ArdalanJahangir1982

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE
THREE STORY DWELLING ON A HILL SIDE AREA
A graduate project submitted in partial satisfaction of the
requirement for the degree of Master of Science in
Engineering
by
Jahangir Ardalan
May 1982
The Graduate project of Jahangir Ardalan approved
Dr. iia~ Bekir -
br.
Bill MacD<:ttald-
Dr. Brente H~er, Cha.i.nnan
California State University, Northridge
ii
TABLE OF CONTENTS
.''!!Ji'
Page
List of tables
List of figures
........................................
.......................................
List of symbols
v
v
vi
vii
ABSTRACI'
Introduction
1
Haterial properties and design assumption
3
Soil engineering report
4
Architectural description
8
Roof load and floor load
9
Nax. length of joists roof
10
Roof ridge beam
11
Roof header
11
Roof rafters
13
Roof framing design
14
3rd floor framing
15
3rd floor header and floor beam
16
2nd floor framing
2nd floor beam
.....................................
................................
Detennination of sizes for bracing
...................................
rd
3
floor walls .......................................
Check overturning rrx:ment ..............................
Horizontal analysis
iii
24
25
32
33
34
34
Page
nd
Check lateral forces on 2 floor \·;•alls
Check O.T.r-1. forces on 2nd floor walls
35
Check lateral forces on 1st floor walls
37
Check O.T.H. forces on 1st floor walls
37
Grade beam design
38
Foundation design
39
Connections design
40
Retaining wall desing
44
caisson design
57.
Details
60
Description of shear wall
77
Conclusion
78
iv
36
LIST OF TABLES
Table
Page
1
55
2
56
3
10
4
77
5
33
6
50
7
54
v
LIST OF FIGURES
Figure
Page
Figure
l?a~Je
1
60
28
18
2
61
29
20
3 &4
62
30
22
5 &6
63
31
24
7
59
32
25
8
64
33
27
9
65
34
28
10
66
35
30
11 & 12
67
36
31
13
68
37
32
14
71
38 & 39
38
15
72
40
40
16
73
41
44
17
74
42
46
18
75
43
47
19
76
44
48
20
12
45
49
21 & 22
13
46
50
23 & 24
14
47
51
25
15
48
52
26
16
49
53
27
17
50
57
vi
LIST OF S'YMEOIS AND ABBREVIATION
= NAX
D.L.
=
DEAD IDAD
L.L.
=
LIVE IDAD
R.
=
ROOF
BM.
=
BEAM
L.
=
LOAD
S. P.
ELEV.
=
ELEVATION
e
=
FOOl'
PCF
= POUNDS
PER CUBIC FOOI'
#I'
=
POUND PER LINEAR FOOT
PLF
= POUNDS
PER LINEAR FOal'
II
=
INCH
PSF
= POUNDS
PE..."q
rn.
=
INCH
PSI
= POill\JDS
PER SQUARE INCH
IIDR.
=
HEADER
fc
SR.
=
SECI'ION r-DDUIIJS REQUIRED
DT.
=
DEI'AIL
Ar.
=
AREA REQUIRED
L
=
LENGI'H
M
=
w
=
WEIGHT
I
r
=
MJMENT OF INERI'IA
D/W
=
DRY WALL
=
FOOI'ING
=
AT
=
MASONRY
LS
BENDTh!G
LI = r1AX LENGI'H AI.J..O\'mD BY
BENDING
=
SOIL PRESSURE
= ECCENTRICITY
' = ULTIMATE
SQUA...~
FOOl'
COHP. STRENGI'H OF
CONC.
fm = ALI.OV'JABLE COMPRESSIVE !,1AS.
STRESS IN EXTREI1E FIBER
fc
I
MAS.
LENGI'H .ALID\i'JED BY
fm
= ALI.Ovi1ABLE
= ULTIMATE
CO.HP. CON. STRESS
COMP. STRENGTH OF
MASONRY
~= SlN
.V
= UNITE
<f' = ANGLE
\< = RATIO
WEIGHT
OF rnTERNAL FRICTION
OF DISTAL'JCE (KD)- - -
BETWEEN" R"TI'REME COMP. FilER
vii
ABSTRACI'
THREE Sl'ORY Dt·'ErLING ON A HILL SIDE AREA
BY
Jahangir Ardalan
Master of Science in Engineering
In Engineering School in structural courses a student learns hCM
to design a beam, a column, footing for a column and also a student
learns soil nechanics, drawing, etc. , where each of these courses has
been assigned to relate to each others.
When the student graduates,
he or she knCMS heM to use these in designing a buidling.
I feel it is very important that a student be able to analyze b'le
CCirq?lete system, and to find the proper loads acting on all members
that make up the building, because design of a buildings, beams, walls,
footings are inportant.
This project is intended to show how one can analyze and design a
building structure, use a building code, and show design knowledge
learned in the university.
viii
IN'.IIDDUCI'ION
11
Building codes fulfill many function, an ex.arrple sate engineers
contend that codes should aim only at the protection of life and limb,
while others believe that they should also protect property.
sare
feel that codes should neet acceptable-risk or mini.rrnJm
reliability criteria; others feel that they should tend to produce
optjlmlm design.
This question is examined here in.
retional stand
~uld
It is concluded that
t.~e
only
hold that codes should tend to produce opt.imn
designs taking in to account the protection of people and property
II
In order to obtain a building pennit a structural engineering finn
su1::mits a set of structural
blueprints to the building depa.rt::Irent with
a set of calculations showing the design procedure.
In this project I will illustrate the calculations nonnally
sul::rnitted to the building depa.rt::Irent as done by a leading structural
engineering finn in IDs Angeles base upon a site soil report.
Calculations will show the following:
a)
Foundation design
b)
Beam and colUllU1 design
c)
lateral analysis and shear 'Wall design
d)
Floor design
e)
Connection design
Examples of typical connection details used to connect rrembers of
1
2
INI'IDDUCI'ION, continued
the structure together will be derronstrat.e<l.
This project presents the results of soils engineering and
structural design of three story building on a hill side area which
assurred to be located in Los Angeles County and for which the Unifonn
Building Code ( U.B.C. 1979) reg:uirarents govern.
This design is based on recarmended soil allowables.
3
MATERIAL PROPERI'IES AND DESIGN ASSUMPTION
LUMBER
Roof joist
D.F.
# 2
Ceiling joist
D.F.
# 2
CONCRRI'E
I
F c
=
F -reinf. steel
y
3000 PSF
40 ksi
SOIL
Soil pressure
1500 PSF
Wind
15 PSF
Earthquake
Zone 1 CS
=
.14
I= 1.0
K
= 1.33
for box systems
Cone. block shall confonn to ASTM:: - 90 GradeN
STEEL
Structural steel confonn to AS'IM A - 36
4
SOIL ENGINEERING REPORI'
The proposed develo};lll211t will be tbree·-stroy construction.
The
structural loads are not known at this ti.Ire, but for the purpose of
this report, they are assumecl at the thirty (30) kip range for column
loads and wall loads in the range of 2. 0 kip per lineal foot.
SITE CONDITIONS
The subject site is a northeast sloping, irregular shaped parcel
descending abruptly from Panah Drive at the Western property line at an
average 1. 25 horizontal to one (1) vertical gradient for an approximate
vertical height of 210+ feet.
FILL CONDITIONS
Fill material was not encountered during any part of the field
investigation.
NATURAL CONDITIONS
Natural ground encountered in the borings consists of a residual
soil mantle of eleven (11) to fifteen (15') feet depth of a fine,
sandy, silty CLAY with abundant rock fragments.
This, in turn is
underlain by SANDSTONE and shale bedrock of the Topanga Fonnation.
No groundwater was encountered in any of the excavations and. no
caving occurred.
LABORATORY TESTING
5
Undistrubed shear tests were performed on the bedrock sarrples \vith
a direct shear machine of the strain control type in which the rate of
strain is 0. 05 inches per minute.
The machine is so designed that
tests may be performed ensuring a mini.mum of disturbance fran the field
Saturated specilrens \Vere subjected to shear rmder various
conditions.
nonnal loads.
The results of the tests on ultimate values are
presented on plate A.
Expansion tests were performed on typical speciirens of natural
soils.
