•
74!:5151
"'1T '
a
I
, a 'II
1-#LS IS!
"P '.
1/ •
II S
,
J : f
HI
7~LS
''P'
I
J;:
1..
'
16'1
,. ,
5
I~
7-ILS IS/
t'f7
~
"' " s
tjtflJ
ADR4
J. 111/E I
/IDil,
J.tiiE;
Ill/It/
~
l
Figure 3.6.1
Frequency Meter Interface
28
3.7 Alarm Interface
The Alarm Interface of Figure 3.7.1 allows alarm functions to be
set/cleared by positive pulses from Lines 4-5 of Output Port 2.
An
active alarm latches relay contacts which complete an external 120 VAC
circuit.
The alarms may be manually cleared by a reset pushbutton.
lfl4ool
r I:Z V (RE't..A'IS)
St.o.a, '1-1"'
f--.~ + SV (L.ot;IC)
N.o.
111761
+I~V
~-4013
":'
~- 4oott
1..11-/E
f
OiJ17'tJT l't>RT
:J.
D
1I"
JL
.J
.3
'
~
~
c.
~
"'
-
-:I
I
1.r
(/ c
11/, o,
ID
+S"v
* •'g
..----1
-io-1
'IJ.- 4ot.3
~
PowEll- 011 liST
v.F
N.o.
Figure 3.7.1
I
I
I
I
Alarm Interface
29
3.8 EBS Interface
The EBS Interface of Figure 3.8.1 detects simultaneous tones of
853 Hz and 960 Hz which are present during a test of the Emergency
Broadcast System.
The circuit is simplified by use of a high-Q induc-
tor in the input band pass filter.
Narrow bandwidth 567 tone decoders
detect the two discrete frequencies.
See Section 4.7 for a flow chart of subroutine EBS, which logs
the starting and ending times of tests of the Emergency Broadcast
System.
'los Nf
8PF
4.7K
!Ok
Ali:Dio ---~w----...-~~wrvo----t
lliF'riT
+
I
.2.1
5(p 7 ~-"'-s-JIN'-+-.1\1\1\-...
L-~,~---~--~3~
.~2
~'~--~--~
7
0.1
.::r:
liP~
A/.I<)AJ(f!E.NT
(jUI:»E
r-----------,
l '~:L I
I
Figure 3.8.1
I
I~,:\I.
EBS Interface
30
3.9 Printer Interface
The SBC-100 USART is interfaced to the printer by means of a 20 rnA
current loop (see Section C.5).
There is no provision for checking the
ready status of the printer in this design, although modification of
the SBC-100 could make this possible.
The controller software provides
for the transmission of a series of null characters after each carriage
return, to allow for return of the print head.
With certain printers
it may be necessary to insert an initialization routine for the printer
before any data transmission occurs.
The user should consult specific
printer data to determine if a printer initialization is required, or
if the sequence of the CRLF subroutine should be reversed.
protocol for the Radio Shack Line Printer VIII is:
Recommended
Data Processing
Mode, line feed prior to carriage return.
3.10 Relay Interface
The logic signals of the controller are interfaced to the UHF
transmitter by means of relays, as most transmitter control lines are
120 VAC.
Figure 3.10.1 indicates the relay interface requirements of
Output Ports 1-3.
The Diagnostic and utility power interfaces for
Input Ports 1-2 are indicated in Figure 3.10.2.
31
+l~v____r;;;-=CR
t_·
LIIIE!
OIITPI/T
Pllll'rj
£/!IE'
OIIT1'UT
,.,_liT j.
-=-
1'/~V
~"1
ND6/l/4~"1
--~--:tf-TA-SSIIV
~~
VIS.
Lifl£3
Ol!iPuT
A>lt1"1
LiAI£'/
OIITPrr(
ft'JKT1
Li/Ja5
01/TP/IT
'o•r 1
Figure 3.10.l
Relay Interface
II
32
f
A<~ri>DVAC
·" ~--- L'Ln-Y """ER
-=-
Figure 3.10.2
Input Interface
33
3.11 Exciter Interface
The Exciter Interface allows the controller to interrupt the RF
drive to the klystron amplifiers prior to raising the beams.
There
is some controversy as to whether this procedure is really necessary,
particularly when the klystron is already at operating temperature.
The RF drive may be interrupted by opening the contacts of a coaxial
relay, or by disconnecting the AC input power to the exciter.
Some
modern UHF exciters have separate AC inputs for the crystal ovens and
drive circuitry, which makes the power interruption method quite simple.
The Exciter Interface of Figure 3.11.1 uses this technique, and
includes a Bypass switch to quickly disable a controller interruption
in the event of malfunction.
FRDM
OuT,.UT
Ac
PoaT .1
/NT£1,AC.
lltZJIC tfTO/t
E'KCITER
Figure 3.11.1
Exciter Interface
PoWER
34
3.12 Power Supply
The power requirements of the controller are: 8VDC @ 6A, +18VDC @
1A, and -18VDC @ IA.
Figure 3.12.1 is a schematic of a power supply
which exceeds these requirements by a substantial margin.
The supply is normally powered by 120VAC, and includes batteries
to maintain controller operation during power outages.
Automobile
batteries have been used to allow for additional connections to +28VDC
emergency lighting circuits which draw substantial current.
The bat-
teries are trickle-charged at a 40 rnA rate during normal AC operation.
Nickle-cadmium cells may be substituted if high battery capacity is not
required, with appropriate adjustment of the charging rate.
During AC operation, the ~18V supplies are generated by the full
wave rectifier and zener-controlled emitter followers.
The +8V supply
is half wave rectified, with an additional zener emitter follower.
Fuses are included in the AC line, and at each battery pair.
35
+
71<AIIS~/tltl/l'ff
~.A
I
IW
OUT"I'Jfr 3,. IIIIIIlS
E~.s,»a
o, e.r.
JIJ4003
1$11,
/DOPI~
BRIJ>G£ HCTI~ICR
'"· /ool'IV
Po »tel)£
(11/'#003)
:.1131~/
~--7'-/IV
Figure 3.12.1
Power Supply
CHAPTER 4
FLOW CHARTS OF MAJOR SOFTWARE BLOCKS
4.1
Initialization Routine
The Initialization Routine prepares the hardware of the SBC-100
for subsequent tasks.
The Counter/Timer of the SBC-100 utilizes the
Mostek MK3882 to provide four independent timing functions, each of
which requires initialization.
The Mode 2 interrupt structure of the
ZBO CPU also requires several steps of initialization.
The flow chart
of the Initialization Routine is indicated in Figure 4.1.1.
!
BEG. • • • •
KES£T
sse-too
AliToSTifRT
H"RIJWifRt; i
~E$£1
DVTI'VT F'tiKr
!
DI:JitiJL« 111/TVIf/V"~
SET Mtl,£
:z
ZID
/~IIWT
$1"111/c.TtJRE
!
cu~~t•
cro
CHiflll.
!J, :8; ST4Rii Til£
t:LI1CK 1117"£JIRIIPT
.S£/IIIIt:4' il:bllllESS
!
Figure 4.1.1
Initialization Routine
36
37
J,
J.t1"ZJ C'TC CN. I
llirERIIUFr ~EcToR
/tilTH 1.'/l IIF Tlll!i
ISil IIZJ~~S$
!
LolfiJ ZID
I
116fi1ST~/I
t.ltT"f
IIISS t1F 'THE
/$11
A~Diti!SS
!
SCT CTC Cll. I
FtJ/1 /tiD H~
INTEit/liii'T$
~~~
REAl.· TIM~ Cl.tle/i'
!
SET C7C ~II.
J:"•R
-1.1
p
KHe
Cl«:Jt To VSifltr
( llt11117'Eitlll/n".$)
l
Scr
UsiiKr
3DO Bill/~
ro
j
SET STIICK
Pol~ Ill r11p
!
C/11.1. CLRV
TD
CU'Ifll TilE
1/II'Go "DISPLif'Y
!
'PIIINT TilE
INIT"III41'Zifrtol!/
,-liS*M;,E 111/
TilE" CRT
!
(Coii'TttiUED)
Figure 4.1.1
{continued)
38
C~I.L
soc rD
SET" Cl.Dt:K VIA
ll£'YI'tlllD
t"t11111111""'"~
Stfl,NDN •
•
•
•
S.T STA71A: F.c~
F•lr
TN.
C11Mr61ts111.,•~AL
1'111116
1'R111r t!llti.N- t1N
I'IIES.S/Iti«
TN£
'(I AI
C~T
7b lloVTIN£ /!oR AIJD
Wl#liM•STA#T ENnY
.,_lilT
Figure 4.1.1
4.2
{continued)
Conversational Mode Warm-Start Entry Point
Control returns to the Warm-Start Entry Point upon execution of a
keyboard command or upon return to the conversational mode from the
control or diagnostic modes.
A new keyboard command is accepted and
subroutines are called to check the entry against the list of legal
commands and transfer execution to the appropriate point.
The stack
pointer and status flag are reset upon each return to the Warm-Start
Entry Point.
The flow chart of this sequence is indicated in Figure
4.2.1 on the following page.
39
1
EO/l •
•
•
J;
SE:T ~Titt"ll$ F~
F•6 TIIC
Ct~II'IEIISAiN~IIL
/llt~DI!
l
STile~
SET
P.III/TEit liT rtJI'
o~
:srtff!lf
!
1JI.SPLIIY
PR•MPr
!
~AI.L
1t£,fD TtJ
llll'tJT II I.IN£
FR•HJ I<EYB•t1RZ1
!
C,ftL V.. LC To
CH£CK F•ll
LEfitiL C41ffA1tiiD$
l
Cllt.L COMNf Ta
EJi£CvrE
CtlltllffAIIbS
I
Figure 4.2.1 Warm-Start Entry Point
40
4.3 Automatic Control Mode
The Control Mode routine continuously checks transmitter status
signals and operating parameters.
Entry to the Control Mode is made
from the Conversational Mode by means of the AUTO command.
A printer
or CRT display of current status is obtained by pressing the RETURN
key.
Exit from the Control Mode is obtained by pressing the ESCAPE
key, which transfers execution to the Conversational
Entry Point.
r~ode
Warm Start
Figure 4.3.1 indicates the logical flow of the Control
Mode software.
4.4 Subroutine PONE
The PONE subroutine is called from the Control Mode to check the
status of signals at Input Port 1.
The PONE flow diagram is shown in
Figure 4.4.1.
4.5 Subroutine BEAM
The BEAM subroutine checks the visual/aural klystron beam status
signals at Input Port 1.
If one or both beams have dropped, a check is
made of the utility power signal to determine if the cause was a system
fault or power failure.
In the event of power failure, the duration of
the outage is measured and an approximately equal delay is inserted
after restoration of power to allow the klystron heaters to recover
before restart.
If the dropout was due to a line transient or system
fault, beam restart is attempted immediately.
the beams will be made.
Two attempts to restart
If restart is successful, data is transmitted
to the printer and CRT to indicate the nature and duration of the problem.
If two restart attempts fail, execution is transferred to the
41
Conversational Mode.
The BEAM flowchart is displayed in Figure 4.5.1.
4.6 Subroutine ANNP
The ANNP subroutine checks the status of the visual/aural amplifier annunciator signals at Input Port 1.
Alarm conditions are set or
cleared as required, and appropriate data is transmitted to the CRT
display.
The ANNP flowchart is indicated in Figure 4.6.1.
4.7 Subroutine EBS
The EBS subroutine checks the status of the signal at Input Port 1
which indicates the presence of Emergency Broadcast System test tones.
Data is transmitted to the printer and CRT to indicate the duration of
the test.
The flow logic of the EBS subroutine is indicated in Figure
4.7.1.
4.8 Subroutine DATAl
The DATAl subroutine is called from subroutine BEAM to transmit
data to the CRT and printer after a successful restart of the klystron
beams.
The flow logic is shown in Figure 4.8.1.
4.9 Subroutine DATA2
The DATA2 subroutine is called from subroutine BEAM to transmit
data to the CRT and printer after an unsuccessful attempt to restart
the klystron beams.
The flow logic is shown in Figure 4.9.1.
42
FR6tr/ CoPVUlStl'f'loNIIL
/fiOD£
RtrrtJ • •••
CI.EII~ UT SC~UN#
5£T Ct111Th' ,.,.,.
ST#Tf/$ ( IIIIIR"• - )
~~~.,.,,y
CIII/1111L
.t'lt1:J1E $1<;/1/o/11
tn£SS~fti£
"To Pltti(T 1MTII
To CRT
'Pllti/T CruiTRot.
~oil£
E'Xff
JJI£5SJH;£
At/TD a
••
CALL 1'ofll£ 7c
Clf£Cit Z>ATtl /IT
INI'UT TWrr tJ/IIE
C.tLL 'I"TWD Til
Clt£Cit 1JIIT1t KT
/111'1/T ,.,.,.
Figure 4.3.1
Control Mode
~
43
'PONE • • • •
CAU. SSRT BEllM
TtJ CNE.eli BEAM
!ii'ATIIS ANP ICST~1f'f
IF 1/EcE $61f/lY
CAll. SBitT 11111(1'
T•
CH~It Vl~lll"l
AllltlfL Altll't.IPI61t
ANIIIINCI/1,-.II.If~
CAll. 5611T EBS
To CN£1:/t FtJit A
7TST I# E~IICY
8/tt~~t:lfST SY:Sn:M
Figure 4.4.1 Subroutine PONE
44
1lEANI • ••
SET 1WIJ£/l Flflt..
EflRII/t J:t lffj
SD' T/1116/t STtl/lilf~
70 'ZE/tO
5TIIIl6 6/lllO/t J!:llfS
TUitll ON MIIJ•II
lll.Aitlff
STIIM TIM( 1fT BltsT
liiArT 1 SECo~
IIICREM£11T TIM6/l
STD/Iiffj~
OFP
DN
5Tt1IIIE TIME AT 1'WilU
Trllfll .M,UifiE/tS tJII
ENIIBI.E R£sir.
WAIT J SEC.IID
~£CR£m£1(1"
TIM/lit
S'Ttllilff;£
CA!T-. • •
SET llES'I'tlllT
IITTitMJI'T C•11111•11
Ti' Z6MIJ (BIIC$)
To
nc
Figure 4.5.1 Subroutine BEAM
45
EXC •••
7li~N 0CIT61C IJI'F
1/IIS£ VISV;fL UAHI
IJIIItr ~ St.~tJU
IAI~£ AllltlfL
IJIIIIT
1
S£Atfl
S£t!o~
7lJR11 EJCCI'TP 011
filii~
1 SECo,.
YEs
tALL SBI!T"
INCtEMEG ll£STA
ClJfiA/TEg
1>AT" 1.
(BRCS)
CIIU SIKT ~tf'T,f2
1'1t1NT E lilT J:/t#M
CtJIITitt1L MOllE
MESSACJ•
Figure 4.5.1
(continued)
46
FllttM C'•MTII•t.
l'f•D~
ANZ ('P•NE}
All/If# • •••
TlJttN fll/ lftllbra
Srn' Ft.lf{jS
CI.EitR Ftiff;S
'TlJitll fJ# IIURM
PRIIIT llf£$Uf6 lfllll
1'1rtlll1 lffEU""i£ IIlUI
7/M To Clf7"
71141£ T• Clfr
Figure 4.6.1
Subroutine ANNP
47
r~(JI'! C<~N71t•4 /liD~
(Pt111E)
E8S., ••
YES
No
SET FLA~ 1
SET IHIT?I/1 ~ltlff
Cl.£11/l J':t.At; 1
SET /!UT1"f/T STJt£AM
Alii 1'1tiiiT6 II
!:<~It
,ItlilT£.
411D CRT
All» t!IIT
1'/tii/T EBS ST~n
'P1t111T EBS EJ/31
"'ESsAfE A-
I'IIESSAq£ liN#
71/'IIE
'TIM~
SETDVTF'I/T
ST/t.AM Foil
C.ltT tlNLY
Figure 4.7.1 Subroutine EBS
48
1JATA 1 • • • •
scr Nri"IIT ST•IiiM
Fo~
1'-tiiTE/f AO
ClfT
'YEs
Pltt/111' BEAMS
j)t}flllf
,.,,.,. ~- 1'1111.
~ZI
lttESSifYE AIID
TIMI
PltutT Plllll/1!/1 Ul*
A#ESSift;W
{/hi£
11•
PRtiiT
VISIJ,l.
8£11111 AI£5SiffE
A,a,
Tilt~~£
Pltii/T lfiJIIIfL
BEif/YI /YI£$Sitt;E
AND TIME
1'111111" BEIIMI Ill'
tfiEUAql
6 TIMI;
RESET l"•w61t ll'AIL
.t 8£11'1 ''"'t;S
ser DUTI'ur
$TREIIM
~It
CRT tiiiL'Y
Figure 4.8.1 Subroutine DATAl
MESSif(f£
TIME
49
'PATII~
• • • •
SET t~UTPIIT STREI/II
Folt PltiiiTEit
AIIZI CRT
l'RIA/T llEIIMS
1JOWI/
ltfGSSJH;~
IIN1J TIM£
'PRttlr VISI/M..
'P~INT AUIML
B£19/111 MES$~
BCA~t~ ,tt£SSif~£
tiC T!hl£
AND TIME
PRINT
TtJ
II
UNif.I.E
REn'lf~T
II
ltiESSityE
SET DIITPtJT
STRG1thf
Ft1~
CRT ONLY
Figure 4.9.1 Subroutine DATA2
50
4.10 Subroutine METER
The flow chart of Figure 4.10.1 indicates the process employed by
the controller to read analog meters by the PWM sampling method.
The
METER routine is called by other subroutines (VPWR, VKV, VAMP, etc.)
which load the required parameters (meter address, alarm limits, initial count) into RAM storage for use by METER.
In the event of a
modification of transmitter hardware which results in a new range of
meter readings, the controller software can be patched by a simple
correction of the initial count and alarm limit tables.
METER checks the NOPRINT flag to determine if the current reading
is to be output to the printer for logging purposes.
Output of error
messages to the CRT is unaffected by the status of NOPRINT.
See Sec-
tion 8.3 for the location of NOPRINT in the MOST Flag Byte.
4.11 Subroutine STATUS
The STATUS routine of Figure 4.11.1 is called by the transmitter
operator by pressing the Carriage Return key while the controller is
operating in the Automatic Control mode.
11
Subsequent depression of the
P11 key will output a data line to the printer.
Depression of any
other key will output a data line to the CRT only.
An intermediate
entry point of the STATUS routine is called in subroutine PTWO, when
the LOGDATA flag has been set by the Interrupt Service Routine.
The
LOGDATA flag is set at the start of each hour, and results in the output of a data line to the printer by PTWO.
location of LOGDATA in the MOST Flag Byte.
See Section 8.3 for the
51
F/itJ"' mETER 1MT-9
fNiftJE'ST SBilT#
(EXCEPT Fo~
tnETER. • •
SEll~
VRif 1 AFRtf()
!11ETER
A'D'DRE~$
To
01./TPVT 'PelT
~
LCAt:J 11/tTIAL CovfiT
l"(77e I
•••
CL~IIR /NTER!liii'T"
ioi---<
FI.AC,
qocl=" • •
OfJTPuT ET(RoR
Co'PE
INCt?ci'IIE!ff COVKT
AIIZJ ~ELtlfY
To
h1TR3
Figure 4.10.1 Subroutine METER
'*'
52
FRDI'I
PIIEVIoU$
PIIC,C
I
111iR<# • • • SET IILifRIYl
5ErtrTTR UPc~ Rllft
l'Ro/1" AUf IIA~D 711'11£
5/i:T"tJI~tr$
SET AL4~111
5Er ttTT7! ERRC/t R.At;
Pmur 1?1CG; ,4JD
SET ZJ/t;tiS
1
T/ltf£
* Lc
1
C~tf~ c~~i!JR
Ft."r,
Cl.EitR Ai.lfRM
l'PIAtr M tq AliD 1'/MC
To CRT CAlLY
MTR8 •..
C011!1El<T C'aum'
7c Tlfi?EE ASCII
'ZJI~IT$
OUT!'IIr ~tT.S
IF No PRINT
IN/liMIT
Figure 4.10.1 (continued)
'* H/ 1
I
53
51"ATU'6 • ••
SEIQ tfCttl/61t1LEl1t;J
MSS~ 1
REfi/Ur
k£YBoii/IZ, IEIITII'I
S£1" tltJ7"PUT
~TilGAM Ft~R
'PIIuiTrlt /Ill~ CRT
S1'AC • •
SET OUTPUT
STII£tfM ~till
CIIT O~LY
tJI.SPt.JtY 711£
FDRhiArr£'1J
7'1WJ/S/fii!H1l
STATI/S
Figure 4.11.1
Subroutine STATUS
4.12 Subroutines VFRQ/AFRQ
The VFRQ and AFRQ routines are used to read the deviation of the
aural and visual carrier frequencies from their assigned values, as
measured by the Belar TVM 3 Frequency Monitor.
The flow logic of both
routines is identical and is indicated in Figure 4.12.1.
See Section
3.6 for a description of the interface and addressing schemes.
4.13 Interrupt Service Routine
Interrupts are generated at 10 millisecond intervals by CTC
Channel 1 of the SBC-100.
The Interrupt Service Routine updates the
real-time clock data stored in RAM, and the RAM calendar data, if
required.
is updated.
The LOGDATA flag is set each time the hours storage location
The Interrupt flag is set at the conclusion of the service
routine, for use by the METER subroutine.
The flow chart of the
Interrupt Service Routine is shown in Figure 4.13.1.
55
VFR~ • • • •
READ Sl"iA/ S1T
01/iPt/'i St<;ll
READ 1sT DlfiiT
YES
NO
No
S£7" ALAI/111
Ct.E#IR llt.IIIM1
CL.EIIIi'
ER~tJR
SE:r ERR<Jit FLIItj
Fl.!ffj
F'Rt~ TIM~ 'DitTif
PRINT TilliE Z>IITit
Tt1J CRTONL.,
'To CIIT <JNLY
SET 'DIC7JIS
To
OUTPUT :111D, 3AD
tJK;trS lf.<llJ II
F!AJifL ,, ¢
,
Figure 4.12.1
Subroutine VFRQ
1
***- 1
56
svc~
.•.
/)IS -tSL£ INTSRfA'T
Slf'IE ~EG;ISTER$
I AICilEtr~EAIT
/OOTH$
No
INCR£111€117
SI:CDAID$
SET LOCi DlfT,f Fl.~
IN~IJEM611T" HOUR$
CAll. $81tT CIIL
YE:S'
7r:J () PDIITfi lifE
C'IILENDifR
/o SuS3
Figure 4.13.1
Interrupt Service Routine
57
S()B 3 • • •
SET IIITER/ltJPT Flilfi
RESToRE 1!£(1 1~/i!:s
£1f/lf/.1LE INIERRtJPI
(zKo JIIC"I!tJCTIOII)
Figure 4.13.1
(continued)
58
4.14 Subroutine PTWO
The PTWO subroutine checks the status of the analog meters and
Belar TVM 3 Frequency Monitor.
Alarm conditions are initiated if any
out of range readings are discovered.
Visual amplifier readings are obtained by calling subroutines
VPWR, VKV, VAMP, and VFRQ.
Aural amplifier readings are achieved by
subroutines APWR, AKV, AAMP, and AFRQ.
These subroutines load the
proper alarm limits and initial count into RAM storage, prior to calling the METER subroutine to measure the selected PWM pulse duration.
See Section 4.10 for the METER routine description.
The PTWO flow
chart is shown in Figure 4.14.1.
4.15 Diagnostic Mode
The TA-55NV control functions are primarily determined by a relay
logic sequence.
Normal maintenance consists of checking and adjusting
the timing of the relay functions.
It was decided to make the diag-
nostic function into a general routine which simply reads the open or
closed status of four sets of relay or switch contacts, then prints
the time of any changes in the original status.
This allows the
operator to change the definition of the four diagnostic inputs at
any time, without affecting the existing software.
The flow logic of
the Diagnostic Mode software is indicated in Figure 4.15.1.
59
PTWIJ •••
SET
NO PRINT
Ft. At;
CAI.t VPWR,
VI<V• VMall'•
VFRtt
Clfl.l APWR.
CHECK
V16fJIII. IIMP/.IJ:IE/1
METERS
CHECK Alii/A£ AhiPliFI£11
ma£~s
llkV, AAMP,
IIF-"Rq
CI.EIIR
Y£S
CAl./.
STII~
FDR
7'RINTER ~itT A
I.INE itll~ tifT
STATU$ 'ZU$,.LIIY
Figure 4.14.1
Subroutine
PTI~O
60
1JIIItj • • • •
5Er OUTI'IIT
5Tit£11M FD.
ClfT ONLY
P~INT
ENTitY
MEUA~E Ft~/1
~lllfMti$7/C
MQ£
SETZJFST• -~N
S'lfJRE 'IJIIIfi/OSTIC
IN1'11TS Ill
No
>--~
llfli. C
1JFST+- (c)
STo#E ZJ/tfqlfiSTIC
11/1'1/TS lA #If. C
-
£=AD ZI,C.
