6-4 Large-Sample Confidence Intervals for the Population Proportion, p The estimator of the population proportion, p , is the sample proportion, p . If the sample size is large, p has an approximately normal distribution, with E( p ) = p and pq V( p ) = , where q = (1 - p). When the population proportion is unknown, use the n estimated value, p , to estimate the standard deviation of p . For estimating p , a sample is considered large enough when both n p an n q are greater than 5. 6-4 Large-Sample Confidence Intervals for the Population Proportion, p A large - sample (1 - )100% confidence interval for the population proportion, p : pˆ z α 2 pˆ qˆ n where the sample proportion, p̂, is equal to the number of successes in the sample, x, divided by the number of trials (the sample size), n, and q̂ = 1 - p̂. Large-Sample Confidence Interval for the Population Proportion, p (Example 6-4) A marketing research firm wants to estimate the share that foreign companies have in the American market for certain products. A random sample of 100 consumers is obtained, and it is found that 34 people in the sample are users of foreign-made products; the rest are users of domestic products. Give a 95% confidence interval for the share of foreign products in this market. p z 2 pq ( 0.34 )( 0.66) 0.34 1.96 n 100 0.34 (1.96)( 0.04737 ) 0.34 0.0928 0.2472 ,0.4328 Thus, the firm may be 95% confident that foreign manufacturers control anywhere from 24.72% to 43.28% of the market. Large-Sample Confidence Interval for the Population Proportion, p (Example 6-4) – Using the Template Reducing the Width of Confidence Intervals - The Value of Information The width of a confidence interval can be reduced only at the price of: • a lower level of confidence, or • a larger sample. Lower Level of Confidence Larger Sample Size Sample Size, n = 200 90% Confidence Interval p z 2 pq (0.34)(0.66) 0.34 1645 . n 100 0.34 (1645 . )(0.04737) 0.34 0.07792 0.2621,0.4197 p z 2 pq (0.34)(0.66) 0.34 196 . n 200 0.34 (196 . )(0.03350) 0.34 0.0657 0.2743,0.4057 6-5 Confidence Intervals for the Population Variance: The Chi-Square (2) Distribution • The sample variance, s2, is an unbiased estimator • of the population variance, 2. Confidence intervals for the population variance are based on the chi-square (2) distribution. The chi-square distribution is the probability distribution of the sum of several independent, squared standard normal random variables. The mean of the chi-square distribution is equal to the degrees of freedom parameter, (E[2] = df). The variance of a chi-square is equal to twice the number of degrees of freedom, (V[2] = 2df). The Chi-Square (2) Distribution C hi-S q ua re D is trib utio n: d f= 1 0 , d f= 3 0 , d f= 5 0 0 .1 0 df = 10 0 .0 9 0 .0 8 0 .0 7 2 The chi-square random variable cannot be negative, so it is bound by zero on the left. The chi-square distribution is skewed to the right. The chi-square distribution approaches a normal as the degrees of freedom increase. f( ) 0 .0 6 df = 30 0 .0 5 0 .0 4 df = 50 0 .0 3 0 .0 2 0 .0 1 0 .0 0 0 50 2 In sampling from a normal population, the random variable: 2 ( n 1) s 2 2 has a chi - square distribution with (n - 1) degrees of freedom. 100 Values and Probabilities of Chi-Square Distributions Area in Right Tail .995 .990 .975 .950 .900 .100 .050 .025 .010 .005 .900 .950 .975 .990 .995 Area in Left Tail df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 .005 0.0000393 0.0100 0.0717 0.207 0.412 0.676 0.989 1.34 1.73 2.16 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43 8.03 8.64 9.26 9.89 10.52 11.16 11.81 12.46 13.12 13.79 .010 .025 .050 .100 0.000157 0.0201 0.115 0.297 0.554 0.872 1.24 1.65 2.09 2.56 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26 8.90 9.54 10.20 10.86 11.52 12.20 12.88 13.56 14.26 14.95 0.000982 0.0506 0.216 0.484 0.831 1.24 1.69 2.18 2.70 3.25 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59 10.28 10.98 11.69 12.40 13.12 13.84 14.57 15.31 16.05 16.79 0.000393 0.103 0.352 0.711 1.15 1.64 2.17 2.73 3.33 3.94 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.12 10.85 11.59 12.34 13.09 13.85 14.61 15.38 16.15 16.93 17.71 18.49 0.0158 0.211 0.584 1.06 1.61 2.20 2.83 3.49 4.17 4.87 5.58 6.30 7.04 7.79 8.55 9.31 10.09 10.86 11.65 12.44 13.24 14.04 14.85 15.66 16.47 17.29 18.11 18.94 19.77 20.60 2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99 17.28 18.55 19.81 21.06 22.31 23.54 24.77 25.99 27.20 28.41 29.62 30.81 32.01 33.20 34.38 35.56 36.74 37.92 39.09 40.26 