These tests \Vere performed in accordance with the procedure
outlines in U.B.C. Standard 29-2.
Results of these tests are presented
in Table 1 and indicate the soil to exhiliit a :rredium expansion
potential.
RECONMENDA.TIONS
On the
basis of our investigation, develo:pnent of the site as
proposed is considered feasible provided that the recarrm:mdations
stated herein are incorporated in the design of foundation systems and
are implem::mted in the field.
Calculations for slope stability are shown on Plate B and incorporate the bedrock pararreters and slope conditions indicated.
slope is shown to be grossly stable.
considered favorable.
The
The bedding attitude is
Bedding attitudes are indicated on the attached
Sheet A.
Develo:pnent of the site should be conducted in such a manner to
avoid excessive disturbance of the natural vegetation cover on the
slope.
Its presence contributes significantly to surficial stability
on the site.
Groundwater will not be an influencing factor in the developnent
6
of the site.
Roof drainage fran the structue should be tc:Mards Panah Drive via
non-erodable devices.
FOUNDATIONS
The pro};X)sed structure shall be supported by a cost-in-place
reinfored pile, grade beam system and cont. footing.
Allowable loads
for piles are indicated on the attached pile capacity Chart, Plate D.
For regular footing allCMable soil bearing is 1500 PSF.
Piles should
be founded a :rni.ninrum depth of five {5') feet into bedrock.
EXPANSIVE SOILS
Results of expansion test indicate that the soils exhibit a medium
expansion J;X:>tential.
The rredium recamendations on the accanpanying
Expansive Soil Recarmendation, Plate
c,
should be considered in design
of foundations.
RETAINING WALLS
An equivalent fluid pressure of forty {40) p:mnds per square foot
may be used for the design of the retaining wall along Panah Drive.
Calculations for design load are shown on plate B and are based on
ultimate values of shear test results of saturated bedrock samples
obtained fran rock outcrops at sample location A.
lATERAL DESIGN
Lateral restraint at the base of retaining wall footings may be
as.sum:rl to be the product of the dead load and a coefficient of
friction of 0.40.
Passive pressure on the face of footings may also be
used to resist lateral forces.
A passive pressure of zero at the
surface of finished grade, increasing at the rate of 350 J;X:>unds per
square foot of depth to a maximum value of 3500 p:mnds per square foot
7
may be used for natural soil and caupacted fill at this site.
If passive pressure and friction are canbined when evaluating the
lateral resistance, the value of the passive pressure should be limited
to two-thirds (2/3) of the values given above.
8
ARCHITECI'URAL DESCRIPI'ION
The 1st floor contains the tY.O car garage separate entrance to
utility roon and 2nd floor.
The 2nd floor contains kitchen, dining-
roan, livingrcx:xn, deck, two bedrooms, one bath and the main entrance.
The 3rd floor contains master bedroan, master bath, deck and sitting
area.
t
I
II
I
II
I
II
I
II
The ls floor dimension is 19 -5 x 40 -0
nd
I
ll
I
II
The 2
floor di.m:msion is 29 -0 x 40 -0
d
The 3~
floor dirnension is 29 -0
x 40 -0
9
RX)F IDAD
TILE
9.0
PSF
SHEATll~G
3.0
PSF
RX)F JOISTS
2.5
PSF
INSUlATION
1.5 PSF
DRY\NAI..L CEILING
2.5
CE1ENT
PSF
18.5 PSF
=
=
12 PSF
D.L.
=
10 PSF
L.L.
=
40 PSF
SAY: D.L.
L.L.
FlOOR IDAD
PARTITIONS
&
20 PSF
BALCONY
=
12 PSF
""'"
. HAXIHUH LENGI'H OF JOISTS (OOUGLAS FIR # 2) - FEET
L.L.
PSF
LCCATION
12
ROOF P.J\FI'ERS
FI.roR JOISTS
40
TABlE 3
D.L.
PSF
EASE
20
1.25 DL
INCR. DEFL. SIZE
10
JS';I;'fo) JS';I;'6:> JS';J;'Q DEI,. I@ Dl?L@
24o.c. 16 o.c 12 o.c 16 o.c J2o.c.
LL
2
X
6
2 x10
1.00 LL
LcC>
LI
LcC>
9.9
11.4 12.5 14.3
15.8
16.7 18.4
23.2
14.5
LI
21.1
Ls
LT
Ls
LI
Ls
LI
L~
L
S
-
= ( S(D)3(1.15)INCR. (12)1250)1/2
_
I (D) 384 (12) -- . 1/3
LI - (t:: ', Jl Jl' ,..,...,..,.,-n,,,.. )
T.L. (12)SPACING
LI
'
-v:-
_3V
2~;
M
J.·~
-
-
WL~
-8-
Ll
I -
5
- 384
WL
~
JOISTS
2
PROPERI'IES
X
6
2
X
8
2
X
10
2
X
12
2
X
14
1--DMENT OF INERI'IA
7.563
20.797
13.141
47.635
21.391
98.932
31.641
177.979
43.891
290.775
DBL JOISTS SECTION !>DDULUS
DBL JOISTS .r-J)HENT OF INERI'I.A
15.126
41.594
26.282
95.270
42.182
197.864
63.282
355.958
87.782
581.850
SECTI~ ~DDULUS
----
--
-
----
- - - - - - - - - - - - - - - - ---~------1 - - - - - -
--
-
--·-
I-'
0
11
RX>F RIIX;E BlYl
I
L = 22.5
w= (20 +212) 1~
= 300
#;I
R = (300) 22 · 5 = 3375 #
2 2
M = (300) ~ 2 • 5 = 18985 #- 1
18985 (12)
. 3
sr.= lsoo (1.25) =3 121 • 5 ln.
I = .250~300)22.5 = 855 . 4
r.
1000
ln.
USE
4 x 16 D.F.No. 1
IO)F HEADER
L
= 7.8
I
w = 32(14.5)
= 260
2
#;
I
M = 260(7.8)2 = 1977 #-~
8
1977(12)
. 3
sr.= 1250(1.25) = 15 • 2 ln.
A = 26o(Z· 8 - 5 • 5) 1 • 5
= 11.3
r.
2
12 95 x 1.25
USE 4 x 6 HDR
in~
R = (260) 7; 8 = 101.4 ~
12
ROJF HDR
2
(300)24.5
32(6)3
(2)22.5
+ 2
R_ (4300)1.5
#
-l 3.5
= 1843
=
p
~ = ( 4 ~~~) 2 • 2457 #
s = ~457(1.5)12
r. 1250(1.25) = 28.3
A
r.=
(2457)1.5
(95)1.25
= 31.0
=
I
4300 (
. 3
1n.
2
in.
4 x 10 #1
USE
p
I
2.0
I
I.
1
Fig. 20
~
1.5
71
13
v
I
19.5
USE
R
= 32(1.33)19.5 = 415
2 x 6 RCX)F RAFI'ERS
Fig. 21
#
2
M
4B
#
v = 1.167 = 356
tgoC= 12 = 1.167
n (Bolts)= 356 · = .83
860
2
860
= DBL
SHEAR 1 TO GRAIN
II
USE
2 - 1/
2
cf'
BOLTS
r----
2 x 6 R. RAFI'ERS
(@ 16n
2 x 4 Tms(@ 16" o.c.
2
_l;,cp
2
Bolts
Fig. 22
0/C
14
Fig. 23
14
--u
= 1.167
. tano<=
I
h =
6.5
tan~=
L =
I
2
7.6
2
(6.5 + 2.5 )
tanfo = ~: ~ =
= 7.0
I
1. 086
2
2
Ptot= n R 'ir'-J =tt6.5 (32)
R = 4278 = 2124 #
= 4248 #
2
T
=
2124
tanfo
a- a
Fig. 24
= 1956 #
T
Tl
= 1956 = 978
2
#
USE SIHPSON ST 6224
15
3rd FL. FRAHING
!I
CHECK FLOOR JOISTS (2 x 10 {o) 12 O.C.)
32 14 5
p
· + 12(6]1 340#
=[<
1
=
w = 50 #/,
R
I
R_
-~
= 340(11.3)
163
+ 50(16.3)
2
= 340{5)_ +
50(16.3)
16.3
2
2
512(~0.2) 50(10.2)
M=
- 2620(12)
1250(1.15) w= 2620(8) = 80
16.32
sr.I
r.