'PDMI • • •
1'1fti(T Dll M~
IIIID TIM£ Fll/f
Nl .ITS Ill £
-
£: XOR
PtJFS •• •
,, E
'11tiiiT OFF I'JSCf
111/IJ TIM. FtJR
Ht
srrs '"
Figure 4.15.1
£
Diagnostic Mode
61
4.16 EPROM Routine
The EPROM Routine assists the programmer in transferring the
assembled controller software into the four 2716 EPROMs, in conjunction with the Micropolis MOOS.
The controller software, which will
eventually reside at OCOOO-ODFFFH, is assembled with offset at memory
locations 5000-6FFFH of the development system.
then assembled at 4000H and executed.
The EPROM Routine is
Messages are output to the
development system console device to lead the programmer through the
required steps to burn the controller data into EPROMs with the PB1
EPROM programming board. A sample listing of the console output is
shown in Figure 4.16.2.
The flow chart of the EPROM Routine is indi-
cated in Figure 4.16.1.
In addition to instructing the programmer, the EPROM Routine also
checks the EPROMs to insure that they are fully erased, and that the
programmed data matches the corresponding memory block upon completion
of the programming cycle.
If an error is encountered, a message is
output to the console device and the program is aborted.
62
Performed by MOOS
under operator control
Vc~II=Y EPR~NJ? IS
Jh.AAJK I 7'1lc<;I1AIYI
wrr11 CtJPa
e 5NPH,
CHECk 7HE CoDE
Vcte1FY £Ppl),r~t ts
Performed by the
'BLiliiK, PH~Riflt?
WtrH CcttJ£ @I
S8¢;H,
EPROM Routine
VOIFY EP/1~11'1 t.1 I.S
'8t.lfll~1
Pllrx<jiC'IIM
Wmt CoDE~ ~¢ppJI,
( H£(1( TH£ CoTJ£
VOI/ZY EPIIDM3 IS
1Ji. 1,JI(1
~Riftrr
WITH~£~
k.i;;ll,
CHS:It 7~ Co~E
Figure 4.16.1
EPROM Routine
63
MICROPOLIS MOOS VS 4.0 - COPYRIGHT 1978
>ASSM •TEST2• •• •EMC• 9000
MOOS 8080/8085 ASSEMBLER VS. 4.0
PASS 1
PASS 2
ERRORS THIS ASSEMBLY
0000
MICROPOLIS MOOS VS 4.0 - COPYRIGHT 1978
f
>ASSM •EPROM• •• •EMC•
MOOS 8080/8085 ASSEMBLER VS. 4.0
PASS 1
PASS 2
ERRORS THIS ASSEMBLY
/..O,f1)
£F'!ibltl l?ocmiiF C'@f:
/KrtJ "£,f'/c~y 1fT -f.(Jf;; H
0000
MICROPOLIS MOOS VS 4.0 - COPYRIGHT 1978
>EXEC 4000
INSTALL EPROM0 IN PROGRAMMING SOCKET
PRESS RETURN WHEN READY
ERASURE VERIFIED
TURN PROGRAMMING SWITCH ON
PRESS RETURN WHEN READY
TURN PROGRAMMING SWITCH OFF
EPROM DATA VERIFIED
{
£P~c/'11f SIJCC/!S$RJUY
1'/l(ltJ(iJ.'A!PPII'lED 16/TN z,pIf
FRI:J,f1 S~~r/J - S7FF H
INSTALL EPROM! IN PROGRAMMING SOCKET
PRESS RETURN WHEN READY
ERASURE VERIFIED
TURN PROGRAMMING SWITCH ON
PRESS RETURN WHEN READY
TURN PROGRAMMING SWITCH OFF
EPROM DATA VERIFIED
INSTALL EPROM2 IN PROGRAMMING SOCKET
PRESS RETURN WHEN READY
ERASURE VERIFIED
TURN PROGRAMMING SWITCH ON
PRESS RETURN WHEN READY
TURN PROGRAMMING SWITCH OFF
EPROM DATA VERIFIED
INSTALL EPROM3 IN PROGRAMMING SOCKET {
PRESS RETURN WHEN READY
*** EPROM ERASURE ERROR ***
PROGRAM ABORTED
ER/i!I:JR IIIZXJCE.D BY
INSitlml/f; All UN£Rif$EI)
£1*t1#1 IJ/1l:J Til~
PNot;miAIA'IIN'j S~KE/
>
Figure 4.16.2
EPROM Console Output
CHAPTER 5
CONTROLLER OPERATING PROCEDURES
5.1
Command Summary
The legal Conversational Mode commands, and their effects, are
listed below:
AURD: Drop the aural klystron beam
AURU: Raise the aural klystron beam
AUTO: Exit the Conversational Mode, enter the Automatic Control Mode
BARK: Start or stop the Barker channel cart machine
CTVM: Switch to Commercial TV Mode
DATE: Display the current recorded date
DIAG: Exit the Conversational Mode, enter the Diagnostic Mode
DUMP start address end address: Display the hexadecimal controller
memory contents between the specified limits
EXCD: Remove exciter drive from the klystron amplifiers
EXCU: Apply exciter drive to the klystron amplifiers
HEAD: Print a new log heading
INFO: Display a summary of legal commands on the CRT
SETC: Set the real time clock
SETD: Update the current recorded date (the controller software
normally performs this function automatically)
STVM: Switch to Subscription TV Mode
TIME: Display the current time (24 hour; xx:xx:xx:xx )
64
65
VISD: Drop the visual klystron beam
VISU: Raise the visual klystron beam
XMTD: Drop the aural and visual beams, turn amplifiers off
XMTU: Turn on the aural and visual amplifiers
5.2
Initialization
When the controller is initially turned on, the error flag bytes
are cleared and all output ports assume a status of OOH.
This results
in an immediate switch to the Commercial TV Mode, if the transmitter
is already on in the Subscription TV Mode.
It is assumed that the
controller should not be powered-up if the transmitter is currently
on the air.
This condition could be changed by inserting a routine
to read the CTV/STV status and set Output Port 3 accordingly.
The
alarms will normally be powered from the controller source, and should
be cleared by the power-on reset circuit included.
The controller
will sign on in the Conversational Mode, request time and date data
from the operator, and be ready for subsequent commands.
The operator
should adjust the paper feed to the printer and use the HEAD command
to print a log heading prior to using the AUTO command to enter the
Automatic Control Mode.
Commands listed in Section 5.1 will only be
accepted in the Conversational Mode.
5.3 Control Mode Operation
The Automatic Control Mode is the normal controller mode when the
transmitter is on the air.
No error conditions will be detected if
the controller is not in the Automatic Control Mode.
Two keyboard
entries are recognized during Control Mode operation: Carriage Return
causes the controller to output a data line to the printer or CRT;
66
Escape (ESC) causes the controller to transfer to the Conversational
Mode.
When error conditions are detected during the Control Mode, a
single message is output to the CRT display upon the initiation of the
error condition, or upon its termination.
Messages are also output to
the printer if the error condition involves a loss of beams or a test
of the Emergency Broadcast System.
A data line will be sent to the
printer at the start of each hour, as determined by the real time
clock.
If the controller is in the Conversational Mode at the start
of a new hour, a printer data line will be output immediately upon
return to the Control Mode.
Exit from the Control Mode clears all
error flags, so that continuing error conditions will be reannounced
upon return to the Control Mode.
The clearing of error conditions
which existed during the Control Mode, and which were cleared during
Conversational or Diagnostic Modes, will not be announced upon return
to Control Mode.
5.4
Diagnostic Mode Operation
The Diagnostic Mode is entered from the Conversational Mode upon
execution of the DIAG command.
The on/off status of the four inputs
DIAGO-DIAG3 are sampled and all changes in status are output to the
CRT, along with the time.
The hardware interface provides a delay
so that relay contact bounce will not be interpreted as a successive
change in input signal status.
The Escape (ESC) is the only keyboard
entry recognized by the controller during the Diagnostic Mode, and
results in a return to the Conversational Mode.
REFERENCES
Belar Electronics Laboratory, Inc., Instruction Manual: TVM 2/3
Box 826, Devon, PA 19333
Berlin, H.M., Design of Phase-Locked Loop Circuits, with Experiments
Indianapolis, IN: H.W. Sams & Co., Inc., 1978
Exar Integrated Systems, Inc., Exar Timer Data Book, Feb. 1978
750 Palomar Avenue, Sunnyvale, CA 94088
Federal Communications Commission, Rules and Regulations, Part 73
Superintendent of Documents, Government Printing Office,
Washington, DC 20402
George Risk Industries, Instruction Manual: Models 756/762 Keyboard
GRI Plaza, Kimball, NE 69145
Hnatek, E.R., Design of Solid State Power Supplies
New York, NY: Van Nostrand Reinhold Co., 1981
IMSAI Manufacturing Corp., IMSAI Microcomputer System User Manual 1976
14860 Wicks Boulevard, San Leandro, CA 94577
Intel Corp., Literature Dept., 3065 Bowers Avenue, Santa Clara, CA
95051
8080 Microcomputer Systems User's Manual, September 1975
Intel Component Data Catalog 1980
Jade Computer Products, The Big Z, Revision 3
4901 West Rosecrans Avenue, Hawthorne, CA
90250
Lindquist, C.S., Active Network Design with Signal Filtering Applications, Long Beach, CA: Steward &Sons, 1977
Micropolis Corp., Micropolis 1040/1050 S-100 Floppy Disk Subsystems
User's Manual, Revision 10, April 1979, 7959 Deering Avenue,
Canoga Park, CA 91304
Mostek Corp., Mostek Microcomputer Z80 Data Book, 1978
Microcomputer Systems Division, 1215 West Crosby Road,
Carrollton, TX 75006
National Semiconductor Corp., 1977 CMOS Data Book
2900 Semiconductor Drive, Santa Clara, CA 95051
67
68
Q •
SD Systems, Operations Manual: SBC-100 Single Board Computer
PO Box 28810, Dallas, TX 75228
SSM Microcomputer Products, VB2 Video Board
2116 Walsh Avenue, Santa Clara, CA 95050
SSM Microcomputer Products, Instruction Manual: PB1 2708/2716 EPROM
Programmer &4K/8K EPROM Board, 2190 Paragon Drive,
San Jose, CA 95131
Texas Instruments, Inc., PO Box 5012, Dallas, TX 75222
The Linear Control Circuits Data Book
The Memory Interface Data Book
The Power Semiconductor Data Book
The Transistor and Diode Data Book
The TTL Data Book
1981 Supplement to The TTL Data Book
Titus, C.A. et al., 8080/8085 Software Design
Indianapolis, IN: H.W. Sams & Co., Inc., 1978
Townsend Associates Inc., Instruction Book: TA-55 NV UHF TV Amplifier
PO Box 1122 Mainline Drive, Westfield, MA 01086
Wadsworth, N., Z80 Software Gourmet Guide & Cookbook
Elmwood, CT: Scelbi Computer Consulting, Inc., 1979
APPENDIX A
IEEE S-100 BUS SIGNAL DEFINITIONS
A.1
S-100 Bus Signals
The fo 11 owing signal definitions conform to the IEEE Preliminary
Speci fi cations for the S-100 Bus and are subject to revision:
1.
+8V
2.
+16V
Must be 1ess than 21.5 volts average.
3.
XRDY
One of two Bus Ready signals.
4.
VIO*
Vectored Interrupt Line 0.
Active low.
5.
VII*
Vectored Interrupt Line 1.
Active 1ow.
6.
VI2*
Vectored Interrupt Line 2.
Active low.
7.
VI3*
Vectored Interrupt Line 3.
Active low.
8.
VI4*
Vectored Interrupt Line 4.
Active 1OW.
9.
VI5*
Vectored Interrupt Line 5.
Active low.
10.
VI6*
Vectored Interrupt Line 6.
Active low.
11.
VI7*
Vectored Interrupt Line 7.
Active low.
12.
NMI*
Non-maskable Interrupt, active low, open co 11 ector.
13.
PWRFAIL* Bus Power Failure signal, active low.
14.
DMA3*
DMA Request, active low, open collector.
15.
A18
Extended Address Bit 18.
16.
A16
Extended Address Bit 16.
17.
A17
Extended Address Bit 17.
18. SDSB*
Must be less than 11 volts average.
See pin 72.
Disable for the 8 Status Signal lines.
69
Active low.
70
19.
CDSB*
Disable for the 5 Control Output Signal lines.
20.
GND
Ground. See also pins 50 and 100.
as Memory Protect.
21.
NDEF
Not defined.
22.
ADSB*
Disable for the 16 LSB of the Extended Address.
23.
DODSB*
Disable for the 8 Data Output lines.
24.
Phl Clk Phase 1 Clock signal.
25.
PSTVAL* Status Valid Strobe, active low. Used in conjunction
with PSYNC (pin 76) to indicate the presence of
stable Address and Status signals on the bus.
26.
PHLDA
Hold Acknowledge signal, active high.
27.
RFU
Reserved for future use.
28.
RFU
Reserved for future use.
29.
AS
Address Bit 5.
30.
A4
Address Bit 4.
31.
A3
Address Bit 3.
32.
Al5
Address Bit 15.
33.
A12
Address Bit 12.
34.
A9
Address Bit 9.
35.
DOl
Data Out Bit 1.
Bidirectional Data Bit 1.
36.
DOO
Data Out Bit 0.
Bidirectional Data Bit 0.
37.
AlO
Address Bit 10.
38.
D04
Data Out Bit 4.
Bidirectional Data Bit 4.
39.
DOS
Data Out Bit 5.
Bidirectional Data Bit 5.
40.
D06
Data Out Bit 6.
Bidirectional Data Bit 6.
41.
DI2
Data In Bit 10.
Bidirectional Data Bit 10.
42.
DI3
Data In Bit 3.
Bidirectional Data Bit 11.
43.
DI7
Data In Bit 7.
Bidirectional Data Bit 15.
Formerly defined
Active low.
71
44.
SMl
Status Signal; current machine cycle is an op code
fetch.
45.
SOUT
Status Signal; current machine cycle is an I/0
output.
46.
SINP
Status Signal; current machine cycle is an I/0
input.
47.
SMEMR
Status Signal; current machine cycle is a memory
read, and is not an INTA instruction fetch.
48.
SHLTA
Status Signal; indicates that a HALT instruction is
being executed.
49.
CLOCK
2 MHz clock signal, which may be asynchronous with
all other bus signals. Frequency ±0.5%, 40-60% duty
cycle.
50.
GND
Ground.
51.
+8V
Common with pin 1.
52.
-16V
53.
GND
54.
SLAVE CLR* Used with POC* to reset bus slaves.
55.
DMAO*
DMA Request, active low, open collector.
56.
DMA1*
DMA Request, active low, open collector.
57.
DMA2*
DMA Request, active low, open collector.
58.
SXTRQ*
Status Signal; requests 16 bit bus slaves to assert
SIXTN* (pin 60). Active low.
59.
Al9
Extended Address Bit 19.
60.
SIXTN*
Status Signal; active low response from 16 bit bus
slaves after SXTRQ*.
61.
A20
Extended Address Bit 20.
62.
A21
Extended Address Bit 21.
63.
A22
Extended Address Bit 22.
64.
A23
Extended Address Bit 23.
65.
NDEF
Not defined.
Common with pin 100.
Common with pin 100.
Formerly Sense Switch Disable
72
Not defined.
66.
NDEF
67.
PHANTOM* Active low, open collector.
68.
t4WRT
Follows PWR* within 30 ns.
69.
RFU
Reserved for future use.
70.
GND
Common with pin 100.
71.
RFU
Reserved for future use.
72.
ROY
Active high, open collector.
73.
INT*
Principal Interrupt Request Signal, active low, open
collector.
74.
HOLD*
Used with PHLDA (pin 26) to coordinate DMA transfer.
Active low, open collector.
75.
RESET*
Master Reset Signal, active low, open collector.
76.
PSYNC
Control Signal; identifies start of a new bus cycle.
77.
PWR*
Control Signal; confirms presence of valid data on
the Data Out bus.
78.
PDBIN
Control Signal; requests data on the Data In bus.
79.
AO
Address Bit 0.
80.
A1
Address Bit 1.
81.
A2
Address Bit 2.
82.
A6
Address Bit 6.
83.
A7
Address Bit 7.
84.
A8
Address Bit 8.
85.
A13
Address Bit 13.
86.
A14
Address Bit 14.
87.
All
Address Bit 11.
88.
002
Data Out Bit 2.
Bidirectional Data Bit 2.
89.
003
Data Out Bit 3.
Bidirectional Data Bit 3.
90.
007
Data Out Bit 7.
Bidirectional Data Bit 7.
Formerly Memory Unprotect.
See pin 3.
73
91.
DI4
Data In Bit 4.
Bidirectional Data Bit 12.
92.
DIS
Data In Bit 5.
Bidirectional Data Bit 13.
93.
DI 6
Data In Bit 6.
Bidirectional Data Bit 14.
94.
Oil
Data In Bit 1.
Bidirectional Data Bit 9.
95.
DIO
Data In Bit 0.
Bidirectional Data Bit 8.
96.
SINTA
Status Signal; identifies bus input cycle following
an accepted interrupt request on INT*.
97.
SWO*
Status Signal; identifies bus cycle for data transfer
from master to slave. Active low.
98.
ERROR*
Status Signal; identifies error condition during the
present bus cycle. Active low, open collector.
99.
POC*
Power-on clear signal for all bus devices.
main low for a minimum of 10 ms.
100.
GND
Ground.
Must re-
APPENDIX B
SOFTWARE FLAG DEFINITIONS
B.1
ERFS Flag Byte
The ERFS Byte stores flags which indicate that a continuing error
condition has already been detected in a previous software pass.
The
bit definitions are shown below.
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
7
6
5
4
3
2
1
0
Interrupt Flag (set during Interrupt Service Routine)
EBS Test Flag (set at start of EBS Test)
Aural Annunciator Flag
Visual Annunciator Flag
not used
Utility Power Failure Flag
Aural Beam Flag
Visual Beam Flag
B.2 MEST Flag Byte
The MEST Byte stores flags which indicate that a continuing meter
error condition has been previously detected.
shown below.
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
7
6
5
4
3
2
1
0
Aural Frequency Flag
Visual Frequency Flag
Aural Amps Flag
Aural Kilovolts Flag
Visual Amps Flag
Visual Kilovolts Flag
Aural Power Flag
Visual Power Flag
74
The bit definitions are
75
B.3 MOST Flag Byte
The MOST byte stores flags which control the output data stream
and indicate the current mode.
The bit definitions are shown below.
Bits 7,6 OO=ll=CRT output only
Ol=Printer output only
lO=Output to both Printer and CRT
Bit 5
NOPRINT Flag, l=No output
Bit 4
LOGDATA Flag, l=Print data line
Bits 1-3 not used
Bit 0
Mode Flag, O=Conversational mode
!=Automatic Control mode
APPENDIX C
HARDWARE DEFINITIONS SUMMARY
C.l
EPROM/RAM Memory Map
0000-BFFFH
COOO-C7FFH
C800-CFFFH
DOOO-D7FFH
D800-DFFFH
EOOO-F7FFH
F800-FBFFH
FCOO-FFFFH
C.2
not used
EPROMO
EPROMl
EPROM2
EPROM3
not used
RAM
RAM (redundant addressing of F800-FBFFH)
I/0 Port Assignments
Address
OOH
OlH
02H
03H
04-77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
80-FFH
Input Assignment
VB2 Status
Input Port 2
none
Input Port 3
none
none
none
none
none
Keyboard Data
USART Status
Input Port 1
Output Device Handshake
none
Output Assignment
none
VB2 Data
Output Port 2
Output Port 3
none
CTC Channel 0
CTC Channel 1
CTC Channel 2
CTC Channel 3
Printer Data
USART Control
Output Port 1
Output Device Strobe.
none
C.3 Townsend Associates TA-55 NV Connections
Annunciator Signal
Bypass
Door
Flow
Weir
High Vo 1tage
Body Current
Anode
VSWR
Cooling
Strip-Pin
7-2
7-1
7-5
7-6
7-10
7-11
7-12
7-14
7-3
76
Voltage Level
+28VDC
+28VDC
+28VDC
+28VDC
+28VOC
+28VDC
+28VDC
+28VDC
+28VDC
I
77
Annunciator Signal
Transmitter On
Transmitter Off
Focus High
Focus low
Temperature
Strip-Pin
7-15
7-16
7-8
7-9
7-7
Contact Closure Function
Reset
Beam On
Beam Off
Transmitter On
*Transmitter Off
Voltage Level
+28VDC
+28VDC
+28VDC
+28VDC
+28VDC
Strip-Pin to Strip-Pin
6-7
6-18
6-5
6-6
6-7
6-8
6-2
6-1
6-4
6-3
Voltage leve 1
120VAC
120VAC
120VAC
120VAC
120VAC
*Contacts must be opened
C.4 Keyboard Connections
Function
20 rna loop (+)
20 rna 1oop (-)
Ground
+8V
-16V
C.5
Keyboard Connector (GRI}
K
L
F,P
2
1
Printer Connections
Function
20 rna 1oop ( +)
20 rna 1oo p (-)
SBC-100 Connector
J2-25
J2-24
SBC-100 Connector
J2-22
J2-23
J2-13
. I
APPENDIX 0
EPROM PROGRAM LISTING
78
79
PAGE 1
ADDR
0000
0000
0000
0000
0000
0000
0000
0000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4003
4006
4009
400C
400F
4012
4015
4018
4018
4018
4018
401B
401E
4021
4024
4027
402A
402D
4030
4030
4030
4030
4033
4036
4039
403C
403F
4042
4045
4048
4048
4048
4048
404B
404E
4051
4054
4057
405A
405D
4060
~~
B2 B3 E LINE LABEL
4000
D000
00F0
061B
06CB
21
CD
CD
21
22
CD
CD
CD
21
CD
CD
21
22
CD
CD
CD
21
CD
CD
21
22
CD
CD
CD
21
CD
CD
21
22
CD
CD
CD
21
E3
C9
1B
00
EC
67
89
BD
D9
C9
1B
00
EC
67
89
BD
17
C9
1B
00
EC
67
89
BD
55
C9
1B
00
EC
67
89
BD
93
40
42
06
50
42
40
40
40
41
42
06
58
42
40
40
40
42
42
06
60
42
40
40
40
42
42
06
68
42
40
40
40
42
0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
02S0
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
04S0
0490
0500
0510
0520
0530
0540
0550
0560
0570
TAB
*
*
*
*
*
*
** EPROM PROGRAMMING ROUTINE **
*
*
*****************************
;EXECUTION ADDRESS
;PB1 PROGRAM SOCKET
;PB1 CONTROL PORT
;CONSOLE INPUT ROUTINE
;CONSOLE OUTPUT ROUTINE
LXI
CALL
CALL
LXI
SHLD
CALL
CALL
CALL
H,MES0
SCRN
INS
H,5000H
RAM
ERASE
PROG0
VERIF
;OUTPUT MESSAGE
;WAIT FOR ENTRY
;EPROM0 DATA ADDRESS
;VERIFY ERASURE
;PROGRAM EPROM
;VERIFY PROGRAMMED DATA
LXI
CALL
CALL
LXI
SHLD
CALL
CALL
CALL
H,MES7
SCRN
INS
H,5800H
RAM
ERASE
PROG0
VERIF
;OUTPUT MESSAGE
;WAIT FOR ENTRY
;EPROM1 DATA ADDRESS
;vERIFY ERASURE
;PROGRAM EPROM
;VERIFY PROGRAMMED DATA
CHECK ERASURE, PROGRAM, VERIFY EPROM2
EPRM2
*
*
*
4000H
4000H
0D000H
0F0H
061BH
06CBH
CHECK ERASURE, PROGRAM, VERIFY EPROM1
EPRM1
*
*
*
ORG
EQU
EQU
EQU
EQU
EQU
CHECK ERASURE, PROGRAM, VERIFY EPROM0
EPRM0
*
*
*
8,13,25
*****************************
LOC
PROM
CPORT
INS
OUTS
*
*
*
OPCD OPERAND
LXI
CALL
CALL
LXI
SHLD
CALL
CALL
CALL
H,MESB
SCRN
INS
H,6000H
RAM
ERASE
PROG0
VERIF
;OUTPUT MESSAGE
;WAIT FOR ENTRY
;EPROM2 DATA ADDRESS
;VERIFY ERASURE
;PROGRAM EPROM
;VERIFY PROGRAMMED DATA
CHECK ERASURE, PROGRAM, VERIFY EPROM3
EPRM3
LXI
CALL
CALL
LXI
SHLD
CALL
CALL
CALL
LXI
H,MES9
SCRN
INS
H,6800H
RAM
ERASE
PROG0
VERIF
H,MES10
;OUTPUT MESSAGE
;WAIT FOR ENTRY
;EPROM3 DATA ADDRESS
;VERIFY ERASURE
;PROGRAM EPROM
;VERIFY PROGRAMMED DATA
;OUTPUT MESSAGE
80
PAGE 2
ADDR B1 B2 B3 E LINE LABEL
4063
4066
4066
4067
4067
411169
41116C
4060
41116E
411170
4073
411174
411175
411176
411179
41117C
407F
411180
411183
411186
4087
4088
411189
4089
408C
41118F
4092
411195
4098
409A
41119C
41119E
CD C9 42
C9
0E
11
1A
13
FE
C2
7A
A1
B3
C2
21
CD
C9
21
CD
33
33
C9
1117
1110 Dill
21
CD
21
CD
CD
3E
03
1!16
IIIE
60
C9
1118
C9
1B
1112
F0
1111
1!17
FF
8111 4111
6C 4111
21 41
C9 42
33 41
C9 42
41
42
41
42
1116
't0A0 11 00 D0
40A3
40A6
4111A7
40A8
40A9
40AA
40AB
4111AC
40AD
40B0
4111B1
4111B4
40P.5
40:86
40:89
40BC
4111BD
40BD
4111BF
40C2
40C5
4111C6
4111C7
40C8
4111C9
2A
7E
12
13
23
7A
A1
B3
C2
1115
C2
1B
1A
21
CD
C9
EC 42
A6 4111
Alii 4111
7C 41
C9 42
IIIE 1117
11 0111 D0
2A EC 42
46
1A
13
23
B8
1158111
111590
1116111111
111610
11162111
11163111
1164111
11165111
11166111
067111
11168111
11169111
1117111111
11171111
111720
11173111
11174111
11175111
111760
11177111
1!1780
111790
111800
11181111
1!182111
111830
1!1840
111850
11186111
111870
111880
1!189111
0900
111910
111920
111930
111940
111950
1!1960
11197111
11198111
11199111
10111111
111110
11112111
111130
11114111
11115111
11116111
11117111
11118111
11119111
110111
111111
112111
113111
114111
1150
*
*
ERASE
ER1
ERROR
*PROGIII
PROGi
PROG2
*VERIF
VERF1
OPCD OPERAND
CALL SCRN
;RETURN TO MOOS
RET
MVI
LXI
LDAX
INX
CPI
JNZ
MOV
ANA
ORA
JNZ
LXI
CALL
RET
LXI
CALL
INX
INX
RET
C,7
D,PROM
D
D
IIIFFH
ERROR
A,D
LXI
CALL
LXI
CALL
CALL
MVI
OUT
MVI
MVI
LXI
LHLD
MOV
STAX
INX
INX
MOV
ANA
ORA
JNZ
DCR
JNZ
DCX
LDAX
LXI
CALL
RET
H,MES3
SCRN
H,MES11
SCRN
INS
A,2
CPORT
:s, 1
C,7
D,PROM
RAM
A,M
D
D
H
A,D
MVI
LXI
LHLD
MOV
LDAX
INX
INX
CMP
c
E
ER1
H,MES1
SCRN
H,MES2
SCRN
SP
SP
c
E
PROG2
B
PROG1
D
D
H,MES4
SCRN
C,7
D,PROM
RAM
B,M
D
D
H
B
81
PAGE 3
ADDR :Bl :B2 :B3 E LINE LABEL
40CA
40CD
40CE
40CF
40D0
40D3
4006
lt0D9
40DA
40DD
40E0
40E1
40E2
40E3
40E3
40E6
40E9
40EC
40EF
40F2
40F5
40FB
40F:B
40FE
4101
4104
4107
4108
410B
410E
4111
4114
4117
411A
411D
412111
4121
4124
4127
412A
4120
413111
4132
4133
4136
4139
413C
413F
4142
4145
4148
414B
414E
414F
4152
4155
4158
415:8
C2
7A
Al
:B3
C2
21
CD
C9
21
CD
33
33
C9
49
54
4C
50
4D
49
50
47
4D
4E
53
4:8
24
50
53
52
55
2111
45
52
44
5B
45
53
45
45
46
44
5B
2A
20
52
20
41
52
45
4F
2A
24
50
47
4D
42
54
DA 40
C5 40
99 41
C9 42
AF 41
C9 42
4E
41
20
52
30
4E
52
52
4D
47
4F
45
53
4C
45
4F
20
20
4F
41
49
20
43
54
52
53
45
52
57
4E
45
59
45
20
54
4E
48
2111
41
24
52
55
20
52
49
24
41
52
56
49
45
2A
45
4F
45
53
45
52
52
2A
2A
50
4D
52
55
20
52
20
2A
52
52
20
4F
45
4F
41
41
52
44
OPCD OPERAND
JNZ
MOV
ANA
ORA
ERROR!
