Vlasov theory with magnetic effects S.M.Lea January 2007 When we include magnetic ®elds in the Vlasov equation several interesting new effects arise. These include cyclotron damping and waves at harmonics of ! c (the Bernstein modes). The Vlasov equation, now with magnetic ®eld included. is: ³ ´ @f ~ + q E ~ + ~v £ B ~ ¢ @f = 0 + ~v ¢ rf @t m @~v ~ 0 6= 0 but E ~ 0 = 0: When we perturb, there are perturbations to both B and E : Initially B ³ ´ @f 1 ~ 1+ q E ~ 1 + ~v £ B ~ 1 ¢ @f0 + q ~v £ B ~ 0 ¢ @f 1 = 0 + ~v ¢ rf @t m @~v m @~v Or, equivalently: ´ df1 q ³~ ~ 1 ¢ @f0 =¡ E 1 + ~v £ B (1) dt m @~v where df1 =dt is the total time derivative of f 1 taken along the unperturbed orbit in the ~ 0 = B0 ^ magnetic ®eld B z: We can ®nd a formal solution for f1 by integrating along the orbit. Z t Z t ´ df 1 0 q ³~ ~ 1 ¢ @f0 dt0 dt = f (t) ¡ f (t ) = ¡ E + ~ v £ B (2) 1 1 0 1 0 m @~v t0 dt t0 The unperturbed trajectory is described by: and v z (t0 ) = vz (t) = v k (3) vy (t0) = v ? cos [!c (t0 ¡ t) + Á] (4) v x (t0 ) = v ? sin [! c (t0 ¡ t) + Á] (5) (This works for both signs of charge if we keep the sign of the charge in ! c .) We can integrate the z-component directly to get z (t0) ¡ z (t) = vk (t0 ¡ t) (6) while for the x and y components we get: v? y (t0 ) ¡ y (t) = fsin [! c (t0 ¡ t) + Á] ¡ sin Ág = rL fsin [(! c (t0 ¡ t) + Á) ¡ sin Á]g !c (7) and similarly for x: We wonzt have time to explore all the possible waves, so ®rst letzs look at electrostatic 1 ~ 1 ´ 0 and ~kkE ~ : We also consider propagation across the (longitudinal) waves so that B magnetic ®eld, in the y¡direction, so that ~ = E a exp [iky (t0) ¡ i!t0] y^ E Then the solution for f1 (2) becomes: Z t q ~ @f0 0 E1 ¢ dt m @~v t0 Z t 0 0 q ~ a eiky(t )¡i!t ¢ @f0 dt0 ¡ E m t0 @~v f 1 (t) ¡ f 1 (t0 ) = = ¡ Using expression (7) for y (t0 ), the exponential is: exp (ik [rL fsin (! c (t0 ¡ t) + Á) ¡ sin Ág + y (t)] ¡ i!t0 ) Now let ¿ = t0 ¡ t: = We have: ¡ ikrL sin Á iky( t) e e exp [ikrL fsin (! c ¿ + Á)g ¡ i! (¿ + t)] ¡ ikrL sin Á iky( t)¡i!t e e exp [ikrL fsin (! c ¿ + Á)g ¡ i!¿ ] If the wave is damped, we can take t0 ! 1; with f1 (t) ! 0 as t ! 1 to get: Z t q ~ @f 0 0 f 1 (t) = ¡ E dt 1¢ m @~v 1 while for a growing wave, we let t0 ! ¡1; with f 1 (t) ! 