=
.281(80)16.3
1000
= 643
= 512
#
#
= 2620
Fig. 25
#-'
i1 • 9 . 3
1n.
/,
3
= 97 4 · 4
· ln
USE
2
X
10 # 2 F.J.UU 12 "
o.c.
16
3rd FL. FRAMING
FlOOR HEADER
= 16
L
#
w = 64l I
I
;:
3~ (5)
= 720 #I
I
M = 720J1o)2
= 9ooo #1,
s = 9000(12) = 72 . 3
r.
1500
ln.
A = 720 flo - 11. 25 \ 1. 5
r.
t 2
12 7 95
72
1
R = ~( 0) = 3600 #
USE
4
= 46
•
2 . 2
ln.
x 14 #1
HDR
FlOOR JOISTS
w = 50(1.33)=
p
= 1014
R_
-l
R_
-2
67 #II
#
= 1014(11.8) + 67(16.3) = 1280
16.3
2
= 1014(45) + 67(16.3) = 826 #
16.3
#
2
I
11.8
16.3
1280
M = 1280(4.5) - 67(4.5) = 5082 #-
=
1
2
5082(12) • 42.4
1250 (1.15) · 2
w = 5082(~) = 153 #
16.i
3
I = .281(153)16.3 =
r.
1000
Sr
= 21
·
I
2 . 3
ln.
Fig. 26
~86 in~
2
USE
= 93 in~
DBL 2 x 10 F.J.
17
FlOOR
p
1
~1
= 1014
+ ( 32 (14 • 5 ) + 100\__2_ = 1900 #
2
I) 2
= 1843 #
w = 50 (5 ) = 125 #/'
2
IL = 1900(11.3) + 1843(4.3) +
p2
125(16.3) = 2880 #
16.3
2
1900(4.5) + 1843(12) + 125(16.3) = 2900 #
16.3
2
p2
-~
R_
=
-2
2880
900
Fig. 27
Mrnax
=
2880~7.84)
125(].84)
2
- 1900(3.34)
12392(12) = 99 2 . 3 SEL STR
1500
. lllo
•
•
w = 12392(8) = 373 #/'
eg.
16.32
3
= 454 . 4
I ·r. = .281(373)16.3
1000
lll.
Sr.
=
USE
8 x 10 SEL.STR.
= 12392
#--'
18
3rd FL. FIW.fiNG
p1
= 32(12)
;
= 1344
#
= 3375 #
w = 100 #/'
p2
R_
-l
R_
=
=
-2
1344(11.8) + 3375(2.0) + 100(16.3) = 2202 :11:
16.3
2
1344(4.5) +3375(14.3) + 100(16.3) = 4147 #
16.3
2
I;
Fig. 28
Mbax = 2202i9.58) 100(~.58)2
= 110 2 . 3
Sr. = 11023(12)
1200
• ln.
w = 11023(8) = 332 #/'
16.32
eg.
I
r.
- 1344(4.08
=
.281(332)16.3
1000
Ar. = [4147 -
9
3
= 40 ~
· 4
~ ln.
i~ (100~ ~5 5
USE
= 71.8
in~
8 X 10 # 1
= 11023
#-'
19
FlOOR HEADER
I
L = 7o0
w=
50(16o5) = 450 #/
M=
450(7)2 = 2756 #-~
1
2
8
= 22 05 . 3
Sr o= 2756(12)
1500
°
lllo
7
7 5
i~ ) ~~ = 20 o6
Ar = 450 ( 2
° -·
0
Ro =
45
in~
~( 7 ) = 1575#
USE
4 X 8 # 1
FlOOR BM
I
L
= 6o5
w = 512-+ 50(6)= 812 #II
M = 812~~-5)2 ~4288 #/1
= 34 0 . 3
Sro = 4288(12)
1500
°
lll.
25
1. 5 = 31 8 . 2
Aro = 812 6.25 - 9.12
95
• lllo
USE
4 x 10 .# 1
20
3rd FL. FRAMING
FLOOR HEADER
= 2880
p
#
w = 50(16)
1
2
+ 32(5)
2
= 500 #/'
w = 100#/'
2
~
- f2880(4.5) + 100(4.5)
2
10
- t.:
rl2880(5.5)
.
~
=
2
.
+ 500(5.5) (5.5 + 4.5
2
2
+ 100(4.5) ( 4 5
10
]
= 3391
J
2
5
.5
+ 5.5) + 500 --:::--2
p
3391
max
Sr.
A
r.
2
2689(4.5)
100(4.5)
= 11088 #-'
1
2
11088(12) = 88 ? . 3
1500
· m.
13 25
1 5
·
(3391·
12
~ 95 = 44.8
=
M
=
=
(500~
USE
in~
4 x 14 # 1
Fig. 29
=
.
#
J1
2689
1t
21
FlOOR HDR
L
= 3.3
I
w = 50 ~ 16 )
R
+ 50+ 32(2.5)
= 530(3.3) = 875
2
2
Sr.
= 530(3.3)
Ar.
= 530 {323-
8
(
= 530 #/
1
#
12 )
1250
i25)
=6
•
9 . 3
1n.
~55 = 10.0 in~
USE
4
x
6 # 2 HDR
FIOORIIDR
= 3.3
L
I
~"1= 530 + 32(14.5) + _;L2(6J11
A
r.
R
=
= 740 #/
1
2
1 16
5
3
3
5
740 ( • - • ) _1. 5 = 13 9 in2
2
12
95
•
•
= 740(3.3) = 1221
2
#
USE
4
x 6 # 2 HDR
22
3 rd FL. FIWITNG
FlOOR HEADER
= 2900 + 2457 -4- 32 (13) 5= 6400 #
1
1
2
R_ = 6400(4.5) = 4431 #
-l
6.5
R_ = 6400(2) = 1969 #
-2
6.5
p
p
I\
I
·2
1
M = 4431(2) = 8862 #= 70 9 . 3
Sr. = 8862(12)
1500
• ln.
_ 4431(1.5) _ 70 in~_
Ar. 95
- 1.33 -
USE
I
4.5
I
6.5
Fig. 30
. 2
5 ~.~ 6 ln.
4 x 16 # 1 H/0 SPLIT
FlOOR Br-1
L
= 12.5
w = 32 (12
• 5> + (50)~=
2
2
52
M = 500 12 ·
8
= 9766
500 #/'
#-'
12
1600 = 73.2 (SEL.STR.)
1 5
1
Ar.= soo ( ;· - i2~)
9~ = 48.2
3
I = .281(500)12.5 = 275 in~
r.
1000
.
Sr.= 9766-
USE
in~
6 x 10 SEL. STR.
FlOOR HDR
L
= 7.0
72
w =(so) 2 (4 • s) + 100
c = 400(7)2 (12
8
1250 1
'= 23 • 5
0
Ar.
= 4oo
= 400(_2_~
2
7.25 )
12
#/'
. 3
ln.
1.5
95
USE
= 18 • 3
. 2
ln.
4 x 8 # 2 IIDR
24
2
nd
FL. FRMITNG
Reduce live load:
1 5
5
Area= 20( ;· }+ 20 {~~· )= 480 sq ft.
Red. = 480(.08) 0 /
R
= 23.1 ( 1 +
0
!~ g~
= 38 °/ 0
)= 29
o
Io
USE REDUCTION 29 °/o
p
6.56
Live load: 40(71 °/0 ) = 28 PSF
w = (28 + 10)( 1 ~· 5 + 28 5 ) + 100 = 1020 #/'
13.19
2
= 4431 #
~ = 443~~6.5) + 102~(20) = 11 . 64 K
p
~ = 443li~3.5) + 10~0(20) = 13 •19 K
2
= 11.64(13.5) _ 1.02(13.5) = 64 • 2 K-'
max,: 64.2(1~) = 3.., 1 ..3 2
Sr.
24
""· m.
W =64.2(8) =1. 28 K/'
eg.
20 2
5(1284)20 4 (1728 _ _ = 159.4 in.4
:t = -=--.:..:=~~....:.=..:..,;._:_
r.