A,D
DT
'INSTALL EPROM0 IN PROGRAMMING SOCKET$'
1310 MES11
DT
'PRESS RETURN WHEN READY$'
1320
1330 MES1
DT
DT
'[ '
1340
1350 MES2
DT
DT
'[ '
1360
DT
'PROGRAM ABORTED$'
1160
1170
1180
1190
1200
1210
1220
1230
1240 ERROR!
1250
1260
1270
1280
1290 *
1300 MES0
E
JNZ VERF1
LXI H,MES5
CALL SCRN
RET
LXI H,MES6
CALL SCRN
INX SP
INX SP
RET
c
'ERASURE VERIFIED$'
'***
EPROM ERASURE ERROR
****'
82
PAGE 4
ADDR :81 :82 P·3 E LINE LABEL
415E
415F
4160
4163
4166
4169
416C
416F
4172
4175
4178
417:8
417C
417F
4182
4185
4188
418:8
418E
4191
4194
4197
4198
4199
419C
419F
41A2
41A5
41AB
41AP.
41AE
41AF
41B2
41B5
41:88
·41BP.
41BE
41C1
41C4
41C7
41CB
41CP.
41CE
41D1
41D4
41D7
41DB
41D9
41DC
41DF
41E2
41E5
41EB
41EP.
41EE
41F1
41F4
41F7
24
5:8
54
4E
52
52
4D
47
57
43
4F
5:8
54
4E
52
52
4D
47
57
43
4F
24
5:8
45
4F
44
41
45
46
44
5P.
2A
20
52
20
54
45
4F
2A
24
50
47
4D
42
54
24
5P.
49
54
4C
50
4D
49
50
47
4D
4E
53
55
20
4F
41
49
20
49
48
4E
52
50
47
4D
4E
53
54
20
24
55
20
4F
41
49
20
49
48
46
52
50
47
4D
4E
53
54
20
46
50
4D
41
20
52
49
24
52
20
54
56
49
45
24
2A
45
4F
44
41
52
52
2A
2A
50
4D
41
20
52
20
2A
52
52
20
4F
45
4F
41
41
52
44
4E
41
20
52
31
4E
52
52
4D
47
4F
53
4C
45
4F
20
20
4F
41
49
20
43
OPCD OPERAND
1370
1380 HES3
DT
DT
1390
1400 MES4
DT
DT
1410
1420 MESS
DT
DT
1430
1440 MES6
DT
DT
1450
DT
1460
1470 MES7
DT
DT
..
[
'TURN PROGRAMMING SWITCH ON$'
..
[
'TURN PROGRAMMING SWITCH OFF$'
..
[
'EPROM DATA VERIFIED$$'
..
[
'***
EPROM DATA ERROR
****'
'PROGRAM ABORTED$'
..
[
• INSTALL EPROM1 IN PROGRAMMING SOCKET$'
~
83
PAGE 5
ADDR B1 B2 B3 E LINE LABEL
41FA
41FD
41FE
4201
4204
4207
420A
4200
4210
4213
4216
4217
421A
421D
4220
4223
4226
4229
422C
422F
4232
4235
4238
423B
423C
423F
4242
4245
4248
424B
424E
4251
4254
4255
4258
425B
425E
4261
4264
4267
426A
4260
4270
4273
4276
4279
427A
4270
4280
4283
4286
4289
428C
428F
4292
4293
4296
4299
4B
24
50
53
52
55
20
45
52
44
5B
49
54
4C
50
4D
49
50
47
4!}
4E
53
4B
24
50
53
52
55
20
45
52
44
5B
49
54
4C
50
40
49
50
47
40
4E
53
4B
24
50
53
52
55
20
45
52
44
5B
45
4F
20
OPCD OPERAND
45 54
52
53
45
52
57
4E
45
59
45
20
54
4E
48
20
41
24
4E
41
20
52
32
4E
52
52
4D
47
4F
45
53
4C
45
4F
20
20
4F
41
49
20
43
54
52
53
45
52
57
4E
45
59
45
20
54
4E
48
20
41
24
4E
41
20
52
33
4E
52
52
40
47
4F
45
53
4C
45
4F
20
20
4F
41
49
20
43
54
52
53
45
52
57
4E
45
59
45
20
54
4E
48
20
41
24
50 52
ltD 53
30 20
1480
DT
1490
1500 MESS
DT
DT
1510
DT
1520
1530 MES9
DT
DT
1540
DT
1550
1560 MES10
DT
DT
'PRESS RETURN WHEN READY$'
..
[
'INSTALL EPROM2 IN PROGRAMMING SOCKET$'
'PRESS RETURN WHEN READY$'
..
[
'INSTALL EPROM3 IN PROGRAMMING SOCKETS'
'PRESS RETURN WHEN READY$'
..
[
'EPROMS 0-4 PROGRAMMED AND VERIFIED$'
84
PAGE 6
ADDR B1 B2 B3 E LINE LABEL
429C
429F
42A2
42A5
42A8
42AB
42AE
42:81
42:84
42B6
42:89
42BC
42BF
42C2
42C5
42C8
42C9
42C9
42CA
42CC
42CD
42CE
42D0
42D1
42D4
42D7
42D8
42DB
42DE
42E1
42E1
42E3
42E6
42ES
42EB
42EC
42EC
42EE
42EE
34
52
52
4D
:20
44
45
46
44
52
55
49
20
20
4F
5:8
46
3E
BB
CB
3E
BS
C2
CD
23
C3
CD
C3
06
CD
06
CD
C9
20
4F
41
45
41
20
52
49
24
45
52
4E
54
4D
53
OPCD OPERAND
50
47
4D
44
4E
56
49
45
54
4E
47
4F
44
24
5E·
24
DB 42
E1 42
C9 42
CB 06
Dl' 42
0A
CB 06
0D
CB 06
1570
DT
'RETURNING TO MDOS$'
15S0
1590
1600
1610
1620
1630
1640
1650
1660
1670
16S0
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1S00
1S10
DT
'[
MOV
MVI
CMP
RZ
MVI
CMP
JNZ
CALL
INX
JMP
CALL
JMP
B,M
A, , [,
B
*
SCRN
SCRN2
SCRN1
*CRLF
*
RAM
*
.
A,'$'
B
SCRN1
CRLF
H
SCRN
OUTS
SCRN2
MVI
CALL
MVI
CALL
RET
B,0AH
OUTS
B,0DH
OUTS
DS
2
END
85
PAGE 7
SYMBOL TABLE
LOC
PROM
CPORT
INS
OUTS
EPRM121
EPRM1
EPRM2
EPRM3
ERASE
ER1
ERROR
PROG0
PROG1
PROG2
VERIF
VERF1
ERROR!
MES0
MES11
MES1
MES2
MES3
MES4
MESS
MES6
MES7
MESS
MES9
MES10
SCRN
SCRN2
SCRN1
CRLF
RAM
4000
012100
1210F0
1!161B
1216CB
41!100
41211S
41!130
404S
41!167
41216C
41!1S0
41!1S9
40A0
40A6
41!1BD
40C5
4121DA
41!1E3
411!1S
4121
4133
4160
417C
4199
41AF
4109
4217
4255
4293
42C9
4207
42DB
42E1
42EC
ERRORS THIS ASSEMP·L Y 1211!10121
APPENDIX E
CONTROLLER PROGRAM LISTING
86
87
PAGE 1
ADDR B1 B2 B3 E LINE LABEL
1!1000
0000
0000
0000
0000
0000
1!1000
0000
0000
0000
0000
0000
1!1000
0000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
C000
007E
0001
0002
0003
0005
F800
007D
0002
007C
0000
0001
0001
0001
007C
0014
0008
F800
F802
F804
F806
F808
F80E
F816
F81E
F826
F82E
F836
F83E
F83F
F840
F841
F842
F843
F844
F846
F848
F84A
F84B
F84C
F89F
F8A3
F8AE
F8B0
F8B0
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
OPCD OPERAND
TAB
8,13,25
*******************************
*
*
*
*
*
*
*
*
*
*
MSE GRADUATE PROJECT
4/11/83
KWHY TRANSMITTER CONTROLLER
D.R. THOMPSON II
FILES: TEST2, TEST3, TEST4
*
*
*
*
*
*
*
*
*******************************
PORT!
PORT2
OPT2
PORT3
NMLEN
RAM
TTS
TTYDA
TTI
VBST
VBMK
VBOT
TTYTR
TTO
NCOM
NULL
HRS
MIN
SEC
HUN
DSTOR
EBSST
EBSET
BRST
BRET
PWRDT
PWRU
ERFS
MEST
BRCS
TMRS
NCHR
MTRA
ICNT
HALM
LALM
MOST
MEMK
IBUF
BBUF
ABUF
PNTR
HCON
ADDS
ORG
E(iiU
EG!U
EG!U
EG!U
0C000H
07EH
01H
02H
03H
Elj~U
5
EG!U
EG!U
EG!U
EG!U
EGIU
EG!U
EG!U
EGIU
EG!U
EGIU
EG!U
EGIU
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EGIU
EliiU
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
0F800H
7DH
02H
7CH
00H
01H
01H
01H
7CH
14H
08H
RAM
RAM+0002H
RAM+0004H
RAM+0006H
RAM+0008H
DSTOR+6
EBSST+8
EBSET+8
BRST+8
BRET+8
PWRDT+8
PWRU+8
ERFS+l
MEST+1
BRCS+1
TMRS+1
NCHR+1
MTRA+1
ICNT+2
HALM+2
LALM+2
MOST+!
MEMK+1
IBUF+53H
BBUF+04H
ABUF+0BH
PNTR+2
HCON
;I/0 PORT 1
;INPUT PORT 2
;OUTPUT PORT 2
;I/0 PORT 3
;NAME LENGTH
;START OF RAM
;USART STATUS PORT
;KEYBOARD STATUS MASK
;KEYBOARD INPUT PORT
;VIDEO BOARD STATUS PORT
;VIDEO BOARD STATUS MASK
;VIDEO BOARD OUTPUT PORT
;PRINTER STATUS MASK
;PRINTER OUTPUT PORT
;NO. OF LEGAL COMMANDS
;NULLS AFTER CARRIAGE RETURN
;CLOCK TIME STORAGE
;DATE STORAGE
;EBS TEST START TIME
;EBS TEST END TIME
;BEAM RESTART START TIME
;BEAM RESTART END TIME
;POWER FAILURE TIME
; POWER RESTORED TIME
;ERROR FLAG STORAGE
;METER ERROR FLAG STORAGE
;RESTART ATTEMPT COUNT
;POWER FAIL TIME COUNT
;COMMAND LENGTH STORAGE
;METER ADDRESS STORAGE
; INITIAL COUNT STORAGE
;HIGH ALARM STORAGE
;LOW ALARM STORAGE
;STORAGE FOR MOST
;METER FLAG MASK STORAGE
; INPUT BUFFER
;BINARY BUFFER
;ASCII BUFFER
;POINTER STORAGE
88
PAGE 2
ADDR P.1 P.2 P.3 E LINE LABEL
C000
C000
C000
C00111
C000
C00111
C000
C000
C00111
C00111
C000
C003
C005
C005
C007
C009
C1210B
C00C
C00E
C00E
C010
C12112
C014
C017
C01A
C01D
C01E
C020
C020
C021
C023
C023
C025
C027
C029
C02B
C02D
C02F
C031
C033
C033
C035
C037
C039
C03B
C03B
C03E
C041
C043
C046
C049
C04C
C04F
C052
C055
C058
C05P·
C05E
F8P.2
F8P.8
F8B9
F8P.F
F8C5
F8C6
F8CC
C3 03 C0
DB 7F
3E
D3
D3
F3
ED
00
7E
02
5E
3E
03
D3
21
03
7P.
7A
E5 C7
22 BF F8
21 BF F8
70
03 78
7C
ED 47
3E
D3
3E
D3
3E
D3
3E
03
AS
79
60
79
05
78
20
78
3E
03
3E
D3
4E
7D
37
70
31
21
36
CD
21
CD
CD
CD
CD
CD
CD
CD
FF
B8
01
60
E5
BA
6A
6A
AP·
6A
85
6A
FP·
F8
C1
C3
C1
C1
C1
C5
C1
CF
C1
2058
2059
2060
211161
211162
2063
211164
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
208121
2081
2082
2083
2084
2085
2086
2087
211188
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
211213
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
FP.UF
MOST
*ZONE
ISRA
*PRT3
*
UNIT
DFST
f.EG
*
*
*
*
*
*
*
OPCD OPERAND
EGIU
EGIU
HCON+2
FP.UF+6
EGIU
EGIU
MDST+1
ZONE+6
EGIU
ISRA+6
EGIU
EGIU
JMP
IN
PRT3+1
UNIT+6
BEG+0003H
7FH
MVI
OUT
OUT
DI
A,0
PORT1
OPT2
;FILE NAME BUFFER
;MODE/OUTPUT STREAM STORAGE
;STORAGE
;TIME ZONE 0111=PST
;INTERRUPT SVC ROUTINE
;ADDRESS STORAGE
;OUTPUT PORT 3 DATA
;STORAGE
;METER DIGIT STORAGE
;DIAGNOSTIC FLAG STORAGE
;RESET THE SBC-100
;AUTOSTART HARDWARE
;RESET SBC-100
;PARALLEL OUTPUT
;RESET OUTPUT PORT 2
;DISABLE INTERRUPTS
;SET MODE 2 INTERRUPTS
(\!\
0EDH,5EH
MVI
OUT
OUT
LXI
SHLD
LXI
MOV
OUT
A,03H
7P.H
7AH
H,SVC1
ISRA
H,ISRA
A,L
78H
;DISAf.LE CTC CH. 2,3
MOV
DP·
A,H
0EDH,47H
;LOAD INTERRUPT VECTOR
;MSB TO CPU I REGISTER
MVI
OUT
MVI
OUT
MVI
OUT
MVI
OUT
A,0A5H
79H
A,60H
79H
A,05H
78H
A1 20H
78H
;SET CTC CHANNEL 1 FOR
; 100 HZ INTERRUPTS FOR
; REAL-TIME CLOCK
MVI
OUT
MVI
OUT
A,4EH
7DH
A,37H
7DH
;SET USART TO 300 BAUD
LXI
LXI
MVI
CALL
LXI
CALL
CALL
CALL
CALL
CALL
CALL
CALL
SP,RAM+03FFH ;SET STACK TOP
;INITIALIZE MOST
H,MDST
M,01H
;VIDEO BOARD
CLRV
;COLD START INIT. MSG
H1 EMES4
SCRN
CRLF
CRLF
;TIME SETTING ROUTINE
SETC
CRLF
;DATE SETTING ROUTINE
SETD
CRLF
;STORE CLOCK ISR ADDR
;LOAD CTC INTERRUPT
;VECTOR REGISTER
;SET CTC CHANNEL 0
;TO PROVIDE 4. 8 KHZ
;CLOCK TO USART
;<NO INTERRUPTS>
'
.
89
PAGE 3
ADDR f.1 f.2 f.3 E LINE LAJ?.EL
C05E
C061
C064
C067
C06A
C06A
C06D
C06F
C072
C074
C077
C079
C07C
C07F
C0S1
C0S4
C0S7
C0SA
C08D
C090
C090
C093
C096
C098
C09P.
C09C
C09E
C0A1
C0A4
C0A7
C0A9
C0AC
C0AD
C0AF
C01'·2
C0B4
C0B5
C0B7
C0B8
C0BA
C0BD
C0C0
C0C1
C0C2.
C0C2
C0C4
C0C7
C0C9
C0CA
C0CO
C0CE
C0CF
C001
C004
C007
C0D9
C00C
C00E
CD
21
CD
CD
6A
AS
45
6A
C1
C2
CB
C1
21
36
21
36
21
36
31
CD
06
CD
CD
CD
CD
C3
BB
01
3F
00
3E
00
FF
6A
3E
17
90
C6
7F
6A
FB
2122
FB
FB
FB
C1
C1
C0
C1
Cl
C0
21 4C FS
22 B0 FS
1E
CD
7S
FE
C:2
CD
C3
FE
C2
70
FE
CA
36
23
36
23
3E
CD
21
73
C9
FE
C2
3E
BD
CA
21\
1D
06
CD
C3
FE
OA
FE
02
02
0A Cl
18
A7
6A
90
0D
C2
C0
C1
C0
C0
4C
90 C0
0D
01
9F
Fl C0
4B FS
0S
07 C0
4C
9S C0
0S
17
9S
20
9S
5B
9S
2116 SIGNON
2117
2118
2119
2120 *
21:21 EOR
C1
C0
C0
C0
2123
21:24
2125
2126
2127
2129
2129
2130
2131
2132
:2133
2134
:2135
2136
:2137
213S
2139
:2140
:2141
2142
2143
2144
2145
2146
2147
214S
2149
2150
2151
2152
2153
2154
2155
2156
2157
215S
2159
2160
2161
2162
2163
2164
2165
2166
2167
216S
2169
2170
2171
2172
:2173
*READ
NEXT
CR
*DEL
BSPA
CHAR
OPCD OPERAND
CALL
LXI
CALL
CALL
CRLF
H,EMES3
SCRN1
CRLF
LXI
MVI
LXI
MVI
LXI
MVI
LXI
CALL
MVI
CALL
CALL
CALL
CALL
JMP
H,MDST
M,01H
H,MEST
M,0
H,ERFS
M,0
SP,RAM+3FFH
CRLF
B,3EH
OUTS
READ
VALC
COMM
EOR
LXI
SHLD
MVI
CALL
MOV
CPI
JNZ
CALL
JMP
CPI
JNZ
MOV
CPI
J.Z
MVI
INX
MVI
INX
MVI
CALL
LXI
MOV
RET
H,IBUF
;GET INPUT BUFFER ADDRESS
;SAVE ADDRESS
ADDS
E,2
;INITIALIZE COUNT
; INPUT A LINE
INS
A,B
;CHECK FOR CNTL-X
24
CR
;OUTPUT CRLF
CRLF
READ
0DH
DEL
A,L
;CHECK FOR FIRST CHARACTER
IBUF&0FFH
READ
M,0DH
;PUT CR AT END OF LINE
H
;PUT EOF SYMBOL IN LINE
M.t
H
A,IBUF+83&0FFH
;CLEAR REMAINING BUFFER
CLER
H,IP.UF-1
M,E
;SAVE CHARACTER COUNT
CPI
JNZ
MVI
CMP
JZ
DCX
OCR
MVI
CALL
JMP
CPI
JC
CPI
JNC
0SH
CHAR
A,IBUF&0FFH
L
NEXT
H
E
B,0SH
OUTS
NEXT
NEXT
'Z'+1
NEXT
;OUTPUT SIGN-ON MSG
; SET CONVERSATIONAL MODE FLAG
;CLEAR METER FLAGS
;CLEAR ERROR FLAGS
;WARM START ENTRY PT
;OUTPUT PROMPT
;INPUT A COMMAND
;AND EXECUTE
;CHECK FOR BACKSPACE
;DECREMENT POINTER
;DECREMENT COUNT
;SEND BACKSPACE TO
;VIDEO BOARD
;CHECK FOR LEGAL CHARACTER
90
PAGE 4
ADDR P.l B2 B3 E LINE LABEL
C0E1
C0E2
C0E5
C0E6
C0ES
C0E9
C0EC
C0ED
C0EE
C0F1
C0F2
C0F3
C0F5
C0F6
C0F9
C0FB
C0FD
C100
C102
C104
C106
C109
C10A
C10A
C10C
C10C
C10E
C111
C113
C115
C116
C117
C11S
CllB
CllC
C11D
C11F
C121
C124
6126
C129
C12B
C12D
C130
C131
C133
C135
C138
C139
C13B
C13D
C140
C141
C143
C145
C148
C149
C14A
47
CD
70
3E
BD
CA
23
lC
C3
BD
CS
36
23
C3
DB
E6
CA
DB
E6
FE
CA
C9
17 Cl
9D
CF C0
9S C0
20
Fl C0
7D
02
F9 C0
7C
7F
1S
6A C0
DB 7D
E6
CA
DB
E6
47
C9
E5
21
7E
E1
E6
FE
CA
FE
CA
DB
E6
CA
7S
D3
FE
CC
C9
DB
E6
CA
78
FE
D3
cc
02
0A Cl
7C
7F
BS FS
C0
80
59 Cl
40
39 Cl
00
01
29 Cl
01
0D
DD C7
7D
01
39 Cl
0D
7C
49 Cl
C9
C5
0E 08
2174
2175
2176
2177
217S
2179
21S0
21S1
21S2
21S3
21S4
21S5
21S6
21S7
21SS
21S9
2190
2191
2192
2193
2194
2195
2196
2197
219S
2199
2200
2201
CLER
INK
INK1
*INS
*
OPCD OPERAND
MOV
CALL
MOV
MVI
CMP
JZ
INX
INR
JMP
CMP
RZ
MVI
INX
JMP
IN
ANI
JZ
IN
ANI
CPI
JZ
RET
B,A
;ECHO CHARACTER
OUTS
M,B
A,IBUF+S1&0FFH
;CHECK FOR END OF LINE
L
BSPA
H
; INCREMENT CHARACTER COUNT
E
NEXT
L
.