0 as t ! ¡1 to get: Z t q ~ @f0 0 f 1 (t) = ¡ E dt 1 ¢ m @~v ¡1 (8) (9) Wezll consider the damped wave case (8), but we can get a growing wave with only minor changes to the analysis. Changing variables to ¿ ; the integral becomes Z 0 q @f 0 f 1 (t) = ¡ E a e iky(t)¡ i!t e¡ikrL sin Á exp [ikrL fsin (! c ¿ + Á)g ¡ i!¿ ] d¿ (10) m @vy 1 We can simplify this expression by making use of the generating function for Bessel functions (see e.g. Lea 8.93 or Jackson problem 3.16c) µ µ ¶¶ 1 X kr 1 exp u¡ = un Jn (kr) 2 u n= ¡1 Here we let u = ei(! c ¿ +Á) : Then 1 u ¡ = ei! c (! c ¿ +Á) ¡ e ¡i! c (! c ¿ +Á) = 2i sin (! c ¿ + Á) u Thus · µ ¶¸ +1 ´n X ³ ikrL 1 exp [ikrL sin (!c ¿ + Á)] = exp u¡ = ei(! c ¿ +Á) Jn (krL ) 2i u n=¡ 1 and so (10) becomes f1 (t) = ¡ q E a eiky(t)¡ i!t m Z 0 + 1 X 1 n= ¡1 ³ ei(! c ¿ +Á) 2 ´n J n (krL ) +1 X m=¡1 ¡ e¡iÁ ¢m Jm (krL ) e¡ i!¿ (11) @f0 d¿ @v y Now we expect f0 to be a function of v ? and vk ; so using cylindrical coordinates in the velocity space, we have ^ @f 0 @f0 @f 0 @f0 ^ @f 0 + µ @f0 + ^ +^ y +^ z =? z @vx @v y @v z @v? v? @µ @v z @f 0 @f 0 = (^ x cos µ + ^ y sin µ) +0+^ z @v? @v z from the cylindrical symmetry, where µ is the angle that ~v makes with the x-axis. Thus, (cf eqn 4): @f 0 v y @f0 @f0 = = cos (! c ¿ + Á) @v y v? @v ? @v ? Putting this expression into eqn (11) we have: q f1 (t) = ¡ Ea eiky( t)¡i!t £ m Z 0 +1 1 X + X @f 0 ein(! c ¿ +Á) J n (krL ) e¡imÁ Jm (krL ) e¡ i!¿ cos (! c ¿ + Á) d¿ @v ? 1 ~ v f0 r = x ^ n=¡ 1 m=¡1 q = ¡ E a e iky(t)¡ i!t £ 2m Z 0 + 1 +1 i X X h @f0 ei(n+ 1)(! c ¿ +Á) + ei(n¡ 1)(! c ¿ + Á) e¡ imÁ Jn (krL ) Jm (krL ) e¡ i!¿ d¿ @v ? 1 n=¡1 m=¡ 1 We can now do the integration over ¿ easily to get: f1 (t) = ¡ where Fnm = +1 X +1 X q @f0 E 0 eiky(t)¡ i!t Jn (krL ) Jm (krL ) F nm 2m @v ? n=¡1 m=¡1 ¯0 ei(n+1¡m) Á e[i(n+1)! c ¡i!]¿ ei(n¡1¡ m)Á e[i(n¡1)! c ¡i!]¿ ¯¯ + ¯ i [(n + 1) !c ¡ !] i [(n ¡ 1) ! c ¡ !] 1 (12) Since we are considering the damped case (! = ! r ¡ i° with ° > 0), then ¡i!¿ = ¡i! r ¿ ¡ °¿ and the integrated term vanishes as ¿ ! 1: (It is straightforward to repeat the derivation for the growing wave case ° < 0 starting from equation (9) and show that the end result is the same.) Then: ½ ¾ ei(n+1) Á e i(n¡1)Á ¡ imÁ F nm = e + i [(n + 1) ! c ¡ !] i [(n ¡ 1) !c ¡ !] 