384(29)10 6 ( 20 <12 )
240
M
USE W 16 X 26
Fig. 31
25
no
2
FL. FRAMING
FlOOR BM
= 13.9 + 1.97 +
p
62
K
+ .05(-2(5) ) 3 = 16.0
3
.032(~)5
w =
1
w2
R1
= 600
(32)12.5/2 +50 12.5 +50 7.5
2
2
2
7
5
1
=50
• = 190 #/
#/1
2
2
(~ +10\
(.60) 10 /2 + 16.0(10) + .19 (6.5) 2
'= 12 • 5K
16.5
I 10 + 6 . 5) = • K
(.19) 6.5 2/2 + 16.0(6.5) + .60(10)~
10 73
16.5
=
~=
p
/_ ~'V2
I'
if
/w1
I I I Y \ Ll
I
,I
I
1\
I
10
6.5
.I
I
16.5
, 1/
,
.....
12. 5
11.26
4.74
= 12.5(6.5)
M
1
max
S r.
W
eg.
=
2
.19(6 .5)
2
38 62 . 3
77.24(12)
24
= ·
= 77.24(8) = 2 _27 K
= 77 • 24
K-'
ln.
2
16.5
4
- 5(2270)16.5 (1728)
I
6 16 5(12)
r·
384 (29) 10 ---=-·~---"
240
= 158.2
USE W
4
in.
16 x 26
10.73
Fig. 32
26
FlOOR BH
L
= 12
w = 50(19)
2
M=
Sr.
+ 100 + 50(29)
2
2
#/'
130 ~(l 2 )
= 23400 #-'
= 23400(12) = 208 . 3
m.
1350
Ar.
= l3oo{ ~
I
=
r.
= 1300
2
- ~i; ) ~5 5 = 111.9 in~
5
.281(1300)12
1000
3
= 632
For steel bearn: Sr. =
. 4
m.
23400(12)
24000
= 11 · 7
. 3
m.
USE W 8 x 15
FlOOR
~1
L = 9.5
w = 50(17) = 425 #/'
2
M = 425(9.5)
2
8
=
4795 #-'
Sr.
= 4795(12)
= 38 • 4
1500
A
= 425 (
r.
. 3
m.
2
9 5 - 9. 25 \ 1. 5_
12 1 95
USE
= 26 · 7
. 2
m.
4 x 10 # 1
R = 1300(12) = 7800 #
2
27
2nd FL. FRAHING
FlOOR BH
10~
= [32i13) + 50i13) +
p
5
= 3165 #
= 3165 = 1583 #
2
112
#/'
w =50 2(7.5) = 400
R_ = 1583(10 + 15) + 400(19) = 5883 #
--1
19
2
p
R_
-2
= 1583(4 + 9) + 400(19) = 4883 #
19
2
p
p
5883
M = 4883(10) _ 400(10)
1
Sr.
Ar.
w
=
r.
=
#-'
28830(12) = 216 3 . 3
1600
• ln.
i;
=
=
28830
Fig. 33
2
= (sss3 - 1 5 4oo)
eg.
I
2
~;/
=
28830(8) = 640 #/'
19 2
.
.281(640)19
1000
3
= 1234
USE
94
i~ 3 ~~~ = 71.2 in~
. 4
ln.
6 x 16 SEL. STR.
NO SPLIT
28
FLOOR BEAH
=
P
p
- 4778(6) l\,....
12.~·R... =
- ';l
r-1
s
~
4778# lCOMP. FORCE)
4.
(6)
!{-
- .
= 149104t- {
. 14910(12)
I __
#
778 (6.5)_ 2485#
--u.~
= 2485
R =
2293
l6bocr~331= 84 • 0
;u1,
2
2
4778(6.5) (6) 1728
3(l.G)(loi 6 G1 ~4g( 12 ))_'{12.51
USE
Fig. 34
. 3
6 X 10 SEL. STR.
= 335 in~
29
FL. BM.
I
L = 19
4
1 =875 + 32 <_l2~>
p = 875(2) = 1750#
p
5 11-) +50 (2 5) ( 16 )
( ll.
•
2
2 )<
16
2
p
3
p
4
= 2202+450( 3 • 5 )= 2990#
2
= 1221#
P = 1221(2) = 2442#
5
w1 = 240 + 100 + 32(2.5) = 420#/ 1
w2 =50( 92• 5) = 240#/ 1
19R1 = 4(420) (17)+15(2800)+11.5(1750)+7(2990)+5(1221)+2.5(2442)+(240)
(15) (7 .5) =
~ = 7938#
~ = 420(4)+240(15)+2800+1750+2990+1221+2442-7938 = 8545#
868
I
= 240 - = 3. 61
7 112
Mmax = 7938(11.11) - 2800(7.11) - 1750(3.61) -420(4) (9.11) - 240( · 2 )
X
= 40594.6
Mmax
F
b
#-~
K-~
= 40.6
40.6(12)
3
=
= 20.3 in.
24
Fb = Compact Section =.66Fy
= .66(36) = 24ksi
TRY
s
X
W 12
X
19
. 3
= 21.31.n.
M = 43ksi
r
I
L = 4.2
c
I
L
u
= 5.3
wt. of beam<(s% load,
Section M:Jdulus tlines (l.o5)
30
Tbt. Load= 7938 + 8545 = 16483#= 16.5k
(16.5)(5%) = .825K
.019(19) = .361K
. 3~
. 3
sx = 1.05(8r ) = 1.05(20.3) = 21.31n.-..;;: 21.31n.
f~ = ~8545
= 2965psi = 2.965ksi
....
w (12.16} (.237)
k Sl.
f-u = 2.965
~ = .4 Fy = .4 (36} =14.5
O.K.
_:l).
<
CHECK W 12 x 19
Fb
=
=
.66 Fy
.66(36) = 24ksi
>
Fy 1 = 60
Fy II
for cc.rrpact section critria
F = 36
y
>
= 64.5
F
y
USE
p1
w
= 36
W 12
O.K.
X
19
p3
p2
p5
I
I
I
2.5
4.5
.4
p4
7938
I
I
I
212
I
I
I
I
I
8545
Fig. 35
31
2nd FL. FRAHING
FL. :Pl-1.
= 20
L
I
<9 · 5 + 4)
2
50
= 480#/;
2(9.5)
9•5
-- 240#/ 1
2
w
= 240
+ 740 + 100 = 1080#/ 1
p
= 1221#
w
=
1
w2 -3
50
20 R = 240(4.5) (17.5) + 1221(15.5) +1080(4.5)13.25 +480(11)5.5
1
~ = 6577#
~
= 1221 +
480(11) + 240(4.5)+1080(4.5) - 6577
~ = 5864#
}~
= 6577(8.46) - 240(4.5)
= 35631#-l
s
X
4 5
<
2
X
19
2
3 96
)
+3.96) - 1221 (3. 96) - (1080) ( 2•
=35.631k-l
. 3
= 35.631(12) = 17.81m.
24
W 12
USE
p
w3
I
3.96
5864
Fig. 36
32
Ptota1
= 6577
+ 8545
= 15122# = 15.2k
9.5 '
p
10.0'
Fig. 37
0
o<: = 46.46
-F1 + F2
CoS'"' ""
P - F 2 Sin
0'
0
= 0
15.2 = F (Sin46.46)
2
F
2
= 21k
&
CHECK COMP.
SAY
USE
L
&
F
1
= 14.5k
TENSION MEMBERS
= 14 '
4"
STD. PIPE COLUMN FOR ALL MEMBERS
SEE
TABLE iii ( AISC)
WHICH IS GOOD FOR
36k
HORIZONTAL ANALYSIS, TRIANGULAR DISTRIBUTION
RIDGE
N
\.0
--~~-~1..-
/
..
20 PSF
ROOF/ 12 PSF
12
~6
:::.. 10
"=II=
I!)
FL. /
0"1
'<:!'.
·~I
~I
II
........
("'")
~
MID.
~
FLOOR
fi1r:l!
Ll"l
r-l
I
~\liND
1st
MID.
FLOOR
FL./
DL
PSF
10 PSF
6 PSF
-IC
DL
32
= 6.0
PSF
22
= 4.1
PSF
ADJUSTED
DL
~
8.6 PSF
"
'"K
"'"~I
6
22
= 4.1
PSF
~
PARr:
I 12.5 PSF
r--
N
I 14.2 PSF
00
TABLE 5
11 jii. JF!aliQ\1
HEIGffl'S
PSF
PSF
6 PSF
.