M, •
H
CLER
TTS
TTYDA
INf\
TTI
7FH
'X'-40H
EOR
;PLACE BLANK IN MEMORY
IN
TTS
;INPUT A CHARACTER
;FROM KEYBOARD
ANI
JZ
IN
TTYDA
INS
TTI
7FH
p.,A
2202
ANI
2203
2204
2205 OUTS
2206
2207
2208
2209
2210
2211
2212
2213
2214 OUT!
2215
2216
2217 OK
221S
2219
2220
2221
2222 OUTP
2223
2224
2225
2226
MOV
RET
PUSH
LXI
MOV
POP
ANI
CPI
JZ
CPI
JZ
IN
ANI
JZ
MOV
OUT
CPI
cz
H
H,MDST
A,M
H
0C0H
080H
; INPUT DATA
;STRIP PARITY
;OUTPUT A CHARACTER
oun.
40H
OUTP
VBST
VBMK
OUT!
A,P.
VBOT
0DH
BEEP
2227
RET
IN
ANI
JZ
MOV
CPI
OUT
2228
2229
2230 NULLS
2231
RET
PUSH B
MVI C,NULL
cz
;CHECK FOR KEYBOARD DATA
TTS
TTYTR
OUTP
A,P.
0DH
TTO
NULLS
;OUTPUT TO CRT DISPLAY
; SEND BEEP TONE TO KEYP·OARD
;OUTPUT A CHARACTER
;TO PRINTER
;OUTPUT NULL STREAM
91
PAGE 5
ADDR B1 B2 B3 E LINE LABEL
C14C
C14E
C150
C153
C154
C157
C158
C159
C15C
C15F
C160
C160
C162
C165
C166
C169
C16A
C16A
C16C
C16F
C171
C174
C175
C175
C178
C17B
C17E
C17F
C17F
C182
C1S4
C1S6
C1S9
C18C
C18F
C190
C193
C196
C197
C19A
C19P·
C19C
C19D
C19E
C19F
C1A0
C1A1
C1A2
C1A5
C1A6
C1A7
C1A7
C1A8
C1A9
C1AC
ClAD
ClAE
C1AF
06
FE
CD
00
C2
C1
C9
CD
CD
C9
00
00
39 C1
50 C1
29 C1
39 C1
0E 10
CD 6A Cl
00
C2 62 Cl
C9
06
CD
06
CD
C9
0A
17 Cl
00
17 C1
CD 61 C2
CD 6A Cl
2A 9F F8
E9
11
06
3E
32
CD
C2
E9
2A
3A
4F
CD
1A
6F
13
1A
67
C8
13
05
C2
04
C9
51
14
04
42
90
69
C6
FB
Cl
C2
p.0 F8
42 F8
A7 Cl
90 Cl
1A
BE
C2 B3 C1
23
13
00
C2 A7 C1
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
-2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
225S
2259
2260
2261
2262
2263
2264
2265
2266
2267
226S
2269
2270
2271
2272
2273
2274
2275
2276
2277
227S
2279
2280
22S1
2282
2283
2284
22S5
22S6
22S7
22SS
22S9
NULLS!
OUTB
*CLRV
CLRV1
*CRLF
*
EXEC
*COMM
COMS
OPCD OPERAND
MVI
CPI
CALL
OCR
JNZ
POP
RET
CALL
CALL
RET
B,0
0
OUTP
c
NULLS!
B
OUT1
OUTP
1'1VI C,10H
CALL CRLF
OCR c
JNZ CLRV1
RET
1'1VI
CALL
MVI
CALL
RET
B,0AH
OUTS
B,0DH
OUTS
CALL VCHK
CALL CRLF
LHLD BBUF
PCHL
LXI
MVI
MVI
STA
CALL
JNZ
PCHL
LHLD
LOA
MOV
CALL
LDAX
MOV
INX
LDAX
MOV
;CLEAR ZERO FLAG
D,CTAB
B,NCOM
A,4
NCHR
COMS
WHAT
ADDS
NCHR
C,A
SEAR
D
L,A
D
D
H,A
;OUTPUT CHARACTER TO CRT
;AND PRINTER
;CLEAR CRT SCREEN
;PRINT CARRIAGE RETURN
; AND LINE FEED
;CHECK FOR COMMAND
;GET COMMAND ADDRESS
;JUMP TO COMMAND ADDRESS
;COMMAND TABLE ADDRESS
;NUMBER OF COMMANDS
;COMMAND LENGTH
;SEARCH THE TABLE
;JUMP IF UNKNOWN COMMAND
;GET COMPARE ADDRESS
;GET STRING LENGTH
;COMPARE STRINGS
;GET VALUE
;GET VALUE
RZ
INX
OCR
JNZ
INR
RET
*SEAR
LDAX
CMP
JNZ
INX
INX
OCR
JNZ
D
B
COMS
;SET TO NEXT STRING
;DECREMENT COUNT
B
;CLEAR .ZERO FLAG
D
1'1
INCA
H
D
;GET CHARACTER
;COMPARE CHARACTERS
c
SEAR
;DECREMENT CHARACTER COUNT
92
PAGE 6
ADDR B1 B:2 B3 E LINE LABEL
C1B2
C1B3
C1B4
C1B5
C1B8
C1B9
C1M
C1BA
C9
13
00
C2 B3 C1
0C
C9
46
3E 0D
C1BD BB
ClBE cs
ClBF CD 17
C1C2 23
C1C3 C3 BA
C1C6
C1C6 CD CD
C1C9 DA 69
C1CC C9
ClCD 21 00
C1D0 22 Al
-,..,... B2
C1D3 .L
C1D6 CD 54
C1D9 21 4B
C1DC 23
C1DD 7E
C1DE FE 20
C1E0 3F
C1E1 D0
C1E2 cz DC
C1E5 22 AE
C1E8 CD 3C
-.ClE'FI ...,,.
ClEC D0
ClEO FE 2F
ClEF C2 17
C1F2 11 B2
ClFS 0E 05
C1F7 23
C1F8 7E
C1F9 FE 2F
ClFB CA 07
C1FE 0D
ClFF FA 69
C202 12
C203 13
C204 C3 F7
C207 3E 20
C209 0D
C20A FA 12
C20D 12
C20E 13
C20F C3 09
C212 CD 43
C215 3F
C216 D0
C217 11 A3
C21A CD 4A
C21D 78
cup.
Cl
Cl
Cl
C2
00
FB
F8
C2
FB
Cl
F8
C5
C2
F8
C2
C2
C1
C2
C2
C5
F8
C5
2:290
2291
:229:2
2293
:2294
2295
2296
2297
2298
2299
2300
2301
230:2
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
INCA
*
SCRN
*VALC
ETRA
VAL1
VAL2
VAL3
VAL4
DONE
VAL5
OPCD OPERAND
RET
INX
OCR
JNZ
INR
RET
MOV
MVI
CMP
Rl
CALL
INX
JMP
CALL
JC
RET
LXI
SHLD
SHLD
CALL
LXI
INX
MOV
CPI
CMC
RNC
JNZ
SHLD
CALL
CMC
RNC
CPI
JNZ
LXI
MVI
INX
MOV
CPI
Jl
DCR
JM
STAX
INX
JMP
MVI
OCR
JM
STAX
INX
JMP
CALL
CMC
RNC
LXI
CALL
MOV
D
c
INCA
c
;CLEAR ZERO FLAG
B,M
A,0DH
B
;OUTPUT A MESSAGE
OUTS
H
SCRN
ETRA
WHAT
;GET INPUT PARAMETERS
;JUMP IF ERROR
H1 0000H
BBUF+2
FBUF
ZBUF
H,IBUF-1
H
A,M
;GET A ZERO
; ZERO VALUE
;SET NO FILE NAME
;ZERO BUFFER
VAL1
PNTR
SBU\
;GET INPUT CHARACTER
;LOOK FOR FIRST CHARACTER
;SAVE POINTER
;St\IP TO FIRST PARAMETER
'I'
VALS
D,FBUF
C,NMLEN
H
A,M
;NO FILE NAME
'I'
VAL3
c
WHAT
D
D.
VAL2
A, ' '
c
DONE
D
D
VAL4
SBL2
D,ABUF
ALPS
A,B
; PLACE PARAMETER IN BUFFER
;GET DIGIT COUNT
93
PAGE 7
ADDR
~1
~2
C21E
C220
C221
C222
C225
C22B
C229
C22C
C22F
C232
C235
C236
C237
C23A
C23D
C23E
C240
C241
C242
C245
C24B
C249
C24C
C24F
C252
C253
C254
C254
C255
C258
C25A
C25P.
C25C
C25D
C260
C261
C261
C264
C265
C268
C269
C269
C26C
C26F
C272
C275
C275
C278
C27B
C27E
C281
C2B4
C2B6
C2B7
C2BA
C2BP.
C2BC
C2BF
FE
3F
DB
01
CD
DB
22
21
CD
CD
3F
D0
05
~3
A3 FB
69 C5
9F
A3
BB
3C
FB
FB
C5
C5
11 A7 FB
CD
7B
FE
3F
DB
01
CD
DB
22
21
CD
B7
C9
4A C5
05
A7 FB
69 C5
A1 FB
A7 FB
BB C5
AF
11 AF FB
1116 0C
1B
12
1115
C2 SA C2
C9
3A A3 FB
B7
CA 69 C2
C9
CD
21
CD
C3
6A
75
BA
6A
C1
C2
C1
C0
43
40
44
4F
46
4E
00
20
20
00
2A
2A
4F
41
2111
54
4F
44
4D
4E
4E
20
55
41 54
2A 2A
2A 20
E LINE
234B
2349
2350
2351
2352
2353
2354
2355
2356
2357
235B
2359
2360
2361
2362
2363
2364
2365
2366
2367
236B
2369
2370
2371
2372
2373
2374
2375
2376
2377
237B
2379
238111
2381
2382
2383
23B4
23B5
2386
2387
238B
2389
239111
2391
2392
2393
2394
LA~EL
OPCD OPERAND
CPI
CMC
RC
LXI
CALL
RC
SHLD
LXI
CALL
CALL
CMC
RNC
LXI
CALL
MOV
CPI
CMC
RC
LXI
CALL
RC
SHLD
LXI
CALL
ORA
RET
*
ZP.UF
ZBU1
*
XRA
LXI
MVI
DCX
STAX
OCR
· JNZ
RET
5
;CHECK
B,A.BUF
AHEX
;CONVERT VALUE
B.BUF
H,ABUF
NORM
SBLK
OF DIGITS
NUM~ER
;SAVE IN BINARY BUFFER
;NORMALIZE ASCII VALUE
;SKIP TO NEXT PARAMETER
D,ABUF+4
ALPS
A,P.
5
B,A.BUF+4
AHEX
BBUF+2
H,A.BUF+4
NORM
A
A
D,ABUF+12
B,12
D
D
;PUT PARAMETER IN BUFFER
;GET DIGIT COUNT
;CONVERT VALUE
;SAVE IN BINARY BUFFER
;NORMALIZE ASCII VALUE
;CLEAR CARRY
;LOAD f.UFFER WITH ZEROS
p,
ZBUl
LDA
ORA
JZ
RET
ABUF
A
WHAT
;CHECK FOR COMMAND PARAMETERS
CALL
LXI
CALL
JMP
CRLF
H,EMES
SCRN
EOR
;OUTPUT ERROR MESSAGE
;FOR UNKNOWN COMMAND
DT
•coMMAND NOT FOUND•
2395
2396 EMES1
DB
DT
0DH
• AT
2397
2398 EMES2
DB
DT
0DH
VCHK
*
WHAT
WHA1
MESS
*
EMES
.
.*****
FAULT DETECTED AT
.
94
PAGE 8
ADDR P·1 B2 P.3 ELINE LAP.EL
C292
C295
C298
C29P.
C29E
C2A1
C2A4
C2A5
C2A8
C2AP·
C2AE
C2P.1
C2P.4
C2P.7
C2P.A
C2P·D
C2C0
C2C2
C2C5
C2C8
C2CP·
C2CE
C2D1
C2D4
C2D7
C2D8
C2DP·
C2DE
C2E1
C2E4
C2E7
C2EA
C2ED
C2F0
C2F3
C2F4
C2F7
C2FA
C2FD
C300
C303
C306
C309
C30C
C30F
C312
C315
C317
C31A
C31D
C320
C323
C326
C329
C32C
C32F
C332
C335
46
4C
44
45
45
41
00
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
41
54
45
43
44
54
55
20
54
54
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
OPCD OPERAND
20
20
2399
2400 EMES3
DP.
DT
0DH
2401
DT
'*********************$'
2402
DT
'*
20
20
20
20
20
20
20
20
20
20
20
2403
DT
4P.
59
55
4D
49
43
54
4C
4E
44
41
2404
DT
2A
2A
2A
2A
2A 2A
2A 2A
2A
2A 2A
2A 2A 2A
2A
2A
2A
2A
2A
24
2A
'*****************************'
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
20 20
20 20
20 20 20
2~
20 20 20
20 20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
2A
2A
57
20
54
41
43
4F
52
20
44
41
20 20
20 20
20 20
20 20
20
20
20
20
20
20
20
20
20
20
20
24
20
48
41
4F
54
20
4E
4F
41
20
54
•••
'*
KWHY AUTOMATIC CONTROL AND DATA-'
95
PAGE 9
ADDR P.1 P.2 B3 E LINE LABEL
C338
C339
C33C
CJJF
C342
C345
C348
C34A
C34D
C350
C353
C356
C359
C35C
C35F
C362
CJ6S
C368
C369
C36C
C36F
C372
C375
C378
C37P.
C37D
C380
C383
C386
C389
C38C
C38F
C392
C395
C398
C399
C39C
C39F
CJA2
CJA5
CJAB
C3AP.
C3AE
CJP.0
CJE.J
CJB6
C3B9
CJBC
CJP.F
CJC2
CJC5
CJCB
CJCP.
CJCD
C3DIIl
C3D3
CJD6
CJD9
2D
4C
47
47
59
45
2A
2A
20
20
20
20
20
52
4F
31
20
20
20
20
20
20
20
20
2A
2A
20
20
20
2111
2111
20
2111
20
2111
OPCD OPERAND
4F
49
20
53
4D
24
20
20
20
20
20
56
53
4E
2E
20
47
4E
53
54
20
2405
DT
'LOGGING SYSTEM *$'
20
20
20
20
20
45
49
20
30
20
2406
DT
'*
20
20
20
20
20
20
24
20
20
20
20
20
20
20
20
20
20
2407
DT
20
20
20
20
20
20
20
20
20
2408
DT
20 20 20
2409
DT
2410
DT
'*****************************'
2411
DT
'**********************$'
20
20
20
20
20
20
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
20
20
20
20
20
20 20
20 20
20 20
20 20
20 20
20 20
24
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
2A
2A 2A
2A 2A
2A 2A
2A 2A
2A 2A
VERSION 1. Ill
**'
'*
**'
96
PAGE 10
ADDR B1 B2 B3 E L:INE LABEL
C3DC
C3DF
C3E2
C3E4
C3E5
C3E8
C3EB
C3EE
C3F1
C3F4
C3F7
C3FA
C3FD
C400
C403
C406
C407
C40A
C40D
C410
C413
C416
C419
C41C
C41D
C41E
C421
C424
C427
C42A
C42D
C430
C433
C436
C439
C43C
C43D
C440
C443
C446
C449
C44C
C44F
C452
C455
C458
C45B
C45C
C45F
C462
C465
C468
C46B
C46E
C471
C474
C477
C47A
2A
2A
2A
5B
2A
20
4C
53
52
49
54
4C
41
4F
2A
0D
53
20
2D
55
43
43
54
45
0D
20
4E
52
48
48
52
30
54
32
20
0D
45
45
54
20
4E
45
30
54
35
20
0D
45
45
54
20
43
44
30
54
35
20
0D
OPCD OPERAND
2A 2A
2A 2A
24
2A
43
44
54
54
4E
49
49
54
4E
2A
2A
4F
20
41
20
49
41
5A
49
20
2A
45
32
48
52
4C
4B
49
54
34
4F
20
54
20
45
4F
20
30
4F
34
3E
45
45
54
20
55
28
4E
52
48
4D
55
[
DT
DT
2414
2415 EMES5
DB
DT
0DH
'SET 24-HOUR CLOCK TIME'
2416
2417 EMES6
DB
DT
0DH
2418
2419 EMES7
DB
DT
0DH
'ENTER THE MINUTE <00 TO 59>
>•
2420
2421 EMES8
DB
DT
0DH
'ENTER THE SECOND (00 TO 59)
·'
2422
DB
0DH
'*** COLD START INITIALIZATION ***'
20
4F
20
4D
ENTER THE HOUR <00 TO 24>
'
·'
'
20
20
29
20
30
4F
39
3E
54
20
45
49
54
28
20
20
29
20
4E
52
48
53
4F
20
30
4F
39
3E
54
20
45
45
4E
28
20
20
29
20
20
..
2412
2413 EMES4
'
.
97
PAGE 11
ADDR B1 B2 P·3 E LINE LABEL
OPCD OPERAND
C47B
C47E
C481
C484
C487
C488
C48B
C48E
C491
C494
C497
C49A
C49B
C49C
C49F
C4A2
C4A5
C4A8
C4AB
C4AC
C4AF
C4B0
C4B3
C4B4
C4B7
C4BA
C4BD
C4C0
C4C3
C4C6
C4C9
C4CC
C4CF
C4D2
C4D5
C4D8
C4DA
C4DB
C4DE
C4E1
C4E4
C4E7
C4EA
C4EO
C4F0
C4F3
C4F6
C4F7
C4FA
C4FD
C500
C503
C506
C509
C50C
C50F
C512
C513
2423 EMES9
DT
'THE TIME IS '
2424
2425 EMES10
DB
DT
0DH
'SET DATE <MO/DA/YR>'
2426
2427 EMES11
DB
DT
0DH
'NOT OPERATIONAL'
2428
2429 EMES12
2430
2431 EMES13
2432
2433 EMES14
DB
DT
DB
DT
DB
DT
0DH
'PST'
0DH
'PDT'
0DH
'PRESS RETURN FOR PACIFIC STANDARD'
2434
DT
' TIME'
2435
2436 EMES15
DP·
DT
0DH
'ENTER THE MONTH <01 TO 12> '
2437
2438 EMES16
DB
DT
0DH
2439
2440 EMES17
DB
DT
0DH
' ENTER THE YEAR <83 TO 99> '
54
20
4D
49
0D
53
20
54
48
54
45
53
45
49
20
20
45
44
45
28 4D
2F 44
2F 59
29
0D
4E 4F
20 4F
45 52
54 49
4E 41
0D
50 53
0D
50 44
0D
50 52
53 53
52 45
55 52
20 46
52 20
41 43
46 49
20 53
41 4E
41 52
20 54
40 45
0D
45 4E
45 52
54 48
20 40
4E 54
20 28
31 20
4F 20
32 29
0D
20 20
4E 54
52 20
48 45
44 41
20 28
31 20
4F 20
31 29
0D
20 45
54
41
20
4F
41
52
54
50
41
4F
4C
54
54
45
20
54
4E
4F
50
49
43
54
44
44
49
54
20
45
4F
48
30
54
31
20
45
45
54
20
59
30
54
33
20
4E
ENTER THE DAY ( 01 TO 31 > '
98
PAGE 12
ADDR B1 B2 B3 E LINE LABEL
C516
C519
C51C
C51F
C522
C525
C52B
C52B
C52E
C52F
C532
C535
C53B
C53B
C53C
C53C
C53F
C540
C542
C543
C544
C547
C54A
C54C
C54D
C54E
C54F
C551
C552
C553
C554
C557
C55B
C55A
C55P.
C55D
C560
C562
C563
C565
C568
C569
C56C
C56D
C56E
C56F
C570
C571
C572
C573
C576
C578
C579
C57A
C57B
C57C
C57D
C580
54
20
45
45
20
33
4F
39
0D
54
20
54
49
0D
45
54
20
41
28
20
20
29
52
48
59
52
38
54
39
20
48
44
45
53
45
41
20
20
2A
7E
FE
C0
23
22
C3
06
12
04
78
FE
00
13
23
22
7E
FE
DB
FE
DA
FE
DB
FE
DA
C9
21
0A
B7
C8
29
29
29
29
CD
FE
3F
DB
85
6F
03
C3
06
AE F8
20
AE F8
3F C5
00
0P.
AE F8
30
3A
4C C5
41
51\
4C C5
00 00
80 C5
10
6C C5
30
OPCD OPERAND
2441
2442 EMES1B
DB
DT
0DH
'THE DATE IS '
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
247:2
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
DB
0DH
LHLD
MOV
CPI
RNZ
INX
SHLD
JMP
MVI
STAX
INR
MOV
CPI
RNC
INX
INX
SHLD
MOV
CPI
RC
CPI
JC
CPI
RC
CPI
JC
RET
LXI
LDAX
ORA
RZ
DAD
DAD
DAD
DAD
CALL
CPI
CMC
RC
ADD
MOV
INX
JMP
SUI
PNTR
A,M
*
SBLK
SBL1
SBL2
ALPS
ALPl
AHEX
AHE1
AHS1
;SKIP THROUGH STRING TO
;FIRST NONBLANK CHARACTER
' '
H
PNTR
SBL1
l\,0
D
B
A,B
11
D
H
PNTR
A,M
'0'
'9'+1
ALP1
'A'
'Z'+l
ALP1
H,0000H
B
A
;GET DIGITS FROM BUFFER AT f,C
;AND CONVERT TO BINARY
H
H
H
H
AHS1
10H
L
L,A
B
AHE1
48
;CONVERT ASCII DIGIT TO BINARY
99
PAGE 13
ADDR :81 :82 :83 E LINE LABEL
C582
C584
C585
C587
C588
C588
C58P.
FE 0A
DB
06 07
C9
CD 9:8
AF
esse BS
C58D cs
C58E
C58E B11
C58F C4 A3
C592 C0
C593 5A
C594 51
C595 48
C596 06 30
C598 C3 BE
C59P.
C59:S 46
C59C 23
C59D 4E
C59E 23
C59F 56
C5A0 23
C5A1 5E
C5A2 C9
C5A3
C5A3 73
C5A4 :211
C5A5 72
C5A6 211
C5A7 71
C5A8 2:8
C5A9 70
C5AA C9
C5A:S
C5AB F3
C5AC CD 6A
C5AF 21 07
C5B2 CD BA
C5P.5 CD 6A
C5BB 21 :84
C5BB CD BA
C5BE CD 0A
C5Cl FE 00
C5C3 21 :89
C5C6 C2 D1
C5C9 36 00
C5CB CD 6A
C5CE C3 06
C5D1 36 0F
C5D3 C3 85
C5D6 21 lE
C5D9 CD BA
C5DC CD 0A
C5DF 3E 32
C5E1 :88
C5
C5
C5
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
:2517
2518
2519
2520
2521
CPI
RC
SUI
RET
*
NORM
*
NOR1
*LOOM
C1
C4
C1
C1
C4
C1
C1
FB
C5
C1
C5
CF
C4
Cl
C1
10
7
CALL LOOM
XRA A
CMP B
RZ
;ADD ZEROS FOR 4 ASCII DIGITS
CMP
CNZ
RNZ
1'10V
1'10V
MOV
MVI
JMP
E,D
D,C
MOV
INX
MOV
INX
MOV
INX
B,M
H
c,M
H
D,M
H
E,M
;LOAD 4 CHARACTERS FROM MEMORY
M,E
;STORE 4 CHARACTERS
;FROM REGISTERS
t";(1V
E
STOM
c,P.