3 Then we have: +1 X Jn (krL ) F nm ¡ imÁ = e n=¡ 1 +1 X Jn (krL ) n=¡1 = e¡ imÁ = e¡ imÁ ½ ei(n+1)Á ei(n¡1)Á + i [(n + 1) ! c ¡ !] i [(n ¡ 1) ! c ¡ !] +1 X eiºÁ [J º¡1 (krL ) + Jº+1 (krL )] i [º ! c ¡ !] º=¡ 1 +1 X eiºÁ 2º Jº (krL ) i [º ! ¡ !] kr c L º=¡ 1 where we have made use of a recursion relation for the Bessel functions (eg equation 3.87 in Jackson or Lea 8.89). Finally then (12) is: +1 1 X + X q ei(n¡ m)Á n!c @f0 iky( t)¡i!t f1 (t) = ¡ Ea e Jn (krL ) J m (krL ) m i [n! ¡ !] kv @v c ? ? n=¡ 1 m=¡1 (13) Next we use Poissonzs equation: Z n1 q q ikE 1 = = f1 dv k v? dv? dÁ "0 "0 The integration over the azimuthal angle Á is easy: Z 2¼ ei(n¡m)Á dÁ = 2¼±nm 0 and thus the double sum collapses, leaving: Z + · µ ¶¸2 1 X q2 2¼ n! c kv? @f0 ik = ¡ Jn dv k v? dv? m"0 i (n! ¡ !) kv ! @v c ? c ? n=¡1 Z · µ ¶¸2 +1 q2 X n! c kv? @f 0 k2 = 2¼ Jn dv dv ? m"0 (n! c ¡ !) !c @v? k n= ¡1 Here we wrote the Larmor radius in terms of v? explicitly, since we are integrating over v ? : Now we can factor the plasma density from the distribution function to get: ¶¸2 ^ Z · µ +1 X n! c kv? @ f0 2 2 k = 2¼! p Jn dvk dv ? (n! ¡ !) ! @v c c ? n=¡1 For a Maxwellian, the integral over v k is straightforward, leaving f^0;? @ f^0;? @v ? 2 ¯ ¡ ¯v? =2 e 2¼ = = ¡¯v? f^0;? 4 ¾ where ¯ = m=kT ; and then: k 2 = ¡!2p +1 X n!c (n! c ¡ !) n=¡ 1 Z 1 0 · Jn µ kv? !c ¶¸2 2 ¯ 2 v? e¡ ¯v? =2 dv? where the n = 0 term gives zero. To do the integral we can use the result (G&R 6.633#2) valid for n > ¡1 Z 1 ¡ ¢ 2 2 2 Jn2 (x) e ¡x =2¾ xdx = ¾ 2 e¡ ¾ In ¾ 2 0 n 2 where In is a modi®ed Bessel function. Since J¡ n = (¡1) J n ; (J ¡n ) = Jn2 ; and I¡n = In ; the same result holds for the negative n terms. . Here we have p x = krL = kv ? =! c ; and x=¾ = ¯v ? ; so ¾=p Thus: k 2 = = x kv ? =! c k = p =p ¯ v? ¯ v? ¯ !c Z n!c ¯! 2c 1 2 2 2 Jn (x) e¡x =2¾ x dx 2 [n! ¡ !] k c 0 n=¡1 µ ¶ µ 2 ¶ +1 1 X n! c k2 k ¡ 2 exp ¡ 2 In ¯! c ¯! 2c ¸ D n=¡ 1 [n!c ¡ !] ¡! 2p ¯ +1 X where we used the fact that ¸ 2D = 1=! 