~
DL
IDI'JEST GROUND LEVEL
HEIGHT
o/o
DL
162
60.3 °/o
8.6 PSF
8.6 PSF
73.8
27.5 °/0
3.9 PSF
12.5 PSF
32.8
268.6
12.2 °/ 0
100 °/ 0
1. 7 PSF
14.2 PSF
14.2 PSF
MJHENT
DL
I
ROOF 6.0 PSF
2nd 4.1 PSF
st
1
4.1 PSF
BASE SHEAR 14.2 PSF
27
I
18
I
8
.H
BASE SHEAR
w
w
34
LA'I'ERAL ANALYSIS
THIRD FlOOR
~'m:Ll.S
LINE A V/, = 8.6(42) = 361.2 f~/'>210 #/'
SEISNIC GOVERNS
= 194 #/'
V/, = 361.22 #/' (29) = 5237.4#
27
II
F
USE 3/a
P/W, STR- I. PS 1~74, N/8d (ci)
II
II
It
6 ; 6 ; 12
LINE
T
C V/, = 5237.4
26
#
0/C
= 202 #/'
USE
F
:>
I
LINE
210 #/'
1 V/, = 8.6(29) = 249.4 #/l
~
#/'
(14) = l745.8tr = 134 #/'
V/, = 249.4 2
13
USE CTIJ!. PIASTER
E
LINE
2 V/,=
249.4 #/' (42) =
G
LINE
v;,
4
USE 3/g P;\'7, W/8d@ 4
2
= 249.4(
H
5237.4~=
15
2
USE
M t
FOR
i 6
"
i
"
12 0/C
1° =405#/,
1"
22
;
3/ P/W ,W/8d
8
OVEIURNING MJMENT WALL L
= 4053(7)
11
~· 5 + 5)= 4; 53 = 8
BOI'H SIDES
CHECK
350 #/'
=
= 28371#-1
Mo •• =[100 + 20(8)]{-~= 2250 #-'
res.
2
~
M t = 26121#-'
T/C = 5224 #
ne •
t1
USE SIHPSON HD-6
I
5
4" ; 12"0/c
35
SECOND FLCX)R WALLS
LINE
A
V/,
= 5238(11)
16
II
H
LThJE
B
V/,
B
LThJE
c
V/,
F
LINE 1
V/,
USE 3L8
+ 3.9(42)16 = 4912 = 491 #/'
2
10
1
P/W, T.V/8 dfci) 2 I 2" j 4" ; 12 "
= 5238 (5)
+ 3.9(42)29 = 5758
+ 5238(4)
16
12
2
26
II
"
USE 1/2 D/W, 5 dl@4 0/C, BOTH SIDES
= 5238(8)
12
USE
+ 3.9(45)12
2
=
3L8 " P/W[ WL8 d((i) 6" ' 6
= 12.5(29)8 = 2 i~O = 264
II
G
LllJE
V/,
2
H
LINE
V/ I
3
G
LINE
I
3
4545
22
II
12 "
#/'
II
II
It
= 12.5~29)19 = 3~44 = 383 #/'
USE 3L8
"
P/VJ,
WL8 d6)2 1/.., "
= 12.5(29)13 = 2356 = 262
2
9
USE 3L8 " P/W, "V'JL8
d6:>4 "
n
usE
3L8
12 n
#/'
i 6
"
n
P/Vv,
CHECK FOR O.T.r-1. t%LL
res.
M
net.
4"
i
I
WL8 dt@4
n
6
BOTH SIDES
o.t.
M
12
P/Vv, vl/8 dt@ 4 , 6 ;
USE 3L8
#/'
12 "
V/, = 12.5~29)22 = 39~8-= 5~0 = 285 #/'
G
M
= 207
= 3988(9) = 35892
2
= 100 (7 ) = 2450
2
= 33442 #/'
L
=7
I
#-'
#-'
Jl
T/C = 4778tr
USE HOLOOWN HD-6
n
12 oLe
= 222 = 111
2
#/'
36
LINE
4,
= 12.5J29)16 = 2~00 =
V/,
11
G
USE 3/8
=
=
=
I
5
r-1
26100 #-'
2
2
= 100 + 10(6) ts
1700 #-'
M
= 24400 #-'
M
o.t.
res.
net.
2900(9)
L
2(5)
t2
'=
J
T/C
=
4880#
USE HOIDEOl'VI.\J HD-6
= 290 #/'
11
11
f@ 4
P/W, N/8d
'WALL
CHECK FOR O.T.M.
5~0
6
11
12 0/C
37
FIRST FlOOR WALlS
LINE
~
v;
I
=
~4.2 (47)
;o
~+
39 (9.5)
=
1
n
n
USE 3/8
G
i~~;
P /y.l, t·1/8cl (a) 2 1/3
=
8 4
~
n
1
= 442 #/
n
4
12
O/C
IDI'H SIDES
USE 5/8
FOR ANCHOR OOLTS:
LINE
1
n
f
A. B/&)16
"
0/C
V/ = 14.2(29)13 = 2677 #
I
2
Tension force due by brancing.
v
n
LINE
2
= 3894 + (loo +So (2. s~s = so2o#
5020
= 550~l/2 11 = 9.1 Use n = 10
redheadU B.
II
USE l/2f A.B.(@ 24 0/C
Spacing= 20(12) = 24#
-
10
V/ 1 = 14.2~29)19 = 39~2 = 435 #/ 1
II
II
USE 1/2
FOR TIE-STRAP
PA~,
USE 3/8
H
V =
d
II
II
W/8 ~ 2 1/2 ; 4
J'":\
f
II
12
0/C
II
A.B.l OJ 16
0/C
3912
(20) = 2700 #
29
USE STI1PSON HST-2
V/ 1 = 14.2(29)27 = 5560 #
2
= lO.l psi
(masonry wall) V = 5560(1.5)
9(12)7.625
LINE
3
See also, calc's for tension force, due by 0. T .M.
LINE
1
4
V/ 1 = 14.2(29)(;
= 7206 721
10
2
0
'I
H
USE
17.5)= 7206#
360 #/'
II
3/8 P/W 1;'V/3d t@ 2 1/2;
4"·
l
BOI'H SIDES
CHECK FOR O.T.H. l"ll-\.LL
L =10'
r'1o. T .=7206 (8) = 72060 #-
1
12 " O/C
38
~8.=(200 + }..~~~~ ) ( 1~ )+1500(10)=26800#-- 1
2
~-=
45260 #-
1
2
T/C = 4526#
USE
HD-6
DZSIGN GRADE Pl-'1.
p
Fig. 38
USE
w=
100 + 50 ~16) + )..501~18) 2
18 x 24 GR. BH.
8~0 = 1800 #/
+-
1
2
M = 1800(20) =90K- 1
8
%= i~76(20)=2.56in:/4
p
=4883+50
112 5
( )
2(7.5)
=.64 in
+150(1 5)2 = 7350#
•
~- =7350(7.5)=55.13KA_
-~
2
1
55.13
1 56 . 2/2
78' 2
= 1.76(20) = •
ln.
=. ln.
II
USE
4-#8 'IDP
&
BOlT. BA..-qs
W/#3 TIESra> 10 0/C
GRADE BM. W/CANTILEVER
p
I
I
19.5
9.5
Fig. 39
n
"
18 X 24 GR. ~1.
62
#/1
w1 = 50 (2 ) 5 + 200 + 150 (1.5) 2 = 830
p = 2640 +2690 =5330#
USE
w2 = 92 (3.5)+150(1.5)2 = 1250#/ 1
39
r-tmr.
2
MSP= 1250~19.5) =
60 ~-
As= ------r.~~{~o)· ·=
=
8~ 0J 9 • 5 ) 2
= 5330(9.5) +
1
2.5
. =88.1K-'
<
88 • 1 K-'
in~
= .63 in~
245
l!