B, '0'
NOR1
RET
*
STOM
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
OPCD OPERAND
*
SETC
SETS
SETZ
SETE
SET1
1'10V
DCX
1'10V
DCX
1'10V
DCX
MOV
RET
DI
CALL
LXI
CALL
CALL
LXI
CALL
CALL
CPI
LXI
JNZ
I'IVI
CALL
JMP
MVI
JMP
LXI
CALL
CALL
1'1VI
CMP
H
M,D
H
M,C
H
M,11
;CLOCK-SET ROUTINE
CRLF
H,EMES5
SCRN
CRLF
H,EMES14
SCRN
INS
0DH
H, ZONE
SETZ
1'1,0
CRLF
SETE
1'1,0FH
SETD
H,EI'1ES6
SCRN
INB
A,32H
B
100
PAGE 14
ADDR B1 B2 l\3 E LINE LABEL
C5E2
C5E5
C5E6
CSES
C5EB
C5EE
C5F1
C5F4
C5F7
C5FA
C5FD
C600
C603
C606
C609
C60C
C60F
C611
C614
C615
C616
C617
C61S
C61B
C61E
C621
C624
C625
C626
C629
C62C
C62E
C62F
C632
C633
C635
C63S
C639
C63A
C63D
C63E
C641
C644
C646
C647
C64A
C64:B
C64D
C650
C651
C651
C654
C655
C657
C65A
C65B
C65D
C660
DA
78
FE
DA
21
CD
CD
21
CD
21
CD
CD
21
CD
21
CD
06
21
70
23
70
FB
CD
21
CD
CD
C9
70
CD
CD
3E
BS
DA
7S
FE
DA
23
70
CD
C9
CD
CD
3E
BS
DA
7S
FE
DA
C9
53
43
AB
53
44
S5
41
4F
DC C5
45 54
2546
2547
254S
2549
2550
2551
2552
2553
2554
2555
2556
2557
255S
2559
2560
2561
2562
2563
2564
2565
2566
2567
256S
2569
2570
2571
2572
2573
2574
2575
2576
2577
257S
2579
25S0
25S1
25S2
25S3
25S4
2585
25S6
25S7
258S
25S9
2590
2591
2592
2593
2594
2595
2596
C5
45 54
CF
55 54
30
DC
00
25
6A
3D
3E
02
25
6A
5C
3E
04
25
30
06
C5
FS
C6
C1
C4
C6
FS
C6
C1
C4
C6
FS
C6
FS
6A C1
n C4
BA C1
C9 C6
17 C1
0A C1
39
29 C6
30
29 C6
17 C1
BA C1
0A C1
35
3E C6
30
3E C6
SET4
SET2
SET3
*CTAB
OPCD OPERAND
JC
MOV
CPI
JC
LXI
CALL
CALL
LXI
CALL
LXI
CALL
CALL
LXI
CALL
LXI
CALL
MVI
LXI
MOV
INX
MOV
EI
CALL
LXI
CALL
CALL
RET
MOV
CALL
CALL
MVI
CMP
JC
MOV
CPI
JC
INX
MOV
CALL
RET
CALL
CALL
MVI
CMP
JC
MOV
CPI
JC
RET
SET1
A,B
30H
SET1
H,HRS
SET4
CRLF
H,EMES7
SET3
H,MIN
SET4
CRLF
H,EMESB
SET3
H,SEC
SET4
B,30H
H,HUN
M,B
H
M,B
CRLF
H,EMES9
SCRN
TIME
M, p,
OUTB
INS
A,39H
B
SET2
A,B
30H
SET2
H
M,B
OUTS
SCRN
INS
A,35H
B
SET3
A,B
30H
SET3
DT
'SETC'
2597
259S
DW
DT
SETC
'SETD'
2599
2600
DW
DT
SETD
'AUTO'
;COMMAND ADDRESS TABLE
101
PAGE 15
ADDR 111 112 B3 E LINE LABEL
C661
C663
C666
C667
C669
C66C
C66D
C66F
C672
C673
C675
C678
C679
C67B
C67E
C67F
C681
C684
C685
C687
C68A
C68P·
C68D
C690
C691
C693
C696
C697
C699
C69C
C69D
C69F
C6A2
C6A3
C6A5
C6A8
C6A9
C6AB
C6AE
C6AF
C6P.1
C6f.4
C6P.5
C6B7
C6P.A
C6BB
C6BD
C6C0
C6C1
C6C3
C6C6
C6C7
C6C9
C6C9
C6CC
C6CE
C6D1
C602
6C
44
47
7B
48
44
44
58
55
78
58
44
97
56
55
B5
56
44
BA
41
55
BF
41
44
C4
45
55
C7
45
44
CC
43
4D
A1
53
4D
AB
54
45
C9
44
50
01
42
4B
D1
49
4F
35
44
45
03
CD
0E
21
46
CD
OPCD OPERAND
cc
49 41
2601
2602
DW
DT
AUTO
'DIAG'
DA
45 41
2603
2604
DW
DT
DIAG
'HEAD'
D2
4D 54
2605
2606
DW
DT
HEAD
'XMTU'
C7
4D 54
2607
2608
DW
DT
XMTU
'XMTD'
C7
49 53
2609
'2610
DW
DT
XMTD
• VISU'
C7
49 53
2611
DW
DT
VISU
'VISD'
C7
55 52
2613
2614
ow
DT
VISD
'AURU'
C7
55 52
2615
2616
DW
DT
AURU
'AURD'
C7
58 43
2617
2618
ow
DT
AURD
'EXCU'
C7
58 43
2619
2620
DW
DT
EXCU
'EXCD'
C7
54 56
2621
2622
ow
DT
EXCD
'CTVM'
C7
54 56
2623
2624
DW
DT
CTVM
'STVM'
C7
49 4D
2625
2626
DW
DT
STVM
'TIME'
C6
55 4D
2627
2628
DW
DT
TIME
'DUMP'
C7
41 52
2629
2630
DW
DT
DUMP
'BARK'
C7
4E 46
2631
2632
ow
BARK
'INFO'
c8
41 54
2633
2634
ow
DT
INFO
'DATE'
D0
2635
2636
2637 *
TIME
2638
2639
2640 TIM1
2641
DW
DATE
CALL
MVI
LXI
MOV
CALL
BLK1
C,0BH
H,HRS
B,M
OUTS
32 C7
08
00 FB
17 C1
2612
DT
;OUTPUT THE TIME
102
PAGE 16
ADDR P.1 P-:2 P.3 E LINE LABEL
C6D5
C6D6
C6D7
C6DA
C6D:S
C6DC
C6DD
C6E0
C6E2
C6E5
C6E8
C6EP.
C6EE
C6EF
C6Fl
C6F4
C6F7
C6FA
C6FB
C6FE
C701
C701
C704
C707
C70A
C70B
C70E
C711
C712
C713
C715
C718
C71B
C71E
C7:21
C722
C725
C728
C729
C72C
C72D
C72E
C7:31
C732
C734
C737
C738
C738
C73B
C73C
C73D
C73E
C73F
C740
C743
C744
C745
C746
23
46
CD
23
0D
0D
CA
06
CD
C3
CD
21
7E
FE
C2
21
CD
C9
21
C3
CD
CD
2A
7E
CD
CD
DB
7D
E6
C2
C3
CD
CD
C9
CD
21
46
CD
23
46
CD
C9
06
CD
C9
17 C1
EB
3A
17
D1
32
P.9
C6
C1
C6
C7
Fe
00
FP· C6
AC C4
BA Cl
P.0 C4
F7 C6
61 C2
6A Cl
9F FB
1B C7
55 C7
0F
07 C7
04 C7
....... C7
32 C7
~,-..
38 C7
P.0 F8
17 C1
17 C1
20
17 Cl
21 p.0 FB
47
1F
1F
1F
1F
CD 4P. C7
77
23
78
CD 4P. C7
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
:2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
OPCD OPERAND
H
B,M
CALL OUTS
INX H
OCR c
DCR c
FIN
JZ
MVI P.,3AH
CALL OUTS
JMP TIM1
CALL BLK1
LXI H,ZONE
MOV A,M
CPI 0
JNZ FIN1
LXI H,EMES12
CALL SCRN
RET
LXI H,EMES13
JMP FIN2
INX
MOV
FIN
FIN2
FIN1
*
DUMP
DUMS
DUM1
HOT:B
HOUT
CHOT
BLK1
*BINH
;DUMP MEMORY CONTENTS
CALL
CALL
LHLD
MOV
CALL
CALL
RC
MOV
ANI
JNZ
JMP
CALL
CALL
RET
CALL
LXI
MOV
CALL
INX
MOV
CALL
RET
MVI
CALL
RET
VCHK
CRLF
BP.UF
·A,M
HOTP.
ACHK
B,' '
OUTS
;OUTPUT A BLANK
LXI
MOV
RAR
RAR
RAR
RAR
CALL
MOV
INX
MOV
CALL
H,HCON
B,A
;CONVERT BINARY TO ASCII HEX
A,L
0FH
DUM1
DUMS
HOUT
BLK1
P.INH
H,HCON
B,M
OUTS
H
B,M
OUTS
BIN1
M,A
H
A,B
BIN1
103
PAGE 17
ADDR B1 B2 B3 E LINE LABEL
OPCD OPERAND
C749
C74A
C74B
C74D
C74F
C751
C752
C754
C755
C755
C758
C75B
C75C
C75F
C762
C763
C766
C767
C768
C76B
C76C
C76C
C76F
C772
C775
C778
C778
C77A
C77C
C77F
C782
C784
C786
C788
C78A
C78D
C790
C792
C794
C796
C797
C799
C79C
C79E
C7A1
C7A4
C7A5
C7A7
C7A9
C7AA
C7AB
C7AE
C7AF
C7B1
C7B3
C7B4
C7B5
C7B7
MOV
RET
ANI
ADI
CPI
RC
ADI
RET
77
C9
E6
C6
FE
DB
C6
C9
111F
3111
3A
1117
2A 9F FS
3A A2 FS
BC
C2 67 C7
3A A1 F8
BD
C2 67 C7
37
23
22 9F FS
C9
CD
21
CD
C3
6A
9C
BA
6A
3E
03
CD
CD
3E
03
3E
03
CD
CD
3E
D3
D3
C9
3E
CD
3E
C3
21
7E
E6
03
77
C9
21
7E
F6
03
77
C9
3E
C3
85
7E
3B
3P.
00
7E
8111
02
3P.
3P.
0111
7E
1112
C1
C4
C1
C0
cc
cc
cc
cc
2111
7A C7
4111
7A C7
C5 F8
FE
03
C5 F8
01
1113
SP.
7A C7
27111111
271111
2702
271113
271114
271115
271116
271117
271118
271119
271111
2711
2712
2713
2714
2715
2716
2717
2718
2719
272111
2721
BIN1
*
ACHK
ACH1
*NO TOP
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
274111
2741
2742
2743
2744
2745
2746
2747
2748
2749
275111
2751
2752
2753
2754
2755
2756
2757
*XMTU
XMT1
XMTD
CTVM
STVM
VISU
M,A
0FH
48
58
7
LHLD
LOA
CMP
JNZ
LOA
CMP
JNZ
STC
INX
SHLD
RET
BBUF
BP·UF+3
H
ACHl
BBUF+2
L
ACH1
;COMPARE START ADDRESS WITH
;END ADDRESS. CARRY SET SHOWS
;FINAL ADDRESS WAS REACHED.
CALL
LXI
CALL
JMP
CRLF
H,EMES11
SCRN
EOR
;OUTPUT MESSAGE FOR
;INOPERATIVE COMMANDS
MVI
OUT
CALL
CALL
MVI
OUT
MVI
OUT
CALL
CALL
MVI
OUT
OUT
RET
MVI
CALL
MVI
JMP
LXI
MOV
ANI
OUT
MOV
RET
LXI
MOV
ORI
OUT
MOV
RET
MVI
JMP
A.la85H
PORT1
ONES
ONES
A,111
PORT1
A,80H
OPT2
ONES
ONES
A,0
PORT1
OPT2
;TURN ON AMPLIFIERS
A,20H
XMT1
A,40H
XMT1
H,PRT3
A,M
0FEH
PORT3
M,A
;DROP BEAMS AND TURN
;OFF AMPLIFIERS
H,PRT3
A,M
01H
PORT3
M,A
;SWITCH TO STV MODE
A,08BH
XMT1
;RAISE VISUAL BEAM
H
BBUF
;SWITCH TO CTV MODE
104
PAGE 18
ADDR Bl B2 B3 E LINE LABEL
C7BA
C7BC
C7BF
C7C1
C7C4
C7C7
C7C9
C7CB
C7CC
C7CE
C7D0
C7D1
C7D3
C7D5
C7D8
C7DA
C7DC
C7DD
C7DD
C7DE
C7E0
C7E3
C7E4
C7E5
C7E6
C7E7
C7E8
C7E9
C7EA
C7ED
C7EF
C7F2
C7F5
C7F8
C7FA
C7FD
C7FF
C802
C804
C807
C80A
C80C
C80F
C811
C814
C816
C817
C81A
C81D
C81F
C820
C821
C822
C823
C824
C825
C826
C827
3E
C3
3E
C3
C3
3E
D3
C9
3E
D3
C9
3E
D3
CD
3E
D3
C9
C5
06
CD
Cl
C9
F3
F5
C5
D5
E5
21
06
CD
CD
CD
06
CD
06
CD
06
CD
CD
06
CD
06
CD
3E
77
CD
C3
3E
77
2B
7E
l.\8
C8
34
33
33
21
20
7A C7
93
7A C7
BA C7
00
7E
02
7E
40
02
3B
00
02
cc
07
29 Cl
07
39
21
1D
1D
35
1D
39
1D
35
1D
67
34
1D
32
1D
30
F8
C8
C8
C8
ce
C8
C8
DA
C8
C8
EB CE
27 C8
30
3E F8
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
'2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
VISD
AURU
AURD
EXCU
EXCD
BARK
*
BEEP
SVC1
SUB1
SUB2
SUB3
OPCD OPERAND
MVI
JMP
MVI
JMP
JMP
MVI
OUT
RET
MVI
OUT
RET
MVI
OUT
CALL
MVI
OUT
RET
PUSH
MVI
CALL
POP
RET
DI
PUSH
PUSH
PUSH
PUSH
LXI
MVI
CALL
CALL
CALL
MVI
CALL
MVI
CALL
MVI •
CALL
CALL
MVI
CALL
MVI
CALL
MVI
MOV
CALL
JMP
MVI
MOV
DCX
MOV
CMP
RZ
INR
INX
INX
LXI
A,20H
XMT1
A,093H
XMTl
VISD
A,00H
PORT1
;DROP BEAMS
;RAISE AURAL BEAM
;DROP BEAMS
;TURN ON EXCITER
A,02H
PORT1
;TURN OFF EXCITER
A,40H
OPT2
ONES
A,00H
OPT2
;START/STOP BARKER
B
Bo07H
OUT1
B
;SEND BEEP TONE
;TO KEYBOARD
PSW
B
D
H
H,HUN+1
Bo39H
SUB2
SUB1
SUB!
Bo35H
SUB!
B,39H
SUB1
B,35H
SUB1
SLDF
B,34H
SUB1
B,32H
SUB!
A,30H
M,A
CAL
SUB3
A,30H
M,A
H
A,M
B
M
SP
SP
H,ERFS
; REAL-TIME CLOCK
; INTERRUPT SERVICE
;ROUTINE
; INCREMENT 100THS
; INCREMENT SECONDS
; INCREMENT MINUTES
;SET LOG DATA FLAG
;INCREMENT HOURS
;UPDATE CALENDAR
;SET INTERRUPT FLAG
105
**********************************************************************
KWHY-TV/HARRISCOPE OF LOS ANGELES, INC.
VISUAL CARRIER: 519.25 MHZ
TRANSMITTER OPERATING LOG
AURAL CARRIER: 523.75 MHZ
DATE: 04/14/83
CARRIERS ON:---------- OFF:---------- OPERATOR:
SIGN ON:-------------- OFF:-------------------------------
**********************************************************************
TIME
PWR
11 :24 :·56: 00 PST
KV
VISUAL
AMPS
*** ****
****
FREG
PWR
AURAL
KV
AMPS
FRE(il
+***
***
**** ****
+***
VISUAL BEAM DOWN 11124:56100 PST
\_
RESTART FAILED
~Sample
Data Line
Sample Failure Message
Figure E.l
Example Log Format
MODE
STV
106
PAGE 19
ADDR B1 B2 B3 ELINE LAl\EL
C82A
C82B
C82D
C82E
C82F
C830
C831
CB32
C833
C835
C835
C838
C83B
C83E
C841
C844
C845
C846
C848
C849
C84C
C84F
C850
C853
C856
C857
C85A
C85D
C860
C862
C863
C864
C866
C867
C86A
C86D
C870
C873
C874
C877
C877
C87A
CB7D
CS80
C883
C886
C889
esse
C88F
C892
C895
C896
C897
C89A
C89D
C8A0
CSA3
C8A6
CD
CD
21
CD
CD
C9
46
JE
B8
C2
CD
E5
21
CD
El
CD
CD
C3
JE
l\8
C8
JE
6A
6A
97
45
6A
MOV
ORI
MOV
POP
POP
POP
POP
2816
2817
2818
2819
2820
2821
7E
F6 80
77
E1
D1
C1
F1
Fl\
ED 4D
2822
C1
Cl
cs
C8
Cl
3C
60 C8
6A C1
77 C8
BA Cl
F9 C0
60 C1
73 cs
51\
24
BB
C2
CD
C3
CD
23
C3
70
6A
73
17
CB
Cl
CB
C1
20
50
53
41
20
59
4F
4F
49
45
2E
0D
2A
2A
2A
2A
49
4F
20
52
53
4E
41\
20
20
4E
4E
2E
20
45
20
59
45
54
43
54
55
2E
2A
2A
2A
2A
4E
52
2A
2A
2A
20
46
4D
45 C8
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
OPCD OPERAND
A,M
080H
M,A
H
D
B
PSW
EI
*
INFO
SCRNl
SCRN4
SCRN2
SCRN3
*
DB
0EDH,4DH
CALL
CALL
LXI
CALL
CALL
RET
MOV
MVI
CHP
JNZ
CALL
PUSH
LXI
CALL
POP
CALL
CALL
JMP
MVI
CHP
RZ
MVI
CMP
JNZ
CALL
JMP
CALL
INX
JMP
CRLF
CRLF
H, IMSG
SCRN1
CRLF
PRSS
DT
2857
2858 IMSG
DB
DT
;RETI Z-80 INSTRUCTION
;RETURN FROM INTERRUPT
;PRINT INFORMATION
B,M
A, • <•
B
SCRN4
CRLF
H
H,PRSS
SCRN
H
INK
CLRV
SCRN3
A, •[ •
B
A, • $'
B
SCRN2
CRLF
SCRNJ
OUTS
H
SCRN1
PRESS ANY KEY TO CONTINUE ••• •
0DH
'***********
INFORMATION
***********$$$'
107
PAGE 20
ADDR P·1 B2 B3 E LINE LABEL
C8A9
CSAC
CSAF
C8B2
C8B5
C8B8
csBP·
CSBD
CSC0
C8C3
C8C6
C8C9
cscc
CSCF
C8D2
C8D5
C8D6
C8D9
CSDC
CSDF
CSE2
C8E5
C8E8
C8EB
C8EE
CSF1
C8F4
C8F7
CSFA
CSFD
C900
C903
C906
C909
C90C
C90F
C910
C913
C916
C919
C91C
C91F
C922
C925
C928
C92B
C92E
C931
C934
C937
C93A
C93B
C93E
C941
C944
C947
C94A
C94D
41
4F
2A
2A
2A
2A
24
4C
54
46
45
4C
4F
41
53
24
41
44
2E
2E
2E
55
4C
45
54
4E
2A
2A
2A
2A
24
49
20
20
47
20
4D
4E
3A
55
2E
2E
2E
2E
52
20
41
44
4E
55
2E
2E
OPCD OPERAND
49
20
2A
2A
2A
24
53
4F
4C
41
43
4D
44
24
2859
DT
'LIST OF LEGAL COMMANDS:$$'
52
2E
2860
DT
'AURD .•.•..••.• AURAL BEAM DOWN$'
2861
DT
'AURU •••..•.•.• AURAL BEAM UP$'
2862
DT
'AUTO •..••..... ENTER AUTOMATIC CONTROL MODE$'
2863
DT
'BARK •••••••.•. START/STOP BARKER CART$'
2E
2E
41
41
42
4D
4F
20
57
24
41
52
55
2E
2E
2E
2E 2E 2E
2E 2E 41
55 52 41
4C 20 42
45 41 4D
20 55 50
24
41 55 54
4F 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 45
4E 54 45
52 20 41
55 54 4F
4D 41 54
49 43 20
43 4F 4E
54 52 4F
4C 20 4D
4F 44 45
24
42 41 52
4B 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 53
54 41 52
54 2F 53
108
PAGE 21
ADDR P.1 P.2 P.3 ELINE LAP.EL
C950
C953
C956
C959
C95C
C95F
C960
C963
C966
C969
C96C
C96F
C972
C975
C978
C97B
C97E
C981
C984
C987
C98A
C98D
C990
C993
C996
C999
C99C
C99F
C9A0
C9A3
C9A6
C9A9
C9AC
C9AF
C9P.2
C9.B5
C9P.8
C9P.:B
C9P.E
C9C1
C9C4
C9C7
C9CA
C9CD
C9D0
C9D3
C9D6
C9D9
C9DC
C9DF
C9E2
C9E5
C9E8
C9E.B
C9EE
C9F1
C9F4
C9F7
54 4F 50
20 42 41
52 4P. 45
... 20 43
41 52 54
24
43 54 56
4D 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 53
57 49 54
43 48 20
54 4F 20
43 54 56
20 4D 4F
44 45 24
44 41 54
45 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 53
45 54 20
54 48 45
20 43 41
4C 45 4E
44 41 52
24
44 49 41
47 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 45
4E 54 45
5.-,
... 20 44
49 41 47
4E 4F 53
54 49 43
20 4D 4F
44 45 24
44 55 4D
50 2E 2E
2E 2E 2E
2E 2E 2E
2E 2E 50
52 49 4E
54 20 48
45 58 41
44 45 43
49 4D 41
4C 20 4D
45 4D 4F
52 59 24
20 20 20
20 20 20
20 20 20
20 20 20
20 20 43
OPCD OPERAND
5~,
2864
DT
'CTVM •••••••••• SWITCH TO CTV MODE$'
2865
DT
'DATE ••.••..••• SET THE CALENDAR$'
2866
DT
'DIAG ...••••••• ENTER DIAGNOSTIC MODE$'
2867
DT
'DUMP •.•••••.•• PRINT HEXADECIMAL MEMORY$'
2868
DT
CONTENTS OF SPECIFIED LIMITS$'
109
PAGE 22
ADOR l\1 l\2 l\3 E LINE LABEL
C9FA
C9FD
CA00
CA03
CA06
CA09
CA0C
CA0F
CA12
CA15
CA16
CA17
CA1A
CA1D
CA20
CA23
CA26
CA29
CA2C
CA2F
CA32
CA35
CA36
CA39
CA3C
CA3F
CA42
CA45
CA48
CA4P.
CA4E
CA51
CA54
CA57
CA5A
CA5D
CA60
CA63
CA66
CA69
CA6C
CA6F
CA72
CA74
CA77
CA7A
CA7D
CA80
CAB3
CA86
CA89
CA8C
CABF
CA92
CA95
CA98
CA9B
CA9C
4F
45
53
46
50
49
45
4C
49
24
3C
45
44
2E
2E
2E
55
20
43
45
4F
24
45
55
2E
2E
2E
4E
4E
20
20
45
46
44
49
54
54
54
4F
53
43
49
58
2E
2E
2E
2E
52
45
49
52
46
43
2E
2E
OPCD OPERAND
20
40
53
2869
2870
DT
DT
'<'
2871
DT
'EXCU •••••••••• TURN EXCITER ON$'
2872
DT
'HEAD •••••••••• PRINT LOG HEADING$'
2873
OT
'INFO •••••••••• PRINT HELPFUL INFORMATION$'
2874
DT
'SETC •••••••••• SET CLOCK TIME$'
'EXCD •••••••••• TURN EXCITER OFF$'
2E
54
4E
58
54
20
46
58 43
2E 2E
2E 2E
2E 2E
2E 54
52 4E
45 58
49 54
52 20
4E 24
45 41
2E 2E
2E 2E
2E 2E
2E 50
49 4E
20 4C
47 20
45 41
49 4E
24
4E 46
2E 2E
2E 2E
2E 2E
2E 50
49 4E
20 48
4C 50
55 4C
49 4E
4F 52
41 54
4F 4E
55
20
43
45
4F
48
44
2E
2E
2E
52
54
4F
48
44
47
49
4F
2E
2E
2E
52
54
45
46
20
46
40
49
24
53 45 54
110
PAGE 23
ADDR l\1 l\2 l\3 E LINE LABEL
CA9F
CAA2
CAA5
CAA8
CAA.B
CAAE
CAB1
CAB4
CAP.7
CAP.9
CAP·C
CA.BF
CAC2
CAC5
CAC8
CACB
CACE
CAD1
CAD4
CAD7
CAD9
CADC
CADF
CAE2
CAE5
CAEB
CAEB
CAEE
CAF1
CAF4
CAF7
CAFA
CAFD
Cl\00
CP.03
Cl\06
CP.09
CP.0C
C.B0F
Cl\12
Cl\15
Cl\17
CB1A
CP.1D
Cl\20
Cl\23
Cl\26
Cl\29
CP.2C
C.B2F
CP.32
Cl\35
CP.36
Cl\37
C.B3A
Cl\30
CP.40
CP.43
43
2E
2E
2E
45
43
43
54
45
53
44
2E
2E
2E
45
43
45
41
44
45
53
40
2E
2E
2E
57
43
54
53
20
44
54
45
2E
2E
2E
52
54
48
54
45
56
44
2E
2E
2E
49
41
42
40
4F
24
3C
56
55
2E
2E
2E
2E
2E
2E
2E
54
4C
41\
49
24
45
2E
2E
2E
2E
53
20
4F
20
4D
54
2E
2E 2E
2E 2E
2E 53
54 20
41 4C
4E 44
52 20
41 54
24
54 56
2E 2E
2E 2E
2E 2E
2E 53
49 54
48 20
4F 20
54 56
40 4F
45 24
49 40
2E 2E
2E 2E
2E 2E
2E 50
49 4E
20 54
45 20
49 40
24
49 53
2E 2E
2E 2E
2E 2E
2E 56
53 55
4C 20
45 41
20 44
57 4E
49
2E
2E
2E
2E
OPCD OPERAND
53
2E
2E
2E
56
2875
DT
'SETD •••••••••• SET CALENDAR DATE$'
2876
DT
'STVM •••••••••• SWITCH TO STV MODE$'
2877
DT
'TIME •••••••••• PRINT THE TIME$'
2878
DT
'VISO •••••••••• VISUAL .BEAM DOWN$'
2879
2880
DT
DT
• <'
'VISU •••••••••• VISUAL BEAM UP$'
111
PAGE 24
ADDR P.1 P.2 p.3 E LINE LABEL
CP.46
CP.49
Cl'.4C
CP.4F
Cl'·52
CP·54
CP.57
CP·5A
CP.5D
CP.60
CP.63
CP.66
CP.69
CP·6C
CP.6F
CP·72
CP.75
CP.76
CP.79
CP.7C
CB7F
CP·B2
CBB5
CP.86
CP·B9
cp.ec
49
41
42
4D
50
58
44
2E
2E
2E
52
20
41
20
44
55
24
54
4E
49
45
4F
24
58
55
2E
2E
2E
55
20
41
4D
54
20
24
24
54
45
54
48
44
47
53
43
4F
53 55
4C 20
45 41
20 55
24
4D 54
2E 2E
2E 2E
2E 2E
2E 44
4F 50
42 45
4D 53
41 4E
20 54
52 4E
OPCD OPERAND
2881
DT
'XMTD •••••••••• DROP P.EAMS AND TURN$'
2882
OT
'TRANSMITTER OFF$'
52
53
54
52
46
41
40
54
40
2E
2E
2E
2E
52
54
4E
49
45
4F
54
2E
2E
2E
54
4E
5-,
....