2p ¯: Notice that we can write ¾ as: ¾= p k kv th = = krth !c ¯! c p where rth is the Larmor radius of a particle moving at the thermal speed kT =m:Thus the dispersion relation is: 1 ¡ ¢ ¡ ¢ 1 X n! c 2 k = exp ¡k 2 r2th In k 2 r2th 2 [! ¡ n! ] ¸D n= ¡1 c k 2 ¸2D = 2 1 X 2 ¡ ¢ ¡ ¢ (n! c ) exp ¡k2 rth2 In k2 r2th 2 2 2 ! ¡ n !c n= 1 (14) Now if ¾ is large (wavelength small compared with the thermal gyro-radius) we may use the large argument expansion of the Bessel function 2 ¡ ¢ e¾ In ¾ 2 ¼ p 2¼ ¾ and then the dispersion relation simpli®es: 1 X (n! c )2 1 k2 ¸ 2D = 2 p 2 2 2 ! ¡ n !c 2¼krth n= 1 r 1 X (n!c )2 ¼ 3 2 k ¸ D rth = 2 ! 2 ¡ n2 ! 2c n=1 5 (15) so as k ! 1; ! ! n! c ; the harmonics of the cyclotron frequency. For k large but not in®nite and ! near n! c ; one term dominates and we have: r 2 2 (n! c ) 2 2 ! ¡ (n! c ) = ¼ k3 ¸ 2D rth The right hand side is positive, so the limit is approached from above. Now ³ as k ! ´ 0; we should use the small argument approximation to the Bessel function: k 2r2 n 1 th In ¼ n! (Lea eqn 8.101). The exponential in eqn (14) is approximately 1 in this 2 case. Then (14) becomes: µ ¶n 1 2 X ¡ ¢ (n! c ) 1 k 2 r2th k2 ¸ 2D = 2 1 ¡ k 2 r2th + ¢ ¢ ¢ (16) 2 2 2 ! ¡ n !c n! 2 n= 1 The sum is dominated by the n = 1 term, which gives: ¸ 2D r2th 1 !2p ! 2 ¡ ! 2c !2 = = ¯! 2c !2 = 2 c 2 2 ¯! p ! ¡ !c 1 !2 ¡ ! 2c = ! 2p = ! 2p + ! 2c = ! 2UH the upper hybrid frequency. However, if the frequency is very close to one of the resonances at ! = n! c (other than n = 1), then we cannot ignore the resonant term. So again we get ! ¼ n!c : In more detail, for n 6= 1 but ! ¼ n! c ; we have, including the n = 1 term, µ ¶n ! 2c 2 (n! c )2 1 k2 r2th 2 2 i k ¸D = +h 2 ! 2 ¡ !2c 2 ! 2 ¡ (n! c ) n! h i µ 2 2 ¶ n !2 ! 2 ¡ (n! )2 2 c c 2 (n! c ) 1 k rth 2 ! 2 ¡ (n! c ) = + 2 k2 ¸ 2D n! (! 2 ¡ ! 2c ) k2 ¸ 2D £ ¤ µ ¶n 2 !2c ! 2 ¡ ! 2c ¡ (n ¡ 1) ! 2c 2 (n! c ) 1 k2 rth2 = + 2 k2 ¸ 2D n! (! 2 ¡ ! 2c ) k 2 ¸2D · µ ¶ ¸ n ! 2c 2n k2 r2th (n ¡ 1) ! 2c = 1 + ¡ (17) (n ¡ 1)! 2 !2 ¡ !2c k2 ¸ 2D Generally if ! » n! c ; the last term in [] is small (» (n + 1)¡1 ), the right hand side is positive, and so the limit is approached from above. With ! p = !c ; the plot of ! versus k looks like this: 6 5 4 3 w/wc 2 1 0 1 2 krth 3 4 5 These are the Bernstein modes. Note: to get the plot we used eqn( 14) with the Bessel function series evaluated to 10 terms. ¡ ¢ First write it in terms of dimensionless variables. yn = !2 ¡ n2 ! 2c =n2 ! 