USE
4 #8 TOP
&
BOIT. BARS
~v/ #3 TIES.Q1Q 0/C
DESIGN FOUNDATION
P.AI:lf@ LINE 3
SOIL PRESSURE 1500 PSF
P = 12.5 +(812
d =(
_§; 5 )+ 50(
16700 -t/2= 3
1500
°
I
USE
~g
)
(f1; 5
) = 16.7K
3
!I
3 - 6
SQ. PAD
PAD@LINE 2
p = 7800 + 4147 + 2640 + 1544 = 15200#
d =(15200 t/2 = 3 2'
1500
.
0
I
USE
3 - 6
II
SO. PAD
40
DESIGN
P
CONNECI'ION
STEEL
B!>i.
'IO
STEEL R·1. (@ LINE
= 13.2K
USE
2 - L 3 1/2 X 3 1/2 X 1/4 X 11 1/2
~'J/4- 3/4<\' ~1.B.f@ EA. LEG
SEE
SEE
DETAIL
n (EOLT)=
3670
USE
DET.
1
2
LINE
41
=
2.6
4721
(367_Q)
2
= STI\!GLE
3 11 :>JE:-.'lBER
SFJEAR
3 -3/4" p !1. B.
\'! 16
-···
.i
I
..'
W 16
Fig. 40
X
26
X
26
4l
41
CONNECI'ION STEEL Br•l. 'ID r.lASONRY WALL(@ LINE
SEE DEI'.
8
v = 28.5k
n (BOLT)
(
= 28500
) = 12.95
2 1100
3/4'(J,<f B.
S
SPACll~G:
= 9(12)
= 8 •3
13
l1
USE 2 - 3/4
p
.
l.I1.
Vf
ANCHOR BOLTSI@ 8
0/C
CONNECTION STEEL BH I'V 8 x 15 to MAS. t'JALL
SEE DEI'.
n (BOLT)
9
7800
= 1100 = 7 • 1
~/4 11 q>
B
USE 8 - 3/4
"
~
A.B.
3
42
CONNECI'ION OF PURLIN TO
MAS~
SEE DEI'.
v =
LATERAL FORCE:
12
200(4) = 8oo*
/\1
connect.•(l)4 - 0
n
.vw.L.
"
0/C
800
= 1100 = •72
11
!.3/4
<t
Bolt
II
USE 3/4
P-EDHEAD
II
4
BOLTS
0/C
CONNECTION' !:1AS •. WALL tro .iFtg.
k
SEE DET.
v = 28.5
28500
n
= 1780(2) =
L
11
18
8•0
3/4
cp
Bolt vv/inspect
SPACING:
S
= g(~ 2 ) = 13.5
II
USE 3/4
<P
11
ANCHOR OOLTS t@ 8
W/ CONTINUOUS INSPECTION
0/C
43
DESIGN HASONRY WALL FOR TENSION FORCE DUE BY OVERTURNING r.DME:NT
K
Ptot.= 30
M = 30.0(9.5)
T/C
=
285.0
10
= 285.0K
= 28.5K
28500
V = 9 (12 ) 7 . 625
= 34.6
psi)> 30 psi
HORIZ • REINFORCEr•lEI.\JT:
II
USE # 5 BARS l(i) 24
0/C
CHECK CONNECI'ION OF MAS. \tOOL /(i) LJNE
M
o.t.
r-1
res.
= 28.5(8) =
9
228K
2
= 92(8)-2 =
29.8
K-'
Mnet •= 198.2
n Bolts
SPACING:
=
= 11
til¢
Bolt
8(12)
K
=
T/C
22000_
1850
--'----~
3
=8
•
9
1 8 2
~ • = 22.0K
Say n
= 12
II
12
II
H
USE 1 ¢ A.B.!@ 8
SEE DET.
16
0/C
44
.
.
d
6
= 9.125
#8~16
3
30 (9} =3645#-'
~~-=
p
= .0054
k
= .476
j
= .841
SLAB
Mt=
#6fol 8
2
jk
= 4.99
fm
= 219
f
= 9617
s
PSI
PSI
2
.1283(40} ~ (9}
= .0107
p
= 1871#-'
d
= 5.125
k = .975
= .842
j
2
Jk
= 5.00
fm
= 356
f
= 7886
s
PSI
PSI
Fig. 41
45
I
Ht.
~6
= 1080#-'
M
= 30
cant.
d
= 9.125
#6 ((;}16
p
= .0030
k
=
.385
j = .872
2
jk
f
= 5.96
m = 77
= 4938
s
2
6 (6)
He = .1283 (40)
2
#5G16
d = 3.81
f
p
=
k
= .466
= .845
j
.0051
~k = 5.08
fm
= 194
f
= 8885
s
= 554#-'
46
CMU vw.LviTTH ALL CELIS
~'ITTH
STEEL FILLED 'V'ITTH CONCREI'E
ALL HORIZONTAL BARS ARE NO. 4
2 CLR
y
BARS
II
ojc
OMIT HEAD JOINT AT 32
I
lli
FIRST COURSE FOR WEEP HOLES
Z
II
7 -0
BARS
4/a)24 FOR
~~:::--:..----'-1'
1-1/2:1 ~--,-:-,-+---1---)"-r
BACKFILL ONLY 3 _..,.;...---+---~
USE: 12x12 KEY FOR LEVEL
15xl5 KEY FOR 2: 1
12x24 KEY FOR 1-1/2:1
n
12 x12
CLOSED IOOP
TIES #
11
2 f(j) 16 o.c.
n
COJ:.lTINUOUS GRAVEL FILL
Fig. 42
Note: DRAI'ITNG NOr TO SCALE.
01M
= 184(2.67) =
75(5) = 375(7.67) =
150(3.5) = 525(1.75) =
1(1)150 = 150(2.00) =
100(.5)7 = 350(3.25) =
492
92(2)
1
2
3
4
320
= 1904
F/3
1000
920
300
1140
1120
-2560
=
2412
2412
X= 1904 = 1.25
3.3/3
e
z.. 1.25
= 1.17
= 1.75-
= .50
1.25
Soil Pressure
S.P.
= ~:~ 4
( 1
± 6 j:~)
) = 0- 1000 # = 1000 #
O.K.
FOOI'ING
~00
1000
V= (1000 + 290)
2.5
2
t:~~( 3 .S) =
#
= 2180
M = 1610 (1.35)
As=
= 1610
.225
~.66
O.K.
Fig. 43
48
OI'M
= 375(3.63) =
140(2) = 280(3.70) =
150(4.75} = 7.5(2.38} =
50(7} = 350(4.50} =
= 150(3.25} =
= 640 (4. 75} =
75(5}
1
2
3
KEY
F/3
1361
1036
1701
1575
487
-3040
3120
2510
~~i~ = 1.24
O.K.
= 2.37 - 1.24 = 1.13
X=
e
Soil Pressure
S.P.
=
2510
4.75
( 1 + G(l.l3})
4.75
= 865-
0
O.K.
FOCII'ING
~
1000
v=
M=
3 25
(1000 + 350) ( 2•
2160(1.56) =
A= 5.53
1.29 (8.5)
}
= 216
= 3369.6
= .30
SLIDING
R = 2510 (.4}
= 1000
= 100
Fig. 44
49
OIM.
1
75 (5) = 375(3.10) =
1100
2
140(2} = 280(3.25} =
910
3
150(4.25} = 640(2.12} =
1350
4
100(.5}7 = 350(4.00) =
1400
KEY
= 150(2.75} =
415
F/3
= 490 (4.25} =
2030
2285
4325 = 1.43
e
-
3265 = 1.43
2285
X=
7315
4050
3265
O.K.
= 2.12 - 1.43 = .69
Soil Pressure
= ~~~~ ( 1 ~
S.P.
6 69
(· } }
4.25
= 0-
1060 #
FOOI'ING
Fig. 45
v=
1000
(1000 + 350) ( 2 • 75
= 1860 #
2
= 2660
M = 1860 (1. 45}
As
=
2 66
1.• 25 (8. 5} = • 25
< 30
•
SLIDING
R
= 2285 (.4}
= 915
= 100
0 • K•
50
FOR TURNED
p
r
n
TYPE REI'AINING
. ·srnmm
~rW..L
rPlillHnlllll u~ nuu' "lll\
~
"f
our
~
V/..,
N
7
vl
..)
H
l.
1t
v
'w3
/_
~-·
T
n
II
[ ~v
1--·-
'
I
I II
~~
I
I
1.5
V
= X6 =
(H + T)
o.t.