53
54
52
4E
2883
DT
'XMTIJ •••••••••• TURN TRANSMITTER ON$'
24
2884
2885
OT
OT
'$$$'
'TO EXIT THE DIAGNOSTIC MODE, PRESS$'
45
53
50
28
43
4P.
24
2886
OT
'THE ESCAPE <ESC} KEY$'$$'
20
2887
DT
'TO EXIT FROM THE AUTOMATIC CONTROL MODE,$'
CP·BF
CP.92
CP.95
CP-98
CP.9P·
CP.9E
CP.A1
CP.A4
CP.A7
CP.A8
24
CP.AB
4F
CBAE
58
Cl'·Bl
20
CP.P.4
45
49
CP·B7
4E
CP·BA
54
CP·BD
CBC0
20
44
CBC3
CP.C6 2C 20
CP.C9 52 45
cp.cc 53 24
CP.CE 54 48
CP·Ol 20 45
CP.D4 43 41
CBD7 45 20
CP.DA 45 53
CP·DD 29 20
CP·E0 45 59
CBE3 54 4F
Cl'·E6 45 58
CP.E9 54 20
20
46
20
49
54
20
41
4F
49
40
45
50
53
49
46
112
PAGE 25
ADDR B1 B2 BJ E LINE LABEL
CP·EC
CBEF
CBF2
CBF5
Cl!.F8
CBFB
CBFE
CC01
CC04
CC07
CC0A
CC0C
CC0F
CC12
CC15
CC18
CC1B
CC1E
CC21
CC24
CC27
CC2A
CC2B
CC2B
CC2D
CC30
CC31
CC32
CC33
CC34
CC35
CC36
CC37
CC3A
CC3B
CC3E
CC3F
CC40
CC41
CC44
CC45
CC47
CC49
CC4A
CC4C
CC4E
CC50
CC53
CC54
CC57
CC58
CC5A
CC5D
CC5F
CC61
CC63
CC66
CC69
52
20
45
55
4D
49
43
54
4C
4F
2C
50
53
54
20
53
50
20
53
20
59
5B
4D
48
41
4F
54
20
4E
52 4F
20 4D
44 45
24
52 45
53 20
48 45
22 45
43 41
45 22
28 45
43 29
411 45
2E 24
3E
21
46
EB
70
23
13
EB
3D
C2
C9
21
46
7E
08
00 F8
4F
54
20
54
41
43
4F
30
cc
05 F8
p.a
CA
C9
DB
E6
C8
DB
E6
FE
CA
C9
21
7E
E6
C2
DB
E6
FE
CA
CD
C3
OPCD OPERAND
3F
cc
7D
02
7C
7F
1B
6A C0
3E F8
80
34 D5
7E
03
03
54 cc
BF CD
24 D5
2888
DT
'PRESS THE •ESCAPE" <ESC> KEY.$'
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
DT
'[ '
MVI
LXI
MOV
XCHG
MOV
INX
INX
XCHG
DCR
JNZ
RET
LXI
MOV
MOV
CMP
JZ
RET
IN
ANI
RZ
IN
ANI
CPI
JZ
RET
LXI
MOV
ANI
JNZ
IN
ANI
CPI
JZ
CALL
JMP
A,08H
H,HRS
B,M
*TISTO
TIS1
ONES
ONES!
INK2
MTR0
f;
;STORE TIME AT ADDRESS
;IN D,E REGISTERS
M,B
H
D
A
TIS1
H,SEC+1
B,M
A,M
B
ONES1
;DELAY
TTS
TTYDA
TTI
7FH
1P.H
EOR
H,ERFS
A,M
080H
MTR1
PORT1
3
3
MTR0
BEAM
METER
;END OF FILE TEST2
113
.I
PAGE :26
ADDR B1 B2 B3 E LINE LABEL
CC6C
CC6C
CC6C
CC6C
CC6F
CC72
CC74
CC77
CC7A
CC7D
CCB0
CC83
cess
CCBB
CCBB
CCSE
CC91
CC91
CC94
CC97
CC9A
CC9D
CCA0
CCA3
CCA6
CCA9
CCAC
CCAF
CCl\0
CCB3
CCE·6
CCB9
CCBC
CCBF
CCC2
CCC5
ecce
CCC9
CCCA
CCCD
CCD0
CCD3
CCD6
CCD9
CCDC
CCDF
CCE2
CCE5
CCEB
CCEB
CCEC
CCED
CCF0
CCF3
CCF6
CCF9
CCFC
CCFF
CD
:21
36
:21
CD
CD
CD
CD
FE
CC
CD
CD
C3
60
l\8
00
91
BA
6A
6A
45
00
A7
l\5
98
80
2A
:20
54
41
43
4F
52
?A
41
4F
54
:20
4E
4F
20 4D
44 45
2A 2A
0D
2A 20
4F 4E
43 4F
52 45
54 41
4C 45
46 41
4C 54
2A
00
2A 20
55 54
4D 41
49 43
43 4F
54 52
4C 20
49 53
4F 4E
49 4E
45 44
2A
0D
41 4E
55 4E
49 41
4F 52
50 41
45 4C
43 4C
C1
FB
cc
Cl
Cl
C1
cc
00
CD
DB
cc
2A
55
40
49
43
54
4C
4F
:20
2A
4E
2D
52
43
:29:26
:2927
3000
3001
300:2
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
*
OPCD OPERAND
LINK ' TEST3'
;CONTINUE ASSEMBLY
CALL
LXI
MVI
LXI
CALL
CALL
CALL
CALL
CPI
;CONTROL MODE ENTRY
;POINT
* START OF FILE TEST3
AUTO
AUTO!
AUT02
*
CLRV
H,MDST
M,0
H,MES1
SCRN
CRLF
CRLF
INK2
0DH
cz STATUS
CALL PONE
CALL PTWO
JMP AUTO!
;CHECK FOR EXIT
;DISPLAY STATUS
;CHECK INPUT PORT 1
;CHECK INPUT PORT :2
MES1
DT
'*** AUTOMATIC CONTROL MODE ***'
3016
3017 MES2
DB
DT
0DH
3018
3019 MES3
DB
DT
0DH
3020
3021 MES4
DB
DT
0DH
'ANNUNCIATOR PANEL CLEARED AT '
'* NON-CORRECTABLE FAULT *'
42
20
55
20
41
4F
54
20
4E
4F
44
43
54
55
20
4E
43
54
:20
4E
:20
45
'* AUTOMATIC CONTROL DISCONTINUED *'
114
PAGE 27
ADDR P.1 :82 P.3 E LINE LABEL
CD02
CD05
CD08
CDI!IA
CDI!IP.
CDI!IE
CD11
CD14
CD17
CD1A
CD1P·
COlE
CD21
CD24
CD27
CD28
CD29
CD2C
CD2F
CD32
CD35
CD38
CD3P.
CD3E
CD41
CD44
CD46
CD47
CD4A
CD4D
CD 50
CD 53
CD55
CD56
CD59
CD5C
CD5F
CD62
CD65
CD66
CD69
CD6C
CD6F
CD71
CD72
CD75
CD78
CD7:B
CD7E
CD81
CD83
CD84
CD87
CDBA
CDBD
CD90
CD93
CD94
41
44
54
I!ID
45
21!1
53
53
52
I!ID
45
21!1
53
45
21!1
1!10
41
55
49
4F
50
45
57
4E
47
54
00
50
45
46
4C
45
00
42
40
OPCD OPERAND
52 45
21!1 41
21!1
53
45
20
41
21!1
42
54
54
4E
53
45
21!1
44
4E
4E
41
52
41
4C
41
49
21!1
20
4E
43
54
21!1
4E
4F
52
41
55
20
57
21!1
49
52
45
53
52 45
54 4F
45 44
00
42 45
40 53
44 4F
4E 20
00
56 49
55 41
20 42
41 40
44 4F
4E 20
00
41 55
41 4C
42 45
40 20
4F 57
20
00
41
20
53
52
20
.
31!123 MESS
DB
DT
I!IDH
'EBS TEST START
3024
31!125 MES6
DB
DT
I!IDH
'EBS TEST END '
3026
3027 MES7
DB
DT
0DH
'ANNUNCIATOR PANEL WARNING AT
3028
3029 MESS
DB
DT
0DH
'POWER FAILURE •
3030
3031 MES9
DP·
DT
0DH
'P·EAMS RESTORED •
3032
3033 MESA
DB
DT
0DH
'BEAMS DOWN '
3034
3035 MESB
op.
DT
0DH
'VISUAL BEAM DOWN '
3036
3037 MESC
DB
DT
0DH
'AURAL BEAM DOWN '
3038
D:S
0DH
3022
42
54
54
54
54
20
52
4E
41
41
20
57
53
4C
45
20
57
52
20
41
44
4E
.
115
p •
PAGE 28
.... B3 E LINE LAP.EL
ADDR P.1 B.-,
CD95 52 45 53
CD98 54 41 52
CD91'· 54 20 46
CD9E 41 49 4C
CDA1 45 44 20
CDA4 0D
CDA5 50 4F 57
CDAS 45 52 20
CD AI'· 52 45 53
CDAE 54 4F 52
CDP·1 45 44 20
CDB4 0D
CDI'·5
CDP.5 CD P.F CD
CDI'.8 CD 67 CE
CDP.B CD 9C CE
CD:P.E C9
CDBF
CDBF D:P· 7E
CDC1 E6 03
CDC3 FE 03
CDC5 C8
CDC6 21 3E FS
CDC9 2F
CDCA E6 03
CDCC B6
CDCD 77
CDCE 3E 10
CDD0 03 02
CDD2 11 1E FS
CDD5 CD 21'· cc
c:CDD8 DB 7E
CODA E6 04
CDDC C2 13 CE
CDDF 21 3E FS
CDE2 3E 04
CDE4 1'·6
CDE5 77
CDE6 21 41 F8
CDE9 36 00
CDEP· CD 31'· cc
CDEE 21 41 F8
CDF1 34
CDF2 Dl'· 7E
CDF4 E6 04
CDF6 CA EP· CD
CDF9 11 36 FS
CDFC CD 21'· cc
CDFF CD 78 C7
CE02 CD 3P. cc
CE05 21 41 F8
CE08 35
CE09 C2 02 CE
CE0C DB 7E
CE0E E6 04
CE10 CA EP. CD
CE13 21 40 FS
CE16 36 00
OPCD OPERAND
3039 MESO
DT
'RESTART FAILED
.
3040
3041 MESE
DB
DT
0DH
'POWER RESTORED
.
3042
3043 *
3044 PONE
3045
3046
3047
3048 *
3049 BEAM
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071 DELl
3072
3073
3074
3075
3076
3077
3078
3079
3080 DEL2
3081
3082
3083
3084
3085
3086
3087 CNT0
3088
DP·
0DH
CALL BEAM
CALL ANNP
CALL EP.S
RET
;CHECK BEAM SIGNALS
;CHECK ANNUNCIATOR SIGNALS
;CHECK FOR EMERGENCY
;BROADCAST SYSTEM TEST
IN
ANI
CPI
RZ
LXI
CMA
ANI
ORA
MOV
MVI
OUT
LXI
CALL
IN
ANI
JNZ
LXI
MVI
ORA
MOV
LXI
MVI
CALL
LXI
INR
IN
ANI
JZ
LXI
CALL
CALL
CALL
LXI
OCR
JNZ
IN
ANI
JZ
LXI
MVI
PORT1
03H
03H
;CHECK BEAM SIGNALS AND
;RETURN IF l'·EAI'lS UP
H,ERFS
;SET BEAM ERROR FLAGS
03H
M
M,A
A,10H
OPT2
D, l'·RST
TISTO
PORT1
04H
CNT0
H,ERFS
A,04H
M
M,A
H,TMRS
M,0
ONES
H,TMRS
M
PORT1
04H
DELl
D,PWRU
TISTO
XMTU
ONES
H,TMRS
M
DEL2
PORT1
04H
DELl
H,P.RCS
M,0
;SET MAJOR ALARM
;STORE BEAM DROPOUT TIME
;CHECK UTILITY POWER
;SET POWER FAILURE FLAG
; CLEAR POWER FAIL TIMER STORAGE
;STORE POWER UP TIME
;BEGIN REST ART SEG!UENCE
;CLEAR RESTART ATTEMPT COUNTER
116
PAGE 29
ADDR B1 B2 B3 E LINE LABEL
CE18
CE1B
CE1E
CE21
CE24
CE27
CE2A
CE2C
CE2E
CE30
CE33
CE36
CE39
CE3B
CE3D
CE3F
CE41
CE44
CE45
CE48
CE49
CE4A
CE4C
CE4F
CE52
CE55
CE58
CE5B
CE5E
CE61
CE64
CE67
CE69
CE6B
CE6D
CE70
CE73
CE74
CE76
CE77
CE78
CE7A
CE7P.
CE7E
CE81
CE84
CE87
CE8A
CE8P.
CESE
CE8F
CE91
CE92
CE93
CE95
CE96
CE99
CE9C
CD
CD
CD
CD
CD
CD
DB
E6
FE
C2
11
CD
3E
D3
3E
D3
CD
C9
21
34
7E
FE
C2
21
CD
CD
CD
CD
21
CD
C3
DB
E6
FE
C2
21
7E
E6
CB
7E
E6
77
21
CD
CD
CD
CD
C9
21
7E
E6
C0
7E
F6
77
21
C3
cc
3B
B5
BF
3B
3B
7E
03
03
45
26
2B
0A
02
00
02
33
C7
cc
C7
C7
cc
cc
CE
F8
cc
D0
40 F8
0.-.
..:.
18
B0
BA
6A
23
6A
CA
BA
6A
7E
30
30
8P.
3E
CE
cc
Cl
C1
D0
C1
cc
C1
C0
CE
F8
30
CF
ED
BA
C9
6A
16
cc
C1
C6
C1
DA
3E F8
30
30
29 CD
7E CE
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
EXC
INCC
FLAW
ANNP
ANN2
ANN1
*
OPCD OPERAND
CALL
CALL
CALL
CALL
CALL
CALL
IN
ANI
CPI
JNZ
LXI
CALL
MVI
OUT
MVI
OUT
CALL
RET
LXI
INR
MOV
CPI
JNZ
LXI
CALL
CALL
CALL
CALL
LXI
CALL
JMP
IN
ANI
CPI
JNZ
LXI
MOV
ANI
RZ
MOV
ANI
MOV
LXI
CALL
CALL
CALL
CALL
RET
LXI
MOV
ANI
RNZ
MOV
ORI
MOV
LXI
JMP
EXCD
ONES
VISU
AURU
ONES
ONES
PORT1
03H
03H
INCC
D,BRET
TISTO
A,10
OPT2
A,00H
OPT2
DATAl
H,BRCS
M
A,M
02H
EXC
H,MES2
SCRN
CRLF
DATA2
CRLF
H,MES3
SCRN
EOR
PORT1
30H
30H
ANN1
H,ERFS
A,M
30H
A,M
0CFH
M,A
H,MES4
SCRN
TIME
CRLF
MALM
H,ERFS
A,M
30H
A,M
30H
M,A
H,MES7
ANN2
;RESTORE BEAMS
;STORE BEAMS UP TIME
;CLEAR MAJOR ALARM
;PRINT EVENT DATA
; INCREMENT RESTART ATTEMPT
;COUNTER. ABANDON RESTART
;AFTER TWO UNSUCCESSFUL TRIES
;PRINT MESSAGES AND EXIT
;CONTROL MODE TO
; CONVERSATIONAL MODE
;PRINT DATA
;UNAP.LE TO RESTART; PRINT
;MESSAGE AND JUMP TO THE
;CONVERSATIONAL MODE
;CHECK ANNUNCIATOR INPUTS
117
PAGE 30
ADDR B1 B2 B3 E LINE LABEL
CE9C
CE9E
CEA0
CEA3
CEA6
CEA7
CEA9
CEAA
CEAB
CEAD
CEAE
CEB1
CEB4
CEB7
CEBA
CEBB
CEBE
CEBF
CEC1
CEC2
CEC3
CEC5
CEC6
CEC9
CECC
CECF
CED2
CED3
CED5
CED7
CED8
CED9
CEDC
CEDD
CEDF
CEE0
CEE1
CEE4
CEE7
CEEA
CEEB
CEEE
CEEF
CEF1
CEF2
CEF3
CEF6
CEF8
CEFB
CEFE
CF01
CF04
CF07
CF0A
CF0B
CF0E
CF0F
CF10
DB
E6
CA
21
7E
E6
C8
7E
E6
77
CD
21
CD
CD
C9
21
7E
E6
C0
7E
F6
77
CD
21
C3
7E
40
BB CE
3E F8
40
BF
CF
1B
E1
D9
CE
CD
CE
CE
3E F8
40
40
CF
0B
B4
21 B8
7E
F6 80
E6 BF
77
C9
21 B8
7E
E6 3F
77
C9
CD BA
CD C9
CD 6A
C9
21 08
7E
FE 30
CE
CD
CE
F8
F8
C1
C6
C1
F8
23
7E
CA
FE
CA
C3
01
C3
01
C3
2C
22
C9
24
C3
25
31
04
39
32
3C
33
3C
CF
CF
CF
38
CF
30
CF
0A F8
0B CF
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
EBS
EBS1
EBS3
EBS2
PRCRT
CRON
PMES
CAL
BRE2
BRE3
CAL5
CAL7
CAL6
OPCD OPERAND
IN
ANI
JZ
LXI
MOV
ANI
RZ
MOV
ANI
MOV
CALL
LXI
CALL
CALL
RET
LXI
MOV
ANI
RNZ
MOV
ORI
MOV
CALL
LXI
JMP
LXI
MOV
ORI
ANI
MOV
RET
LXI
MOV
ANI
MOV
RET
CALL
CALL
CALL
RET
LXI
MOV
CPI
INX
MOV
JZ
CPI
JZ
JMP
LXI
JMP
LXI
JMP
INR
SHLD
RET
INR
JMP
PORT!
40H
EBS2
H,ERFS
A,M
40H
;CHECK EMERGENCY BROADCAST
;SYSTEM TEST INPUT
A,M
0BFH
M,A
PRCRT
H,MES6
PMES
CRON
H,ERFS
A,M
40H
A,M
40H
1•1, A
PRCRT
H,MES5
EBS3
H,MDST
A,M
080H
0BFH
;SET OUTPUT STREAM FOR
;PRINTER AND CRT
1'1, A
H,MDST
A,M
3FH
M,A
;SET OUTPUT STREAM FOR CRT
SCRN
TIME
CRLF
H,DSTOR
A,M
30H
H
A,M
CALl
31H
BRE3
CALF
B,3832H
CAL4
B,3033H
CAL4
L
DSTOR+2
H
CAL7
;CALENDAR UPDATE ROUTINE
118
PAGE 31
ADDR !\1 B2 B3 E LINE LABEL
CF13
CF14
CF17
CF18
CF19
CF1C
CF1D
CF20
CF21
CF22
CF25
CF27
CF2A
CF2C
CF2F
CF31
CF34
CF36
CF39
CF3C
CF3F
CF40
CF41
CF44
CF46
CF47
CF48
CF4B
CF4D
CF50
CF53
CF54
CF56
CF59
CF5A
CF5C
CF5F
CF62
CF63
CF65
CF68
CF6A
CF6C
CF6F
CF72
CF73
CF75
CF78
CF7A
CF7B
CF7D
CF80
CF82
CF85
CF88
CF8B
CF8E
CF91
24
22
C9
2C
C3
2C
22
C9
24
C3
FE
CA
FE
CA
FE
CA
FE
CA
01
2A
7C
BB
DA
26
7D
B9
DA
2E
22
2A
7D
FE
C2
7C
FE
DA
C3
7C
FE
DA
26
2E
CD
2A
7C
FE
DA
26
7D
FE
DA
2E
C3
CD
21
CD
CD
21
08 F8
14 CF
0C F8
1D
32
FE
34
04
36
04
39
04
33
0A
CF
CE
CF
CF
CF
31
FB
0F CF
31
0A CF
30
0A F8
08 F8
30
62 CF
39
13 CF
18 CF
32
13 CF
31
30
14 CF
0C F8
39
1n
30
39
1C
30
1D
6A
88
l\A
6A
DB
,.~r
CF
CF
C1
C4
C1
C1
C4
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
CAL9
CALA
CALl\
CALC
CALD
CALE
CALl
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
CALF
CAL4
CAL8
SETD
OPCD OPERAND
INR
SHLD
RET
INR
JMP
INR
SHLD
RET
INR
JMP
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
LXI
LHLD
MOV
CMP
JC
MVI
MOV
CMP
JC
MVI
SHLD
LHLD
MOV
CPI
JNZ
MOV
CPI
JC
JMP
MOV
CPI
JC
MVI
MVI
CALL
LHLD
MOV
CPI
JC
MVI
MOV
CPI
JC
MVI
JMP
CALL
LXI
CALL
CALL
LXI
H
DSTOR
L
CALA
L
DSTOR+4
H
CALD
32H
l\RE2
34H
BRE3
36H
BRE3
39H
l\RE3
B,3133H
DSTOR+2
A,H
B
CAL6
H,31H
A,L
c
CAL5
L,30H
DSTOR+2
DSTOR
A,L
30H
CAL8
A,H
39H
CAL9
CALB
A,H
32H
CAL9
H,31H
L,30H
CALA
DSTOR+4
A,H
39H
CALD
H,30H
A,L
39H
CALC
L,30H
CALD
CRLF
H,EMES10
SCRN
CRLF
H,EMES15
;DATE SETTING ROUTINE
;SET MONTH
119
PAGE 32
ADDR B1 B2 B3 E LINE LABEL
CF94
CF97
CF99
CF9B
CF9E
CFA1
CFA3
CFA6
CFA9
CFAC
CFAF
CFB2
CFB4
CFB7
CFBA
CFP.C
CFBF
CFC2
CFC5
CFCS
CFCB
CFCD
CFD0
CFD3
CFD5
CFDS
CFDB
CFDE
CFE1
CFE4
CFE7
CFEA
CFEP.
CFEC
CFEF
CFF2
CFF3
CFF6
CFF7
CFFA
CFFP.
CFFC
CFFF
D002
D003
D006
D00S
D00P·
D00C
D00F
D010
D011
0014
0015
0016
0017
001A
001C
CD
0E
16
CD
21
16
CD
21
CD
21
CD
16
CD
21
16
CD
21
CD
21
CD
0E
CD
21
0E
CD
21
CD
21
CD
CD
CD
C9
70
CD
CD
P.9
DA
P.A
D2
C9
70
CD
CD
C9
CD
0E
21
46
CD
23
46
CD
23
0D
0D
CA
06
CD
P.A
30
32
EF
0S
3A
EB
09
FP.
F7
P.A
34
EF
0A
3A
EB
0P.
FP.
13
P.A
3S
EF
0C
30
EP.
0D
FB
2F
P.A
03
6A
C1
CF
FS
CF
FS
CF
C4
C1
CF
FS
CF
FS
CF
C5
C1
CF
FS
CF
FS
CF
C5
C1
D0
C1
17 C1
0A C1
EF CF
EF CF
17 C1
6A C1
32 C7
06
0S FS
17 C1
17 C1
22 00
2F
17 C1
3263
3264
3265
3266
3267
326S
3269
3270
3271
3272
3273
3274
3275
3276
3277
327S
3279
32S0
32S1
32S2
32S3
32S4
32S5
32S6
32S7
32SS
32S9
3290
3291
3292
3293
3294
3295
3296
3297
329S
3299
3300
3301
3302
3303
3304
3305
3306
3307
330S
3309
3310
3311
3312
3313
3314
3315
3316
3317
331S
3319
3320
DATfZI
DAT1
DAT2
DATE
DATG
OPCD OPERAND
CALL
MVI
MVI
CALL
LXI
MVI
CALL
LXI
CALL
LXI
CALL
MVI
CALL
LXI
MVI
CALL
LXI
CALL
LXI
CALL
MVI
CALL
LXI
MVI
CALL
LXI
CALL
LXI
CALL
CALL
CALL
RET
MOV
CALL
CALL
CMP
JC
CMP
JNC
RET
MOV
CALL
CALL
RET
CALL
MVI
LXI
MOV
CALL
INX
MOV
CALL
INX
OCR
OCR
JZ
MVI
CALL
SCRN
C,30H
D0 32H
DAT1
H,DSTOR
D,3AH
DAT0
H,DSTOR+1
DAT2
H,EMES16
SCRN
D,34H
DAT1
H,DSTOR+2
D,3AH
DAT0
H,DSTOR+3
DAT2
H,EMES17
SCRN
C,3SH
DAT1
H,DSTOR+4
C,30H
DAT0
H,DSTOR+5
DAT2
H,EMES1S
SCRN
DATE
CRLF
M,P.