2c and k¸ D = x; so that 2 !2 r2 2 vth p k2 r2th = k 2 ¸2D th = x = x2 ® 2 !2c vth2 ¸2D where ® = !p =! c : Then for ! ' n!c ; (14) becomes: ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ 1 X 1 exp ¡x 2 ® 2 In x 2 ®2 2 exp ¡x 2 ®2 In x2 ® 2 1=2 ' y x2 yn x2 n= 1 n The small xplimit is slightly different if ! UH > 2!c : To investigate this, let !UH =! c = ° = 1 + ® 2 7 Letzs look at (16) keeping one more term in the exponential. µ ¶n 1 2 X ¡ ¢ (n! c ) 1 k2 rth2 2 2 k ¸D = 2 1 ¡ k2 rth2 + ¢ ¢ ¢ ! 2 ¡ n2 ! 2c n! 2 n=1 " ¡ ¢ µ ¶ n¡ 1 # 1 X ¡ ¢ ®2 ! 2c n2 ! 2 ¡ ! 2c 1 k 2rth2 1 = 1+ 1 ¡ k2 r2th + ¢ ¢ ¢ 2 2 2 2 2 ! ¡ !c ! ¡ n ! c n! 2 n=2 " 1 ¡ ¢ ¡ ¢ µ 2 2 ¶ n¡ 1 # m 1 X ¡k2 r 2 X n ! 2 ¡ ! 2c 1 k rth 2 2 2 2 2 2 th ! ¡ !c ¡ ® ! c = ® ! c + 2 2 2 m! ! ¡ n ! c (n ¡ 1)! 2 m=1 n=2 " ¡ 2 2 ¢m ¡ 2 ¢ µ ¶ n¡ 1 # 1 1 X ¡k rth X n ! ¡ ! 2c 1 k 2 r2th 2 2 2 2 ! ¡ ! UH = ® ! c + m! ! 2 ¡ n2 ! 2c (n ¡ 1)! 2 m=1 n=2 where we will keep the same order of terms in the exponential as in the Bessel function. 2 ! ¡° 2 ! 2c 2 =® ! 2c " ¢m ¡ ¢ µ 2 2 ¶ n¡ 1 # 1 ¡ 1 X X ¡k2 rth2 n ! 2 ¡ ! 2c 1 k rth + 2 2 2 m! ! ¡ n ! c (n ¡ 1)! 2 m=1 n=2 If 2 < ° < 3; then we keep the n = 2 and n = 3 terms, and truncate the ®rst sum at m = 2: " # ¡ 2 ¢ ¡ ¢ ! ¡ ! 2c 3 !2 ¡ ! 2c 1 k2 rth2 k2 r2th 2 2 2 2 2 2 2 ! ¡ ° ! c = ® ! c k rth ¡1 + + 2 + 2 ! ¡ 4!2c ! 2 ¡ 9! 2c 2! 4 " # ¡ 2 ¢ 2 2 2 2 2 2 3 ! ¡ ! 3! k r 1 k r c c th th = ®2 ! 2c k2 r2th + + !2 ¡ 4! 2c 2 ! 2 ¡ 9!2c 2! 4 Since the ®rst term is positive, we still approach the limit from above. We also have, including the n = 1 and 2 terms, " # ¡ 2 ¢ ! ¡ !2c 2 2 2 2 2 2 2 2 ! ¡ ! c = ® ! c 1 ¡ k rth + 2 k rth ! ¡ 4! 2c ½ ¾ 3!2c 2 2 2 2 ' ® !c 1 + 2 k rth + ¢ ¢ ¢ ! ¡ 4! 2c which does not go to zero as k ! 0: So there is no limit at ! = ! c in this case. However, " # ¡ ¢ 3 ! 2 ¡ !2c 1 k 2 rth2 3!2c k 2 r2th 2 2 2 2 = ® ! c k rth + + !2 ¡ 4! 2c 2 ! 2 ¡ 9!2c 2! 4 ¡ 2 ¢ 3 ! ¡ ! 2c 1 k2 r2th 3! 2c ! 2 ¡ ° 2 !2c k2 r2th = ¡ + ! 2 ¡ 4! 2c ®2 ! 2c k2 r2th 2 !2 ¡ 9! 2c 2! 4 ! 1 as k ! 0 Thus, since ° > 2; ! 2 ¡ 4! 2c ® 2 ! 2c k2 r2th ! ! 0 from below 3! 2c ! 2 ¡ °2 ! 2c Thus the plot now looks like this: 8 Reference: Boyd and Sanderson pg 281 See Chen pg 281 for the curves for 3 < ° < 4: 9
© Copyright 2026 Paperzz