5'-6
2
W/2 + (H + T) + 35
=
(h + T)
3
x K3 + S/
2
= 833
nJPurs
Fig. 46
STABILITY ANALYSIS
HEIGHT "H"
(FT)
E Q. FL "vf' (PCF)
1
StJRCH. "S"
(PSF)
10
40
-
L "P" (LBS)
A'UAL
LAT. PASS "'/'" (PSFT
2200
Y" (PCF)
120
SOIL. Vll'.
II
n },( n
STEI'1 "D" (IN)
12
FRICI'ION
FOCYI'UJG "T"
12
SOIL BEARING (PSF)
(IN)
HEEL "H" (IN)
=
500
I
H
L
=
6
TABlE 6
350
.4
2080
51
ST.JI-MARY OF SHEAR '!'EST DATA
0
gr------r------r------r----~,-----~----~
~I
I
I
~rl--~--+---~~~---+~--~~
ol
I
I
------r-----~------~----~-----4'----~'
gil'
M
I
l
I
I
I
~rl------r------r------~~----~~-~-~w--~s~.4\----~i
0
<b
= 29
I
§r----t--+---+--+-c.
=_lS~-oop~..l-1\-~
. .pyL}.I
1
\i'
N
l
~r-~-+--~~~~~1~
,/
I
§j------r------r-----~----~~~~~~----~
~r----t-----t----+--J-i;/~--1!
--·~~~--;u
0o~-::l--o
-----l.-0- - - ! - 0
0
I.[)
0
0
ri
0
I.[)
rl
0
0
N
SHEAR STRENGI'H IN LBS • / SQ. FI'.
Fig. 47
0
I.[)
N
0
0
M
SIDPE STABILITY CAI.CUIATION
II
SCALE 1
=
I
60
PARAlJIEl'ERS
1'
0
= 29
C = 1890 PSF
Y = 126
PCF
Ac, = 7.8
SEC
"':!
.
1-'·
\.Q
A
B
.r>00
I
210
B
AREA4'
1575
6375
5085
500
X
wr.
=- 21
198.45
863.25
640.71
63.00
f=-
I
Y = 368
I
R
50
32
15
5
127.56
681.19
618.87
62.76
1490.38
F.S. = 1490.38 !~ ~~ + 390(1.89)
D
152.02
425.65
165.82
5.49
748.98
= 2.1 ~ 1.5
SIDPE IS GroSSLY STABLE
PlATE B
U1
N
CAI.CtJI,A,TIONS FOR DESIGN OF REI'AINING WALL
I Scale 1" 5'
-. ' . J
8 k wheel
tead
=
, 1
A
NA.XIMill1 ANTICIPATED
WALL HEIGHT OF 10 I
B
NOI'E: SURCHARGE LOADllJG BASED
ON REAR AXLE DUAL WHEEL
WADS
OF
HlO -
44 LOADING
L
= 12.5
PARANEI'ERS ON SAHPLE
I
IDeATION A BEDROCK OUTCROP
~
v?T(K)
_!__
R
D
A
18
1016
52
6.26
8.0
B
40.5
486
39
3.78
10.04 1
3.06
11.06
SEC
4>= 31
C = 700
}/' = 120 PCF
'X =-13.9
31 + 12.5(.7) = 1 33
F •S • = 10.04 tan
11.06
•
DESIGN LOAD (F. S. TO 1. 5)
(1.5 - 1.33) 11.06
EFP
=
2(1880)
10 2
= 40
= 1880
PSF
y = 19
I
I
P/f
PCF
PLATE
B
Fig. 49
U1
w
STABILITY ANALYSIS
I'JEIGHT (#)
COMPUTATION
~DBENT
AR.T\1 (Fl')
(Fl'- #)
r~
= 4.50
w,
H
X
D
X
10 PSF
1200
x,
w2
IL
X
T
X
1'10 PCF
x-,-
N·~
~X H X ) '
82r::
600
s
NxS
p
p
V/s
X3
2200
(807)
£W- 4825
TCYI'ALS
?.7r::.
??t=:Q
= 5.25
3150
0
5.25
XA
x5 - 4.50
...-.6 - 5.50
0
V/3
5400
X
-
I
QQ()()
4437
~- 16282
3.37
TABLE 7
"e" =
SOIL
L/2-
x=
5 5
;,
PRESSURE:~
L
vnet=
V
-ft
= 8873
- 3.37 = .62
(1 +
-
~)
=
L
(1
4825
I
±
6!. 621.J
II
5 - 6
5 - 6
<
1475
<
280
)
2080
O.K.
0
0 .K.
tW
- (. 4) (4825)
LENGTH KEY REQUIRED
=(
= 6943
vnet (2)
2/3 ( 'f )
)
1/2
= (
6943 (2)
2/3 (350)
1/2
)
= 7. 71
U1
~
55
TABLE 1
SUMMARY SHEEr
PROJECI'
ENGINEERING
GEOLOGICAL
DESCRIPTION
CLASSIFICATION
sand, fine-rredium,
OOREHOLE # 1
1
Sandy, silty
matrix- grain
size, fine-
2
-
3
-
silty, dry,
slightly rroist
Rock fragments
rrediu, adundant
increasing with
rock fragments
depth
:impenetrable (ci)
Ablli"'ldant rock®25 1
~Q
I
25
25
1-- 1--
Irrpenetrable
----- ------------No Water
Sand, fine-rredium,
OOREHOLE # 2
1 -
Sandy, silty
ma.tri- grain
2
size, fine-
3
m:rliu, adundant
rock fragments~etrable /(j)
silty, dry,
-
slightly rroist
Rock fragments
-
increasing with
4
depth.
5 '
No Water
•~it::
H
~
8~. ~B
Cll•
~!I)
0~
n
~ ~
H
-IM
~ '-1~ @~~
~ ~z ~~ ~~5
§~l !5@~
~
H
CJ)
~
H
0
CJH
I I
56
TABLE II
Boring
Depth in
Feet
Expansion
IndEX
Expansion
Potential
No.
1
4
10
very low
2
3
8
very low
57
CAISSON DESIGN
2
(12) = 10230 #
ret.wal1
2
M = 10230(11} + 1000 _!!_= 173030#-' ---+GOVERN
8
2
= 40 (---)
(--)
2
3
p
2
II
36
I
f
CAISSON
f
2
p
<t,(eaisson)
~1
= 40
= 17050 (6) +
TRY
- 8-
1000
2
f
c
s
= 3000
PSI
= 60000
PSI
(~)
(20) = 17050#
3
62
2
= 120300#-'
4-#9 VERI'. (EACH FACE)
p
=
d
= 28
173030
11
b = 28
= 15730
r-1=9
p
= 15730#
p =.0051
=
k
.906
I
11
j = .272
')
;k = 7.82
f
f
m
s
= 740 PSI
= 20672 PSI
r.1AX PASSIVE = 5200 PSF
Fig. 50
=h
58
f 2 act=
£•
1 =
£
2
7.62 P (2h +d)
l:x12
2
·:~1~_s;)3 0)
+
1
~· 5
= 2151
(350)
~
52 0
= _7_.-"6'-2-'-{1_s_7_3o'-'->_..G.__2..!...-(1...,_1.:.._)
2
3{17.5)
= 2154
~
_+_17_.'-s]~ =
2151
5153
#<
O.K.
O.K.
s2oo PSF
O.K.
PILE CAPACITY CHARI'
-
~
. 3 DIA~ CONCREI'E PILES
ALLOWABLE WADS IN KIDS
10
20
30
40
50
MINIMUM
§
~
~
70
REC0~1MENDED
80
90
100
110
120
130
PENE'I'RATION
10
i ~n
NOI'E: Values based
20
P4
60
@
~~
on friction of
500 PS;F
Resistance to pull-out naY
be assumed 1/2 indicated values
30
Draw-d~
is anticipated to be
negligable.
4
5
lJ1
\!)
60
TfJ 16 X 26 --"""'\
~'V
ST. BH
II
3
":}_ 1/4
II
2 - L 3 1/2
II
- 3/4
X
ST. Pl1
II
~'l/4
16
X
3 1/2
cP H.B.
X
1/4
X
11 1
f@ RA.. LEG.