OUTS
INS
c
DAT1
D
DAT1
M,P.
OUTS
CRLF
BLK1
C,06H
H,DSTOR
B,M
OUTS
H
B,M
OUTS
H
c
c
DATF
p.,, I'
OUTS
;PRINT THE DATE
120
PAGE 33
ADDR P·l l\2 B3 E LINE LABEL
D01F
D022
D023
D026
D029
D02C
D02F
D032
D033
D036
D039
D03A
D03C
D03F
D042
D045
D048
D04B
D04E
D051
D054
D057
D05A
D050
D060
D062
D063
D064
D067
0068
D06:B
D06E
0071
D074
D077
D07A
D07:B
D07D
D07F
D082
D085
D088
D089
D08:B
D08E
D091
D094
D097
D09A
D09D
D09F
D0A0
D0A3
D0A6
D0A7
D0AA
D0AD
D0B0
C3
C9
CD
CD
21
CD
CD
C9
CD
21
7E
E6
CA
CD
21
11
CD
21
11
CD
21
11
CD
21
3E
A6
77
CD
C9
CD
CD
C3
CD
21
0B D0
CF
71
95
BA
D9
CE
D0
CD
Cl
CE
CF CE
3E FB
04
68
6A
47
1E
9A
A5
36
9A
56
26
9A
3E
FB
D0
Cl
CD
FB
D0
CD
FB
D0
CD
FB
D0
FB
D9 CE
71
CF
54
6A
3E
11 1E
7E
E6 03
FE 03
C2 89
21 66
CD 9A
C9
E6 01
CA 94
21 72
C3 85
21 84
C3 85
CD BA
0E 08
EP·
CD D1
CD 6A
C9
21 C5
CD BA
CD 0A
C5
D0
CE
D0
C1
F8
FB
D0
CD
D0
D0
CD
D0
CD
D0
Cl
C6
C1
D1
C1
C1
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
DATF
DATA2
DATAl
DAE
DAC
DAA
DAA1
DAB
DAD
XYZ
STATUS
OPCD OPERAND
JMP
RET
CALL
CALL
LXI
CALL
CALL
RET
CALL
LXI
MOV
ANI
JZ
CALL
LXI
LXI
CALL
LXI
LXI
CALL
LXI
LXI
CALL
LXI
MVI
ANA
MOV
CALL
RET
CALL
CALL
JMP
CALL
LXI
LXI
MOV
ANI
CPI
JNZ
LXI
CALL
RET
ANI
JZ
LXI
JMP
LXI
JMP
CALL
MVI
XCHG
CALL
CALL
RET
LXI
CALL
CALL
PUSH
DATG
PRCRT
DAA
H,MESD
SCRN
CRON
PRCRT
H,ERFS
A,M
04H
DAC
CRLF
H,MESB
D,:BRST
XYZ
H,MESE
D,PWRU
XYZ
H,MES9
D, p.RET
XYZ
H,ERFS
A,0FBH
M
M,A
CRON
DAA
PRCRT
DAE
CRLF
H,ERFS
D,BRST
A,M
03H
03H
DAP·
H,MESA
XYZ
01H
DAD
H, MESP·
DAA1
H,MESC
DAA1
SCRN
C,08H
TIM1
CRLF
H,EMES19
SCRN
INS
B
121
PAGE 34
ADDR JH B2 B3 E LINE LABEL
D0B1
D0B4
D0B5
D0B7
D0B8
D0BB
D0BE
D0C1
D0C4
D0C7
D0CA
D0CD
D0D0
D0D3
D0D6
D0D9
D0DC
D0DF
D0E2
D0E5
D0E8
D0EB
D0EE
D0F1
D0F4
D0F7
D0FA
D0FD
D100
D103
D106
D109
D10C
D10F
D112
D115
D118
D11B
D11E
D121
D124
D127
D12A
D12D
D130
D133
D136
0139
D13C
D13F
D142
D145
D148
D14P.
D14E
D151
0154
D157
CD
C1
3E
B8
C2
CD
CD
CD
CD
CD
CD
CD
CD
cp
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
6A C!
50
1E
CF
C9
32
32
60
32
32
9D
32
32
B8
32
32
D7
32
32
32
32
03
32
32
EE
32
32
09
32
32
45
32
32
32
A9
6A
D9
6A
6A
6A
DC
BA
6B
6A
E7
BA
60
6A
F1
BA
9D
6A
FA
BA
B8
6A
01
CE
C6
C7
C7
D4
C7
C7
D4
C7
C7
D4
C7
C7
DB
C7
C7
C7
C7
D4
C7
C7
D4
C7
C7
D5
C7
C7
D9
C7
C7
C7
D1
C1
CE
C1
C1
Cl
D1
C1
DB
C1
D1
Cl
D4
C1
D1
C1
D4
Cl
D1
C1
D4
Cl
3379
3380
3381
3382
3383
3384 STAD
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417 STAC
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
OPCD OPERAND
CALL
POP
MVI
CMP
JNZ
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
CRLF
B
A, • p•
B
STAC
PRCRT
TIME
BLI\1
BLI\1
VPWR
BLK1
BLI\1
VKV
BLI\1
BLI\1
VAMP
BLI\1
BLI\1
VFRG!
BLI\1
BLI\1
BLI\1
BLI\1
APWR
BLI<l
BLI\1
AKV
BLI\1
BLI\1
AAMP
BLI\1
BU<:1
AFRQ
P.LI\1
BLI\1
BLI\1
MODE
CRLF
CRON
CRLF
CRLF
CRLF
H,EMES20
SCRN
VBM
CRLF
H,EMES21
SCRN
VPWR
CRLF
H,EMES22
SCRN
VKV
CRLF
H,EMES23
SCRN
VAMP
CRLF
;PRINT LOG DATA
;DISPLAY LOG DATA
;ON CRT
122
PAGE 35
ADDR B1 B2 B3 E LINE LABEL
D15A
D15D
D160
D163
D166
D169
D16C
D16F
D172
D175
D17B
D17B
D17E
D1S1
D1B4
D1B7
D1BA
D1BD
D190
D193
D196
D199
D19C
D19F
D1A2
D1A5
D1AB
D1A9
D1AB
D1AD
D1B0
D1B2
D1B5
D1B7
D1BA
D1BC
D1BF
D1C0
D1C2
D1C5
DlCB
D1CB
D1CE
D1D1
D1D4
D1D7
DlDA
D1DB
D1DC
D1DF
D1E2
D1E5
D1E6
D1E7
D1EA
DlED
D1F0
D1F1
21 05 D2
CD
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
21
CD
CD
CD
CD
C9
DB
E6
CA
06
CD
06
CD
06
CD
C9
06
C3
45
45
50
4F
4C
20
54
20
0D
56
20
41
20
0D
56
20
52
0D
56
BA
D7
6A
6A
10
BA
7F
6A
1B
BA
D3
6A
25
BA
EE
6A
2E
BA
09
6A
39
BA
45
6A
6A
7E
B0
C0
53
17
54
17
56
17
43
B2
4E
52
20
52
4F
45
52
C1
DB
C1
C1
D2
Cl
DB
Cl
D2
C1
D4
C1
D2
C1
D4
C1
D2
C1
D5
C1
D2
C1
D9
C1
C1
D1
C1
C1
C1
D1
54
20
46
20
47
4E
59
49 53
42 45
4D 3A
49 53
50 57
3A 20
49 53
3437
343B
3439
3440
3441
3442
3443
3444
3445
3446
3447
344B
3449
3450
3451
3452
3453
3454
3455
3456
3457
345B
3459
3460
3461
3462
3463
3464
3465
3466
3467
346S
3469
3470
3471
3472
3473
3474
3475
3476
MODE
MODi
MODC
EMES19
OPCD OPERAND
LXI
CALL
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
CALL
CALL
CALL
RET
IN
ANI
JZ
MVI
CALL
MVI
CALL
MVI
CALL
RET
MVI
JMP
DT
H,EMES24
SCRN
VFRQ
CRLF
CRLF
H,EMES25
SCRN
ABM
CRLF
H,EMES26
SCRN
APWR
CRLF
H,EMES27
SCRN
AKV
CRLF
H,EMES2S
SCRN
AAMP
CRLF
H,EMES29
SCRN
AFRQ
CRLF
CRLF
PORT1
0S0H
MODC
B, 'S'
OUTS
B, 'T'
OUTS
B, • v·
OUTS
B, 'C'
MODi
'ENTER P FOR LOG ENTRY '
3477
347S EMES20
DB
DT
0DH
'VIS BEAM: '
3479
34B0 EMES21
DB
DT
0DH
'VIS PWR: '
34S1
34S2 EMES22
DB
DT
0DH
'VIS KV:
.
123
PAGE 36
ADDR 111 B2 B3 E LINE LABEL
D1F4
D1F7
D1F9
D1FA
D1FD
D200
D203
D204
D205
D208
D20B
D20E
D20F
D210
D213
D216
D219
D21A
D21B
D21E
0221
D224
D225
0228
D22B
D22D
D22E
D231
D234
0237
D238
0239
D23C
D23F
0242
D243
D244
D247
D24A
D24D
D250
D253
D256
D259
D25C
D25F
0262
D265
D268
D26B
D26E
D271
D274
D277
D27A
0270
D280
0283
20
3A
0D
56
20
50
4B 56
20
49 53
41 4D
53 3A
OPCD OPERAND
3483
3484 EMES23
DB
DT
0DH
'VIS AMPS: '
3485
3486 EMES24
DB
DT
0DH
'VIS FREGI: '
3487
3488 EMES25
DB
DT
0DH
'AUR BEAM: '
3489
3490 EMES26
DB
DT
0DH
'AUR PWR: '
3491
3492 EMES27
DB
DT
0DH
'AUR KV: '
3493
3494 EMES28
DB
DT
0DH
'AUR AMPS: '
3495
3496 EMES29
DB
DT
0DH
'AUR FREGI: '
3497
3498 HEAD
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
DB
CALL
CALL
CALL
CALL
LXI
CALL
CALL
CALL
LXI
CALL
LXI
CALL
CALL
CALL
LXI
CALL
LXI
CALL
CALL
LXI
CALL
CALL
0DH
PRON
CRLF
CRLF
CRLF
H,DMES3
SCRN
CRLF
CRLF
H,EMES30
SCRN1
H,DMES4
SCRN
DATE+3
CRLF
H,EMES31
SCRN1
H,DMES3
SCRN
CRLF
H,EMES39
SCRN1
CRON
20
00
56
20
45
20
0D
41
20
41
20
0D
41
20
52
0D
41
20
3A
0D
41
49 53
46 52
51 3A
55 52
42 45
4D 3A
55 52
50 57
3A 20
55 52
4B 56
20
55 52
20 41 4D
50 53 3A
20
0D
41 55 52
20 46 52
45 51 3A
20
0D
CD BE DB
CD 6A C1
CD 6A C1
CD 6A C1
21 BD D2
CD BA C1
CD 6A C1
CD 6A C1
21 DP. D2
CD 45 CB
21 04 02
CD P.A C1
CD 06 D0
CD 6A C1
21 68 D3
CD 45 CB
21 BD D2
CD BA C1
CD 6A C1
21 E0 D3
CD 45 CB
CD D9 CE
124
PAGE 37
ADDR 111 112 113 ELINE LABEL
D286
D289
D28C
D28D
D290
D293
D296
D299
D29C
D29F
D2A2
02A5
CD
CD
C9
2A
2A
2A
2A
2A
2A
2A
2A
2A
o-.. 2A
D2All 2A
D2AE 2A
D2B0 2A
D2B3 2A
D2P·6 2A
D2119 2A
D2P.C 2A
0211F 2A
02C2 2A
D2C5 2A
D2C8 2A
D2Cll 2A
D2CE 2A
D2D1 2A
02D3 0D
D2D4 44
D2D7 45
D2DA 0D
D2DB 4.B
D2DE 59
D2E1 56
D2E4 41
D2E7 49
D2EA 4F
D2ED 20
D2F0 20
D2F3 53
D2F6 4E
D2F9 4C
D2FC 2C
D2FF 4E
D302 20
0305 20
D308 53
030B 4C
D30E 41
D311 49
D314 3A
D317 31
031A 32
D31D 4D
0320 24
D321 54
0324 4E
D327 49
.._.~,...
l~
6A Cl
6A C1
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
2A
OPCO OPERAND
3520
3521
3522
3523 DMES3
CALL CRLF
CALL CRLF
RET
DT
'***********************************'
3524
DT
'***********************************'
3525
3526 DMES4
DB
DT
0DH
'DATE: '
3527
3528 EMES30
DB
DT
0DH
'KWHY-TV/HARRISCOPE OF LOS ANGELES,
3529
DT
3530
DT
2A
41 54
3A 20
57
2D
2F
52
53
50
4F
4C
20
47
45
20
43
20
56
55
20
52
45
20
39
35
48
48
54
48
52
43
45
46
4F
41
45
53
49
2E
20
49
41
43
52
52
35
2E
20
5A
52 41
53 4D
54 54
VISUAL CARRIER: 519.25 MHZ$'
'TRANSMITTER OPERATING LOG
INC. '
125
PAGE 38
ADDR P.1 B2 P.3 E LINE LABEL
D32A
D32D
0330
D333
0336
0339
D33C
D33F
D342
0344
0347
D34A
0340
0350
0353
0356
0359
D35C
D35F
D362
0365
0367
0368
D36P.
D36E
0371
0374
0377
D37A
D37D
0380
D383
0386
0389
D38C
0380
0390
D393
D396
D398
D39P.
D39E
D3A1
D3A4
D3A7
D3AA
D3AO
03B0
03P.3
03P.6
03B9
D3P.C
03P.O
D3C0
D3C3
03C6
03C9
03CC
45
4F
52
49
20
47
20
20
20
20
20
20
55
4C
41
49
3A
35
2E
20
SA
5P.
43
52
52
4F
20
20
20
20
46
20
2D
52
50
41
4E
4C
20
20
20
20
20
20
20
52
20
52
45
20
32
37
40
24
20
45
54
47
4F
20
20
20
41
49
53
4E
20
20
20
52
45
20
3A
20
20
20
4F
3A
20
20
20
20
46
20
20
20 20
20
20
41
41
43
52
52
20
33
35
48
OPCD OPERAND
AURAL CARRIER:
523.75 MHZ$'
3531
DT
3532
3533 EMES31
DT
DT
'CARRIERS ON:---------- OFF:----------'
3534
DT
' OPERATOR:$'
'SIGN ON:-------------- OFF:----------'
,r ,
20
20 4F 50
45
54
3A
53
4E
4E
2D
2D
2D
2D
20
46
20
20
20
20
20
20
20
20
2D
20
52
4F
24
49
20
3A
20
2D
20
20
20
46
20
20
20
41
52
47
4F
20
20
2D
20
2D
4F
3A
20
20
20
3535
DT
20
20
20
20
20
2D
20
20
20
20
20
2D
3536
OT
----------------------$$'
126
PAGE 39
ADDR P.1 E.-,
•..:. P.3 E LINE LABEL
D3CF
0302
0305
D3D8
03DP·
D3DE
D3DF
D3E0
D3E3
03E6
03E9
03EC
D3EF
D3F2
D3F5
D3F8
03FP·
03FE
0400
0403
0406
0409
040C
040F
0412
D415
0418
D41P·
041E
0421
0424
0427
D42A
0420
0430
0433
0435
0438
D43P·
D43E
0441
0444
0447
044A
0440
0450
0453
0456
0459
045C
045F
0460
0462
0464
0467
046A
046C
D46F
20
20
2D
20
20
24
5P.
20
20
2D
20
20
20
OPCD OPERAND
2D
2D
2D
2D
24
20 20
, r,
3537
3538 EMES39
OT
OT
3539
OT
AURAL$'
3540
DT
PWR
3541
OT
'AMPS
3542
3543 VPWR
3544
3545
3546
3547
3548
3549
OT
,r ,
VISUAL'
TIME
20 54 49
40
20
20
20
20
20
20
49
41
20
20
20
20
20
20
41
41
20
20
20
20
20
20
50
20
4B
20
41
53
46
51
20
57
20
56
20
50
20
45
20
44
5B
DP.
E6
CA
21
36
21
.......
'"":··-~
45
20
20
20
20
20
20
53
4C
20
20
20
20
20
20
55
4C
20
20
20
20
20
20
57
20
20
20
20
20
20
56
55
20
20
20
20
20
20
52
24
20
K\1
20
20
20
20
20
s--,..:.
20 20
56 20
20
40 50
20 20
52 45
20 20
20 50
52 20
20 4B
20 20
41 40
53 20
46 52
51 20
40 4F
45 24
7E
08
82
43
01
14
44
04
FB
00
FB
IN
ANI
PORT1
08H
VPWR0
JZ
LXI H,MTRA
MVI M,MA1
LXI H,Mll
SHLO ICNT
FREG!
PWR
KV
AMPS
;READ VIS POWER
FREG•
MODE$'
127
PAGE 40
ADDR 1'1 l\2 l\3 E LINE LABEL
0472
D475
0478
D47B
D47E
0481
0482
0485
D487
048A
D48D
D490
0493
0496
D499
D49C
D49D
D4A0
D4A2
D4A5
D4A8
D4AB
D4AE
D4P.1
D4P.4
D4B7
D4BB
D4Bf·
D4P.D
D4C0
D4C3
D4C6
D4C9
D4CC
D4CF
D4D2
04D3
0406
D4D8
D4DB
D4DE
D4E1
D4E4
04E7
D4EA
D4ED
D4EE
D4Fl
D4F3
D4F6
D4F9
D4FC
D4FF
D502
D505
D508
0509
D50C
21 68
22 46
21 SA
22 48
CD 24
C9
21 43
36 00
21 14
22 44
21 68
-")·"')
.......
46
21 60
22 48
CD 24
C9
21 43
36 03
21 A0
22 44
21 FA
22 46
21 DC
-,.-, 48
.......
CD 24
C9
21 43
36 04
21 26
22 44
21 80
22 46
21 62
22 48
CD 24
C9
21 43
36 02
21 14
22 44
21 68
22 46
21 60
22 48
CD 24
C9
21 43
36 05
21 l\4
22 44
21 13
22 46
21 EB
22 48
co 24
C9
21 43
36 06
00
F8
00
F8
D5
F8
00
FB
00
F8
00
F8
D5
FB
00
F8
00
F8
00
FB
D5
F8
02
F8
02
FB
02
F8
05
F8
00
F8
00
F8
00
F8
D5
F8
05
F8
06
F8
05
F8
05
F8
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
VPWR0
VKV
VAMP
APWR
AKV
AAMP
OPCD OPERAND
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LXI
MVI
H,MH1
HALM
H,ML1
LALM
METER
H,MTRA
M,MA0
H,MI0
ICNT
H,MH0
HALM
H,ML0
LALM
METER
H,MTRA
MoMA3
H,MI3
ICNT
H,MH3
HALM
H,ML3
LALM
METER
;READ VIS KV
H,MTRA
M,MA4
H,MI4
ICNT
H,MH4
HALM
H,ML4
LALM
METER
;READ VIS AMPS
H,MTRA
M,MA2
H,MI2
ICNT
H,MH2
HALM
H,ML2
LALM
METER
;READ AUR POWER
H,MTRA
M,MA5
H,MI5
ICNT
H,MH5
HALM
H,ML5
LALM
METER
;READ AUR KV
H,MTRA
M,MA6
;READ AUR AMPS
128
PAGE 41
ADDR 111 112 113 E LINE LABEL
D50E
D511
0514
D517
D51A
D51D
D5211l
D523
D524
D527
0529
D52C
0520
0530
0531
0533
D534
D537
D538
D53A
D53B
0530
053F
D542
0545
0546
0548
054B
054E
D5511l
0552
0555
0558
D559
055B
D55E
0561
D561
0562
D565
D566
D568
D56B
0560
056F
0572
D572
0575
D576
0577
057A
D57D
057E
D57F
05B2
D5B5
D5B6
05B7
21
22
21
22
21
22
CD
C9
3A
03
2A
EB
21
7E
E6
77
21
7E
E6
77
DB
E6
CA
21
7E
E6
CA
C3
OP.
E6
C2
82
44
DC
46
AF
48
24
2A
7A
BC
D2
C2
711
BD
02
2A
7C
BA
D2
IllIll
FS
D5
43 FS
lll2
44 FS
3E FS
7F
3608
3609
3610
3611
3612
3613
3614
. 3615
3616 METER
3617
3618
3619
3620
3621
3622
3E FS
7F
01
10
4E D5
3E FS
80
3P.
29
01
10
61
21 3E
7E
E6 7F
CA 4E
C3 29
13
21
7E
E6
C2
DB
E6
C2
00
FS
011l
FS
05
07
05
FB
D5
D7
3E FB
7F
29 D7
01
10
61 D5
46 FB
3C DB
82 D5
3C DB
4B FB
42 DB
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
363B
3639
3640
3641
3642
3643
3644
3645
3646
3647
364B
3649
3650
3651
3652
3653
3654
3655
3656
3657
365B
3659
3660
3661
3662
3663
3664
3665
MTR1
MTRY
MTRX
*MTR2
*MTR3
MTR5
OPCD OPERAND
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
RET
LDA
OUT
LHLD
XCHG
LXI
MOV
ANI
MOV
LXI
MOV
ANI
MOV
IN
ANI
JZ
LXI
MOV
ANI
JZ
JMP
IN
ANI
JNZ
LXI
MOV
ANI
JZ
JMP
H,MI6
ICNT
H,MH6
HALM
H,ML6
LALM
METER
MTRA
OPT2
ICNT
;SET METER AOOR
H,ERFS
A,M
7FH
M,A
H,ERFS
A,M
7FH
M,A
PORT2
111lH
MTRX
H,ERFS
A,M
lll80H
MTRY
GOOF
PORT2
10H
MTR2
H,ERFS
A,M
7FH
MTRX
GOOF
;CLEAR INT. FLAG
INX
LXI
MOV
ANI
JNZ
IN
ANI
JNZ
0
H,ERFS
A,M
7FH
GOOF
PORT2
10H
MTR2
;<5)
; ( 10>
LHLD
MOV
CMP
JNC
JNZ
MOV
CMP
JNC
LHLD
MOV
CMP
JNC
HALM
A,D
H
MTR4
MTR5
A,E
L
MTR4
LALM
A,H
D
MTR6
;CHECK HI ALARM
; CLEAR INT. FLAG
;CHECK PWM PULSE
; (7)
; (7)
; ( 10)
; ( 10)
;(7)
; ( 10)
66 CYCLES
27 USEC
;CHECK LO ALARM
129
PAGE 42
ADDR B1 B2 B3 E LINE LABEL
D58A
0580
D58E
D58F
0592
D595
0596
D599
D59A
D59D
D59E
D59F
D5A2
D5A3
D5A4
D5A7
D5AA
05AD
D5AF
D5B2
D5P.5
D5B7
D5BA
D5BC
D5BF
D5C1
D5C4
D5C6
D5C9
D5CB
D5CE
0500
D5D3
0505
0508
D5DB
D5DE
D5E1
D5E3
D5E5
D5E6
D5E7
D5EA
D5EB
OSEE
D5F1
D5F4
D5F7
D5FA
D5FD
0600
0603
0604
0607
D608
D60A
D60D
D60E
C2
70
BB
D2
21
7E
21
A6
CA
7E
2F
21
A6
77
CD
3A
32
E6
32
3A
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
21
C3
21
0E
36
23
00
C2
2B
01
CD
01
CD
01
CD
01
CD
73
21
7E
FE
C2
2B
7E
92 D5
42 DB
3F FB
4B FB
DE 05
3F FB
16
BB
4A
3F
BB
43
00
63
01
63
02
69
03
6F
04
75
05
7B
06
81
0F
87
C6
05
30
DA
FB
FB
FB
FB
06
06
06
06
06
06
D6
07
06
FB
E3 D5
F0
4B
18
4B
9C
4B
F6
4B
DB
06
FC
06
FF
D6
FF
D6
CA FB
30
98 D7
3666
3667
3668
3669
3670 MTR7
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702 MTRB
3703
3704 SE0
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
OPCD OPERAND
JNZ
MOV
CMP
JNC
LXI
MOV
LXI
ANA
JZ
MOV
CMA
LXI
ANA
MOV
CALL
LDA
STA
ANI
STA
LOA
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
LXI
JMP
LXI
MVI
MVI
INX
DCR
JNZ
DCX
LXI
CALL
LXI
CALL
LXI
CALL
LXI
CALL
MOV
LXI
MOV
CPI
JNZ
DCX
MOV
MTR7
A,L
E
MTR6
H,MEST
A,M
H,MEMK
M
MTRB
A,M
H,MEST
M
M,A
MALM
MOST
MOST
3FH
MDST
MTRA
0
MTR9
1
MTR9
2
MTR11
3
MTR12
4
MTR13
5
MTR14
6
MTR15
H,MM6
MTR10
H,UNIT
c,s
;CHECK METER ERROR
;JUMP IF NO FLAG
;CLEAR ERROR FLAG
;CLEAR ALARM
;STORE MOST AND SET
;OUTPUT STREAM FOR
;CRT ONLY
;CTV VIS ALM CLR
;STV VIS ALM CLR
;AUR PWR ALM CLR
;VIS KV ALM CLR
;VIS AMP ALM CLR
;AUR KV ALM CLR
;AUR AMP ALM CLR
;16 BIT BINARY/5 DIGIT ASCII
;DECIMAL CONVERSION
M,30H
H
c
SE0
H
B,0DBF0H
DIGIT
B,0FC18H
DIGIT
B,0FF9CH
DIGIT
B,0FFF6H
DIGIT
M,E
H,UNIT+4
A,M
30H
MTR16
H
A,M
; <-10000)
;<-1000)
; ( -100)
;<-10>
;CHECK 1ST DIGIT
;TOO HIGH IF 1ST DIGIT NOT 0
; CHECK 2ND DIGIT
130
PAGE 43
ADDR l\1 l\2 l\3 E LINE LABEL
D60F
D611
D614
D615
D616
D619
D61C
D61E
D621
D623
D626
D627
D62B
D62B
D62D
D630
D631
D632
D635
D636
D637
D63A
D63f.
