THE-EQUATION SHEET-2015 version 3

THE EQUATION SHEET
Constants:
Basic Equations:
Avogadro’s Number (NA)
Universal Gas Constant (R)
Planck’s constant (h)
Rydberg Constant (RH)
Speed of Light (c)
Charge of an Electron (q)
Boltzmann Constant (kB)
Molar Volume (Vmol)
Mass of Earth
Specific Heat Capacity of Water (C)
Ionic Product Constant of Water (Kw)
Faraday’s constant (F)
STP conditions
Acid-Base Chemistry:

pH   log H 3O
H O  10

3


 pH
K w  K a  Kb
pK a  pK b  pK w
pK a   log K a
pK b   log K b
pK b  14  pK a
pH  pOH  14
 
pOH   log OH 
OH  10

 pOH
 [ HA] 

pH Buffer  pKa  log
 [ A ] 


6.02 × 1023
8.314 J/molK or 0.0821 Latm/molK
6.626 × 10-34 Js
2.18 × 10-18 J
3.00 × 108 m/s
1.602 × 10-19
1.381 × 10-23 J/K
22.7 L/mol
5.97 x 1024 kg
4.18 J/gK or 4.18 kJ/kgK
1.00 × 10-14 (mol/L)2 at 298 K (25°C)
96 500 C/mol
273 K and 100 kPa
Thermodynamics:
H rxn  H P  H R
q  H
at constant pressure
Q
H 
# mol
M Enthalpy   ( E k E p )


 

H rxn
  H f ( P )   H F ( R )
q H

 S System  S Surrounding
T
T

S rxn
  S (P )   S (R )
U  Th He
1
0
0.693
k
1

k A]
4
2
ln
ngas 
E 
hc
KC 
 1
1 
E  R H  2  2 
n

 f ni 
E  hf
nλ = 2dsinθ
[Pr odtcts]nB
[Re ac tan ts]nA
K P  KC RT n
G   RT ln K
P1V1 P2V2

T1
T2
Rate1

Rate2
M2
M1
Redox:
Ch arg e  Current  Time


E cell
 E cathode
 E Anode
G   nFE
V
22.7mol / L
Extras
Solubility:
Qc
<
=
>
Kc
Prod Fav
EQ
React Fav
Q
<
=
>
Ksp (Precipitate)
No
No
Yes (Super Saturated)
Aufbau Principle: Build up electrons one by one.
1K(2)2L(8)3M(18)4N(32)5O(50)6P(72)7Q(98)
Formations:
1. Acid + Metal = Salt + Hydrogen Gas
Ex. 2HCl(aq) + Zn(s)  ZnCl2(s) + H2(g)
2. Acid + Base = Salt + Water
Ex. HCl(aq) + NaOH(aq)  NaCl(s) + H2O(l)
3. Acid + Metal Carbonate = CO2 + H2O + Salt
Ex. CaCO3(s) + HCl(aq)  H2O(l) + CO2(g) + CaCl(s)
4. Metal Oxide + Acid  Salt + Water
Ex. MgO(s) + HCl(aq)  MgCl2(s) + H2O(l)
Periodic Table of Electronegativities

c  v
k 1 Ea  1
1
   
k2 R  T 2 T1 
STP conditions= 273 K and 100 kPa
SATP conditions= 298 K and 100 kPa
n11H  10 e
Quantum
Mechanics:
At  kt  [A]
lnAt  kt  lnA
Gas:
PV  nRT
K SP  Kc (Aqueous)
k  Ae  Ea / RT

H rxn
  D(broken)   D( formed)
S  k ln W 
c1V1  c 2V2
Conversion factors:
1 atm = 100 kPa
1atm = 760 torr = 760 mm Hg
1nm = 10-9 m
0°C = 273.15 K
1dm3 = 1L= 1 x 10-3 m3 = 1 x 103 cm3 = 1 x 103 mL
1 amu = 1.66 x 10-27 kg
t1 / 2

PV  nRT
molar mass of desired product
 100%
molar mass of all reac tan ts
t1 / 2 
Q
T
Q  mcT
C
Nuclear Chemistry:
234
0
% atom ecomony 
k
E A   RT ln  
 A

G rxn
  G (P )   G (R )
238
92
Order of reaction  m  n
V
ngas 
22.7mol / L
RateRe action  k Am Bn
1
Ek  mv 2
2
2
n  cV
m
MR
Chemical Kinetics &
Equilibrium:
c
RateRe action 
t
G  H   TS 
E  mc
n
Polyatomic Ions:
Acetate
CH3COO− or C2H3O2− Hydroxide
OH−
Aluminate
AlO2−, Al2O42−
Hypobromite
BrO−
Amide
NH2−
Hypochlorite
ClO−
Ammonium
NH4+
Hypoiodite
IO−
Antimonate
SbO43−
Hypophosphite
PO23−
Antimonite
SbO33−
Hyposulfite
SO22−
Arsenate
AsO43−
Iodate
IO3−
Arsenite
AsO33−
Iodite
IO2−
Bicarbonate (hydrogen carbonate)
HCO3−
Manganate
MnO42−
Bromate
BrO3−
Nitrate
NO3−
Bromite
BrO2−
Nitrite
NO2−
Carbide
C22−
Oxalate
C2O42-
Carbonate
CO32−
Ozonide
O 3−
Chlorate
ClO3−
Perbromate
BrO4−
Chlorite
ClO2−
Perchlorate
ClO4−
Chromate
CrO42−
Periodate
IO4−
Chromite
CrO2−
Permanganate
MnO4−
Cyanate
OCN−
Peroxide
O22−
Cyanide
CN−
Phosphate
PO43−
Dichromate
Cr2O72−
Phosphite
PO33−
Dihydrogen arsenate
H2AsO4−
Plumbate
PbO32−
Dihydrogen phosphate
H2PO4−
Plumbite
PbO22−
Dihydrogen phosphite
H2PO3−
Stannate
SnO32−
Disulfide
S22−
Stannite
SnO22−
Ferrate
FeO42−
Sulfate
SO42−
Hydrogen carbonate (bicarbonate)
HCO3−
Sulfite
SO32−
Hydrogen arsenate
HAsO42−
Superoxide
O 2−
Hydrogen phosphate
HPO42−
Tartrate
(CH(OH)COO)22−
Hydrogen phosphite
HPO32−
Tellurate
TeO42−
Hydrogen sulfate
HSO4−
Tellurite
TeO32−
Hydrogen sulfite
HSO3−
Thiocyanate
SCN−
Hydronium
H3O+
Thiosulfate
S2O32−