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 37.65 38.89 40.11 41.34 42.56 43.77 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17 35.48 36.78 38.08 39.36 40.65 41.92 43.19 44.46 45.72 46.98 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 44.31 45.64 46.96 48.28 49.59 50.89 7.88 10.60 12.84 14.86 16.75 18.55 20.28 21.95 23.59 25.19 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00 41.40 42.80 44.18 45.56 46.93 48.29 49.65 50.99 52.34 53.67 Template with Values and Probabilities of Chi-Square Distributions Confidence Interval for the Population Variance A (1-)100% confidence interval for the population variance * (where the population is assumed normal) is: 2 2 ( n 1) s , ( n 1) s 2 2 1 2 2 2 where is the value of the chi-square distribution with n - 1 degrees of freedom that 2 2 cuts off an area to its right and is the value of the distribution that cuts off an area of 2 to its left (equivalently, an area of 2 1 2 to its right). 1 2 * Note: Because the chi-square distribution is skewed, the confidence interval for the population variance is not symmetric Confidence Interval for the Population Variance - Example 6-5 In an automated process, a machine fills cans of coffee. If the average amount filled is different from what it should be, the machine may be adjusted to correct the mean. If the variance of the filling process is too high, however, the machine is out of control and needs to be repaired. Therefore, from time to time regular checks of the variance of the filling process are made. This is done by randomly sampling filled cans, measuring their amounts, and computing the sample variance. A random sample of 30 cans gives an estimate s2 = 18,540. Give a 95% confidence interval for the population variance, 2. 2 2 ( n 12 ) s , ( n 21) s ( 30 1)18540 , ( 30 1)18540 11765,33604 457 . 16.0 1 2 2 Example 6-5 (continued) Area in Right Tail . . . 12.46 13.12 13.79 .990 . . . 13.56 14.26 14.95 .975 .950 . . . 15.31 16.05 16.79 .900 . . . 16.93 17.71 18.49 . . . 18.94 19.77 20.60 .100 .050 . . . 37.92 39.09 40.26 . . . 41.34 42.56 43.77 C hi-S quare Distribution: df = 29 0.06 0.05 0.95 0.04 2 . . . 28 29 30 .995 f( ) df 0.03 0.02 0.025 0.01 0.025 0.00 0 10 20 20.975 16.05 30 40 2 50 60 20.025 4572 . 70 .025 . . . 44.46 45.72 46.98 .010 . . . 48.28 49.59 50.89 .005 . . . 50.99 52.34 53.67 Example 6-5 Using the Template Using Data 6-6 Sample-Size Determination Before determining the necessary sample size, three questions must be answered: • How close do you want your sample estimate to be to the unknown • • parameter? (What is the desired bound, B?) What do you want the desired confidence level (1-) to be so that the distance between your estimate and the parameter is less than or equal to B? What is your estimate of the variance (or standard deviation) of the population in question? n } For example: A (1- ) Confidence Interval for : x z 2 Bound, B Sample Size and Standard Error The sample size determines the bound of a statistic, since the standard error of a statistic shrinks as the sample size increases: Sample size = 2n Standard error of statistic Sample size = n Standard error of statistic Minimum Sample Size: Mean and Proportion Minimum required sample size in estimating the population mean, : z2 2 n 2 2 B Bound of estimate: B = z 2 n Minimum required sample size in estimating the population proportion, p z2 pq n 2 2 B Sample-Size Determination: Example 6-6 A marketing research firm wants to conduct a survey to estimate the average amount spent on entertainment by each person visiting a popular resort. The people who plan the survey would like to determine the average amount spent by all people visiting the resort to within $120, with 95% confidence. From past operation of the resort, an estimate of the population standard deviation is s = $400. What is the minimum required sample size? z 2 n 2 2 B 2 2 (1.96) ( 400) 120 2 42.684 43 2 Sample-Size for Proportion: Example 6-7 The manufacturers of a sports car want to estimate the proportion of people in a given income bracket who are interested in the model. The company wants to know the population proportion, p, to within 0.01 with 99% confidence. Current company records indicate that the proportion p may be around 0.25. What is the minimum required sample size for this survey? n z2 pq 2 B2 2.5762 (0.25)(0.75) 010 . 2 124.42 125 6-7 The Templates – Optimizing Population Mean Estimates 6-7 The Templates – Optimizing Population Proportion Estimates
© Copyright 2026 Paperzz