D63E
D641
D641
D643
D646
D647
D64B
D6411
D64C
D64D
D64E
D651
D652
D653
D654
D657
D658
D659
D65A
D65f.
D65C
D65D
D65E
D65F
D660
D661
D662
D663
D666
D669
D66C
D66F
D672
D675
D67B
FE
C2
2B
46
CD
3A
FE
CA
FE
CA
2B
46
CD
06
CD
2B
46
CD
C9
46
CD
46
CD
C3
06
CD
2P·
46
C3
E5
EB
09
C2
EP.
El
34
C3
79
2F
5F
7B
2F
57
13
19
EB
E1
2B
C9
21
C3
21
C3
21
C3
21
C3
30
36 D6
CB
43
04
41
06
41
DB
FB
D6
D6
cp. DB
2E
CB DB
CB DB
CB DB
CP DB
211 D6
2E
CB DB
2D D6
57 D6
41\ D6
99
87
AD
B7
C1
87
D2
B7
D6
D6
D6
D6
D6
D6
D6
D6
3724
3725
3726
3727
372B
3729
3730
3731
3732
3733
3734
3735
3736
3737
373B
3739
3740
3741
3742
3743
3744
3745
3746
3747
374B
3749
3750
3751
3752
3753
3754
3755
3756
3757
375B
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
37B0
37B1
OPCD OPERAND
CPI
JNZ
DCX
MOV
CALL
LDA
CPI
JZ
CPI
30H
MTR1B
H
B,M
DIGOUT
MTRA
04H
MTR19
06H
MTR19
DCX H
MOV B,M
CALL DIGOUT
MVI B ' • •
CALL DIGOUT
DCX H
MOV B,M
CALL DIGOUT
RET
MOV B,M
CALL DIGOUT
MOV B,M
CALL DIGOUT
JMP MTR20
...
T~
MTR20
MTR21
MTR1B
*
MTR19
DIGIT
ADD IT
MTR9
MTR11
MTR12
MTR13
.
MVI
CALL
DCX
MOV
JMP
PUSH
XCHG
DAD
JNZ
XCHG
POP
INR
JMP
MOV
CMA
MOV
MOV
CMA
MOV
INX
DAD
XCHG
POP
DCX
RET
LXI
JMP
LXI
JMP
LXI
JMP
LXI
JMP
.
B, •.
DIGOUT
H
B,M
MTR21
H
B
ADD IT
H
M
DIGIT
A,C
E,A
A,B
D,A
D
D
H
H
H,MM0
MTR10
H,MM1
MTR10
H,MM2
MTR10
H,MM3
MTR10
;JUMP IF 2ND DIGIT NOT 0
;OUTPUT 3RD DIGIT
;JUMP IF VIS AMPS
;JUMP IF AUR AMPS
;OUTPUT 4TH DIGIT
;OUTPUT DEC. POINT
;OUTPUT 5TH DIGIT
;OUTPUT 2ND DIGIT
;OUTPUT 3RD DIGIT
;OUTPUT DEC. POINT AND
ANOTHER DIGIT
;OUTPUT DEC. POINT AND
;TWO MORE DIGITS
131
PAGE 44
AODR :Sl 1!·2 1\3 E LINE LA:SEL
D67:s
D67E
0681
0684
0687
068A
0680
0690
0693
0696
0699
D69C
D69F
D6A2
D6A5
06A8
D6Al\
06AC
D6AD
061!·0
06B3
06B6
D6B9
061\C
061\F
D6C0
D6C1
D6C4
06C7
D6CA
06CO
0600
L601
06D2
0605
06D8
D6DP·
06DE
06E1
D6E4
D6E6
D6E7
D6EA
D6ED
D6F0
D6F3
06F6
D6F9
06FA
D6FO
0700
0703
0706
0709
D70C
D70E
D70F
0712
21
C3
21
C3
CD
CD
CD
3A
32
C3
56
20
52
4C
40
4C
52
0D
41
20
52
4C
40
4C
52
00
56
20
20
40
4C
52
00
56
20
50
41
52
43
41
00
41
20
20
41
20
45
00
41
20
50
41
52
43
41
00
55
4E
E7
87
FA
87
BA
C9
32
4A
B8
DE
49
50
20
41
20
45
06
06
06
06
C1
C6
C7
F8
F8
05
53
57
41
52
43
41
55
50
20
41
20
45
52
57
41
52
43
41
49
41\
41
20
45
53
56
4C
43
41
49
41
53
4C
4D
4C
52
53
40
20
41
20
45
55
4B
41
52
43
41
52
56
4C
40
4C
52
55
41
53
4C
40
4C
52
52
40
20
41
20
45
4E 4B
4F 57
OPCO OPERAND
LXI
JMP
LXI
JMP
CALL
CALL
CALL
LOA
STA
JMP
DT
H,MM4
MTR10
H,MM5
MTR10
;OUTPUT ALARM MESSAGE
SCRN
;TO CRT
TIME
BLKl
;RESTORE MOST
MOST
MOST
MTR8
'VIS PWR ALARM CLEAR'
3793
3794 MMl
DB
OT
0DH
'AUR PWR ALARM CLEAR'
3795
3796 11M2
DB
OT
0DH
'VIS KV ALM CLEAR'
3797
3798 MM3
DB
DT
00H
'VIS AMPS ALARM CLEAR'
3799
3800 MM4
o:e.
OT
0DH
'AUR KV ALARM CLEAR'
3801
3802 1'11'15
D:S
OT
0DH
'AUR AMPS ALARM CLEAR'
3803
3804 1'11'16
DB
OT
0DH
'UNKNOWN METER ALARM CLEAR'
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
MTR14
MTR15
1'1TR10
1'11'10
132
PAGE 45
ADDR Bl B2 B3 E LINE LABEL
D715
0718
D71B
D71E
D721
D724
D727
D728
D729
0729
D729
D729
D729
0729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
D729
0729
D729
0729
D729
D729
D729
D72B
D72E
D731
D734
0737
D73B
D73A
D73B
D73D
D73E
4E
45
52
4C
4D
4C
52
0D
20
54
20
41
20
45
4D
45
41
52
43
41
0001
001111
001112
11101114
11111108
01111111
1111112111
111111111111
11101111
11101112
0003
1111111114
001115
0006
0014
0014
0014
00A0
111226
05P.4
011182
0068
0068
111068
00FA
11128111
0613
00DC
0060
005A
0060
00DC
111262
0SEB
00AF
2A
CB DB
CB DB
CB DB
43 F8
1116
CD
CD
CD
21
7E
FE 00
CB
FE 01
CB
FE 1112
OPCD OPERAND
3805
3806
3807
3808
3809
381111
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3B34
3B35
3836
3B37
3B38
3839
3B40
3B41
3842
3B43
3B44
3B45
3B46
3B47
3B48
3B49
3850
3851
3852
3B53
3B54
3BS5
ME0
MEl
ME2
ME3
ME4
ME5
ME6
*
MA0
MAl
MA2
MA3
MA4
MAS
MA6
*
MI0
MI 1
MI2
MI3
MI4
MIS
MI6
*
MH0
MHl
MH2
MH3
MH4
MH5
MH6
*
ML0
ML1
ML2
ML3
ML4
ML5
ML6
GOOF
DB
EGIU
EG!U
EG!U
EG!U
EGIU
EG!U
EG!U
0DH
01H
01H
02H
04H
08H
10H
20H
EGIU
EGIU
EG!U
EG!U
EGIU
EG!U
EG!U
00H
01H
02H
03H
04H
05H
06H
EG!U
EG!U
EG!U
EG!U
EG!U
EGIU
EG!U
0014H
0014H
0014H
00A0H
0226H
05B4H
0082H
EG!U
EG!U
EG!U
EGIU
EG!U
EG!U
EGIU
0068H
0068H
111068H
111111FAH
02B111H
0613H
00DCH
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
EG!U
MVI
CALL
CALL
CALL
LXI
MOV
CPI
RZ
CPI
RZ
CPI
011160H
11105AH
0060H
00DCH
0262H
1115EBH
00AFH
B,'*'
DIGOUT
DIGOUT
DIGOUT
H,MTRA
A,M
0
;METER ERROR MASK DATA
METER ADDRESS DATA
;CTV VIS PWR
;STV VIS PWR
;AUR PWR
;VIS KV
;VIS AMPS
;AUR KV
;AUR AMPS
INITIAL COUNT DATA
HIGH ALARM DATA
LOW ALARM DATA
1
2
133
PAGE 46
ADDR B1
0740
0741
0743
0744
0747
D74B
D74P.
D74E
0751
0752
0753
0756
0759
D75C
D75F
0761
0764
0766
0769
D76P.
D76E
0770
0773
0775
D77B
D77A
D77D
D77F
0782
D7B5
D7BB
D7BP·
D7BE
0791
0794
0797
D79B
D79A
D79D
D79F
D7A2
D7A4
D7A7
D7AA
D7AP.
D7AE
D7P.1
D7B4
D7B7
D7BA
D7BD
D7C0
D7C3
D7C6
D7C9
D7CC
D7CF
D7D2
CB
FE
CB
CD
C9
CD
3A
21
B6
77
3A
32
CD
3A
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
FE
CA
21
CD
CD
CD
CD
3A
32
C9
06
CD
06
CD
06
CD
CD
C9
21
C3
21
C3
21
C3
21
C3
21
C3
21
C3
21
C3
....
P,·">
B3 E LINE LABEL
FF
CB DB
16 DA
4B FB
3F FB
BB
4A
09
43
1!10
AB
01
P.1
02
B7
03
BD
04
C3
1!15
C9
06
CF
19
BA
32
C9
6A
4A
BB
FB
FB
CE
FB
07
07
07
07
07
07
07
DB
C1
C7
C6
C1
FB
FB
2A
CP.
4B
CB
49
CB
58
DB
05
85
05
85
E3
85
F1
B5
FE
85
0C
85
19
85
07
07
07
07
07
07
07
07
07
07
DB
07
DB
07
DB
DB
DB
3B56
3B57
3B58
3B59
3B61!1
3B61
3B62
3B63
3B64
3B65
3B66
3B67
3B6B
3B69
3B71!1
3B71
3B72
3B73
3B74
3B75
3B76
3B77
3B7B
3B79
3BB0
3BB1
3BB2
3BB3
3BB4
3BB5
3BB6
3BB7
JBBB
3BB9
3B90
3B91
3B92
3B93
3B94
3B95
3B96
3B97
3898
3899
3900
3901
3902
3903
3904
391!15
391!16
3907
3908
3909
3910
3911
3912
3913
MTR99
MTRZ
MTR16
MTR41
MTR42
MTR43
MTR44
MTR45
MTR46
MTR47
OPCD OPERAND
RZ
CPI
RZ
CALL
RET
CALL
LDA
LXI
ORA
MOV
LDA
STA
CALL
LDA
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
CPI
JZ
LXI
CALL
CALL
CALL
CALL
LDA
STA
RET
MVI
CALL
MVI
CALL
MVI
CALL
CALL
RET
LXI
JMP
LXI
JMP
LXI
JMP
LXI
JMP
LXI
JMP
LXI
JMP
LXI
JMP
I!IFFH
DIGOUT
MALM
MEMK
H,MEST
M
M,A
MOST
MOST
CRON
MTRA
1!1
MTR41
1
MTR42
2
MTR43
3
MTR44
4
MTR45
5
MTR46
6
MTR47
H,MM21
SCRN
P.LI\1
TIME
CRLF
MOST
MOST
p,, '*'
DIGOUT
B, 'H'
DIGOUT
B,' I'
DIGOUT
EXRA
H,MM16
MTRZ
H,MM16
MTRZ
H,MM17
MTRZ
H,MM1B
MTRZ
H,MM19
MTRZ
H,MM21!1
MTRZ
H,MM21
MTRZ
;SET ALARM
;SET ERROR FLAG
;SET OUTPUT STREAM FOR
;CRT ONLY
;RESTORE MOST
134
PAGE 47
ADDR P.1 B2 B3 E LINE LABEL
D7D5
D7DB
D7DB
D7DE
D7E1
D7E2
D7E3
D7E6
D7E9
D7EC
D7EF
D7F0
D7F1
D7F4
D7F7
D7FA
D7FD
D7FE
D801
0804
0807
D80A
080B
D80C
080F
0812
0815
D81B
D819
D81C
081F
0822
0825
D827
082B
D82B
082E
D831
D834
0837
D83A
D83B
D83C
D83F
D842
D845
D847
D84A
D84C
D84F
D851
D854
D857
D858
D85B
D85C
D85E
D85F
49
50
20
41
53
57
41
52
55
50
20
41
52
57
41
52
49
20 4B
20 41
41 52
0D
56 49
20 41
50 20
4C 41
40
0D
41 55
20 4B
20 41
41 52
0D
41 55
20 41
50 53
41 4C
52 4D
0D
55 4E
4E 4F
4E 20
45 54
52 20
4C 41
4D
0D
CD 48
C3 98
CD 48
06 2A
CD CP.
06 4C
CD CP.
06 4F
CD CB
CD 58
C9
21 43
7E
FE 00
CB
FE 01
53
56
4C
4D
56
20
52
4C
40
0D
41
20
52
4C
4D
00
56
53
4D
41
52
52
56
4C
40
52
4D
20
41
4B
57
4D
45
41
52
D7
D7
07
DB
DB
DB
DB
FB
OPCD OPERAND
3914 1'11'116
DT
'VIS PWR ALARM'
3915
3916 MM17
DB
DT
0DH
'AUR PWR ALARM'
3917
3918 MM18
DB
DT
0DH
'VIS KV ALARM'
3919
3920 MM19
DB
DT
0DH
'VIS AMP ALARM'
3921
3922 MM20
DB
OT
00H
'AUR KV ALARM'
3923
3924 MM21
DP·
DT
0DH
'AUR AMPS ALARM'
3925
3926 MM22
DB
DT
0DH
'UNKNOWN METER ALARM'
3927
392B MTR4
3929
3930 MTR6
3931
3932
3933
3934
3935
3936
3937
3938
3939 EXRA
3940
3941
3942
3943
DB
CALL
JMP
CALL
MVI
CALL
MVI
CALL
MVI
CALL
CALL
RET
LXI
MOV
CPI
RZ
CPI
0DH
MTR99
MTR16
I'ITR99
B, • *'
DIGOUT
B, 'L'
DIGOUT
B, '0'
DIGOUT
EXRA
H,MTRA
A,M
0
1
135
PAGE 4B
ADDR .Bl .B2 .B3 E LINE LABEL
DB61
D862
D864
DB65
D867
D86A
D86B
D86D
D86F
D872
D875
D87B
D879
D87C
D87F
D881
D883
D886
DB88
D889
D88C
D8BD
DBBE
DB91
DB92
D894
DB96
D897
DB98
D898
D89B
DB98
DB9B
DB9B
D89C
D89E
D89F
D8A2
D8A5
D8A8
D8AB
D8AE
D8B1
D8:B4
D8B7
D8.BA
DBBB
D8BD
D8BE
D8C1
D8C2
D8C4
D8C7
DBCA
D8CB
DBCC
DBCF
D8D0
CB
FE
CB
06
CD
C9
DB
E6
CA
21
CD
C9
21
C3
DB
E6
C3
55
0D
44
4E
0D
21
7E
F6
E6
77
C9
3944
3945
3946
3947
2A
394B
CB DB
3949
3950
7E
3951
01
3952
79 DB
3953
B6 DB
3954
BA Cl
3955
3956
B9 DB
75 DB ' 3957
3958
7E
3959
02
3960
6F DB
3961
50
3962
3963
4F 57
02
BB FB
40
7F
21 BB FB
7E
F6 20
77
CD
CD
CD
CD
CD
CD
CD
CD
21
7E
E6
77
21
7E
E6
C4
CD
C9
E5
21
7E
El
60
9D
.BB
D7
D3
EE
09
45
BB
D4
D4
D4
DB
D4
D4
DS
D9
FB
DF
BB FB
10
BB D0
71 DA
B8 FB
V.BM
VBM3
V:SM2
VBM1
ABM
EMES32
EMES33
3964
3965 PRON
3966
3967
3968
3969
3970
3971
*
292B *
2929
4000 * START
4001 PTWO
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023 DIGOUT
4024
4025
4026
OPCD OPERAND
RZ
CPI
RZ
MVI
CALL
RET
IN
ANI
JZ
LXI
CALL
RET
LXI
JMP
IN
ANI
JMP
DT
DB
DT
DB
LXI
MOV
ORI
ANI
MOV
RET
2
:s,. *.
DIGOUT
PORT!
01H
VBM1
H,EMES32
SCRN
;VIS .BEAM STATUS
H,EMES33
VBM2
PORT!
02H
VBM3
•up·
0DH
·DowN•
0DH
H,MDST
A,M
40H
7FH
M,A
LINK •TEST4•
OF FILE TEST4
LXI H,MDST
MOV A,M
ORI 20H
MOV M,A
CALL VPWR
CALL VKV
CALL VAMP
CALL VFRG
CALL APWR
CALL AKV
CALL AAMP
CALL AFRG>.
LXI H,MDST
MOV A,M
ANI 0DFH
MOV M,A
LXI H,MDST
MOV A,M
ANI 10H
CNZ STAD
CALL CLDF
RET
PUSH H
LXI H,MDST
MOV A,M
POP H
;END OF FILE TEST3
;CONTINUE ASSEMBLY
;SET NOPRINT FLAG
;CHECK METERS AND OUTPUT
; ANY ERROR MESS!'.,':;ES BUT
;NO DATA DIGITS
;CLEAR NOPRINT FLAG
;CHECK LOG DATA FLAG
136
PAGE 49
ADDR B1 B2 B3 E LINE LABEL
0801
0803
0804
0807
DBDA
DBDC
OBOE
DBEIZI
DBE3
DBE5
DBE7
DBEA
DBEC
DBEF
DBF1
DBF3
DBF6
DBFB
DBFA
DBFD
0900
0901
0903
D906
D907
D909
D90A
D90D
0910
0913
0916
0919
D91C
D91F
D922
D925
D928
D92l'·
D92D
D930
D931
D932
D933
D934
D935
D936
D938
D93P.
D93D
0940
0942
0945
0948
D94A
D94C
D94E
0951
0953
E6
C0
C3
21
36
3E
03
CD
Dl'·
E6
CA
06
CD
3E
03
CD
DB
E6
C2
21
7E
E6
CA
7E
E6
77
CD
2A
........
·")-)
CD
21
CD
CD
CD
2A
·-:• ....
........
)
C3
06
C3
00
00
00
00
00
C9
3E
CD
3E
CD
06
C3
21
36
3E
03
CD
DB
E6
20
17
43
FF
00
02
3121
01
01
2B
21'·
CB
01
02
30
01
0F
C0
3F
C1
FB
09
09
DB
09
09
FB
40
36 09
BF
16
F·B
4A
09
1F
BA
32
C9
4A
BB
36
2D
EC
DA
FB
FS
CE
DA
C1
C7
C6
FB
FB
D9
DB
02'
AP· D9
03
AB 09
30
BC 09
43 FB
FF
40
02
30 09
01
01
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
VFRQ
VFRQ1
VNEG
NOPE
VFRQ3
VFRQ2
AFRQ
OPCD OPERAND
ANI
RNZ
JMP
LXI
MVI
MVI
OUT
CALL
IN
ANI
JZ
MVI
CALL
MVI
OUT
CALL
IN
ANI
JNZ
LXI
MOV
ANI
JZ
MOV
ANI
MOV
CALL
LHLD
SHLD
CALL
LXI
CALL
CALL
CALL
LHLD
SHLD
JMP
MVI
JMP
NOP
NOP
NOP
NOP
NOP
RET
MVI
CALL
MVI
CALL
MVI
JMP
LXI
MVI
MVI
OUT
CALL
IN
ANI
20H
OUTS
H,MTRA
M,0FFH
A,0
OPT2
NOPE
PORT2
1
VNEG
B,. +'
DIGOUT
A, 1
OPT2
NOPE
PORT2
0FH
VFHI
H,MEST
A,M
40H
VFRQ3
A,M
0BFH
M,A
MALM
MOST
MOST
CRON
H,EMES35
SCRN
BLI\1
TIME
MOST
MOST
;READ VIS FREQ SIGN
;READ 1ST DIGIT
;CHECK ERROR FLAG
;CLEAR ERROR FLAG
;CLEAR ALARM
VFRI~3
B,. _,
VFRQ1
;DATA SETTLING DELAY
A,2
VOUT
A,3
VOUT
P.,30H
VOUT1
H,MTRA
M,0FFH
A,40H
OPT2
NOPE
PORT2
1
;READ 2ND DIGIT
;READ 3RD DIGIT
; READ AUR FREGl SIGN
137
PAGE 50
ADDR B1 B2 B3 E LINE LABEL
0955
0958
D95A
095D
095F
0961
0964
0966
D968
096.B
D96E
D96F
0971
0974
0975
D977
D978
D97P.
D97E
D981
D984
0987
D98A
D98D
D990
D993
D996
D999
D99B
D99E
D9A0
D9A3
09A6
D9A8
09AP·
09AD
09P.0
D9B2
D9B4
09:86
D9B9
D9BP·
D9BC
D9E·F
D9C0
D9C3
D9C4
D9C6
D9C9
D9CC
D9CF
D9D0
D9D2
D9D3
D9D6
0909
D9DC
D9DF
CA A6 09
06
CD
3E
D3
CD
DB
E6
C2
21
7E
E6
CA
7E
E6
77
CD
2A
22
CD
21
CD
CD
CD
2A
-,...,
.......
C3
3E
CD
3E
CD
C3
06
C3
D3
CD
DP.
E6
FE
D2
C6
47
CD
C9
21
7E
E6
C2
CD
21
7E
F6
77
2A
22
CD
21
21\
CB
05
02
30
01
0F
F4
3F
DB
D9
D9
FB
80
99 D9
7F
16
P.B
4A
09
34
P.A
32
C9
4A
B8
99
06
AE·
07
AE.
40
2D
SA
02
30
01
0F
0A
29
30
DA
F8
F8
CE
DA
C1
C7
C6
F8
FB
09
09
D9
09
09
D9
07
CB DB
3F F8
40
29 D7
16 DA
3F F8
40
BS
4A
09
49
CD BA
F8
F8
CE
DA
C1
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
OPCD OPERAND
JZ
AFRGI1
MVI
CALL
MVI
OUT
CALL
IN
ANI
JNZ
LXI
MOV
ANI
JZ
AFRG!3
ANEG
VOUT
VOUT1
VFHI
VFH0
MOV
ANI
MOV
CALL
LHLD
SHLD
CALL
LXI
CALL
CALL
CALL
LHLD
SHLD
JMP
MVI
CALL
MVI
CALL
JMP
MVI
JMP
OUT
CALL
IN
ANI
CPI
JNC
ADI
MOV
CALL
RET
LX I
MOV
ANI
JNZ
CALL
LXI
MOV
ORI
MOV
LHLD
SHLD
CALL
LXI
CALL
ANEG
p., '+'
DIGOUT
A,5
OPT2
NOPE
PORT2
0FH
AFHI
H,MEST
A,M
080H
AFRG!3
A,M
7FH
M,A
MALM
MOST
MOST
CRON
H,EMES36
SCRN
BLK1
TIME
MOST
MOST
AFRGI3
A,6
VOUT
A,7
VOUT
VFRG!2
B, '-'
AFR!.il1
OPT2
NOPE
PORT2
0FH
0AH
GOOF
30H
B,A
DIGOUT
H,MEST
A,M
40H
GOOF
MALM
H,MEST
A,M
40H
M,A
MOST
MOST
CRON
H,EMES37
SCRN
;READ 1ST DIGIT
;CHECK ERROR FLAG
;CLEAR ALARM
;READ 2ND DIGIT
;READ 3RD DIGIT
;CHECK ERROR FLAG
;JUMP IF SET
;SET ERROR FLAG