0
II
26
61
1/4" ST. ;,L
~1/3
- 3/4
¢ H.B.
I
/
I
)
1/4" ST. PL
II
vl/2 -
3/ 4
¢ !11.B.
4 x 10 POST
I
62
6 X 16
# 1
~
SI!-1PSON CC06
4" ¢
SID. PIPE COL.
6
X
16
L---=t=llf==:;=:t===~:r-------r-t # 1 BH
0
63
6 X 16 # 1
siMPSON
ECC06
II
4cP--.
STD. PIPE COL.
0
SIMPSON
ECC06
II
4<\>PIPE
COL.
6 X 16 # 1
~ '
64
..
u
0
3#[-
=1.0
......
@
CJ)
~
tj
l"j
~
0
CJ)
~
~
1.0
N
X
1.0
......
....
t;-
I
tl
8
~
.
.
-& u
='<:!' 0
.(""'. . .). =co
~@
.
~
~
~
=co
~
65
tf.l
t1
@
~
="'d"
r-i
X
00
X
=00
~
-&
=
~
M
=
I
-=:!"
~
~
. -·----:;--··
- __ .:,·.
--~-
9~---
-- .
-·~--.:.:p-.
.
-. --..
- . .
.
--·-
.
..
I
.•
~
•
- --·- ---"T. , __ :;·
.
....··_..__~_.;_._
----
·-·-
! ..
I
-··i".
f:
---~--
·-. .. '
;---~··
.. -
-
·•
..: .!:-. ~ .
...
66
1/2 II
6
q, M. B. (@ 16
X
16
II
0. c.
Br-~
II
NOTCHED 6
DEEP
I
67
1/2 '' </J RED HEAD BOLTS ((j) 24 ''
0/C
2 X 10 FL.
HAS. 'V'1ALL
G
2
X 10
FL.
II
JOISTS'@16
o.c.
r-ms.
WALL _ _
l
I. .
,,II
li
4
X 10
FURLIN tv/JOIST
HA..l\lGERS LB210
. -!- "
I
I
j
I
L 9 1/2 X 3 X 1/4
II
W/ 3/4 cJ?. RED HEAD BOLT
/'":'\
•w4
I
- 0
II
0/C
68
C\13
S~,~ n=n~·'··v
A
II
2
·- 0
4 " (/) STD.
PIPE COL.
II
18
II
X
24
GAADE a1
G
II
vJ/fi3 TIE9'W 10
36 "<P
CAISSON SEE
e
69
ELEV.
II
I,
32
1
II
2
CLR
~t 6f@ 8 EACH
FACE
or@
II
- 6
#
II
.,.12
=N
M
maso
4 # 6 OOhTELS
70
12 # 8 BA.RS VERT. W/ #3
TIES. I@ 12 ~
II
36
c:P
CAISSON
71
tl
l/2
PLY'i':OOD E..7l...CH SIDE
.•
.•
2
"
/
,
/
/
'
ir
II
~
H
O.C.
r'JELD,r:::D PIPE
-$-
---·~
2
/
U
l/2 ¢Gl6
/
4 ..¢
/'
1/4
"
4
·~
'fJ
"
T.ii/ .:1-1
'?.dRU OOLT
72
II
4 (/) STD. PIPE
COL.
II
1/4 L
-
sm
1:
.L.
T-'i/4 - 1 '+'
A..
PLA'TE
.J..
THRU
IDLTS
il
2
18 x 24 G!@)E BM.
G
73
~·H 6
#51@ 16 "
x 26 S'D:;:R'f, Pl1
o.c. --~
II
2 -· 3/4cpA.B.
II
fa) 8
"
o.c.
CO~JCR. BlOC...!{ T.w..L
G
5 BORIZ. BA...~t@ 24 "
n
l
n·
cp
00\1SLS
II
g(a)
o.c.
X
24
o.c.
74
N
I
.
~
Ln
M
X
co
75
,.
:· . :··pt·. r
.
i
1 ''cP IJO'V'JELS X 24 ''
l(i) 8 0/C
I
'
!
.
:
. j;
!
L
,.
, .. ,
'
;
.
'
'
/
,. /
/
,
'
/
/
/
. !- •
; :.
• .
;,. ' !
: •
.,,
I
I
.
12
"
1C/J OOWELS
II
X 24
12 x 24 GRADE :B\1.
Fig.18_
76
Pos~
4 x 4
2
x
4 STUDS
ply"'\·-.700C1 shear •·;all
BOLTS~ POST
PER I'li\JF I RECQ'1.
=
_
.
.
.
,
.
.
.
,
.
_
....
_
.
.
.
.
.
_
. . ...
SINPSO~~ EOLOO~·Ji.\f ~ •
..1::
• .• •
•
·.
Fig. 19
TABLE 4
TYPE
DESCRIPI'ION OF SHE.l'\.R I·lATERIAL
BL.T<I\IG/PLATE
'.'1.1\ILING REG.
PLATEIBI..KTIG
NAILm::; REG.
~tininrum
16 d nails
II
100
125
A
B
175
c
d
E
o.c.
112
gypsum walJJ:card
o.c.
blocl~ed
gypsum wallboard
518
(a) joist per-
16d nails
12
2-16d toe nails per
16d nails
H
3/,8
If
1/4
11
,........,..,.,,.,
7 /f'
11
lea~
r.;
11
pl~ STRI, PS 1-74-l 8d nails
II
~"'
n
@ :·
II
h 1 I'V'k<>il
10
plywood STRI, PS 1-74
It
II
4 • 6 • 12
blocked
313
I
8d nails@
2-16d toe nails per·
16d nails
A
11
n
I"'
A-35@43 " o.c.
+(a) or (b)
A-35@32
J
n
n
L
@
l6d nails
A-35 @lG
o.c.
16d nails
o.c.
3 112
II
A-35@12
o.c.
16d nails@
A-35 (Q) 12 o.c.
+(a) or (b)
16d nails
A-35 @1o
l6d nails
plywood STRI, PS 1-74
II
I 8d nails
~
I lOcl nails@
plywood STRI, PS 1-74
n
; 3
I lOd nails
~
n
; 12
,.
o.c.
o.c.
@
II
2 l/2
o.c.
@
II
II
; 3 : 12 , blocked, 3x boundary r.embers
II
{9)
II
p~~ STRI, PS 1-74
II
{9)
II
II
112
2
o.c.
2 112
; 3 ; 12 , blocked, 3x all members
112
II
5
· 3 : 12 · blocked, 3x boundary rrrr.lbers
II
820
16d nails@
4 112 o.c.
+(a) or (b)
blocked
II
2
o .. c.
n
II
K
(_@
II
g
+(a) or (b)
318
2
730
o.c.
+(a) or (b)
318 pl}'\'JOOd STRI, PS 1-74 I 8d nails
II
16d nails
II
318 pl}'\'xxxl STRI, PS 1-74 I 8d nails@
2
675
8 o.c.
II
II
@
II
II
II
(§J
o.c.
II
II
I
@
o.c.
joist
blocldng
o.c. blocked
2 1/2 · 4 · 12
600
I
I
II
II
530
o.c.
pendicular to wall.
718 cement plaster on furred or self-furring (b) joist parallel to
wall. l6d toe nails@
expanded r.etal or fabric lath/1~) 16 gauge
II
G
@
I 6d cooler nails
II
r.; • r.; • 1 ?
360
@
I 5d cooler nails
II
II
F
16
I
II
c:t-,.,....1,.
270
I 5d cooler nails @
shears \valls.
II
4
@
II
gypsum walJJ:card
112
4
180
I 5d cooler nails@
7 " o.c.
4
150
gypsum wall board
1/2
for all
, blocked, 3x all members
+(a) or (b)
2
A-35@8
16d nails
o.c.
+(a) or (b)
o.c.
@
2 " o.c.
-----~
---J
~.J
;'!!
...
78
a::>NCLUSION
This builcling has been designed to resist vertical and lateral
loads.
The builcling is a wood frane structure with steel used in
heavily loaded over, and reinforced concrete is used to transfer
builcling loads to the soil and resist earth pressures.
caissons and grade beam are used to support the above ground
structure.
This project illustrates via exarrple the analyze and design
of a three story dwelling.