The self-consistency problem in EM radiation Charged particles are the sources for EM ¤elds, but the particles respond to the ¤elds through the Lorentz force. Accelerated particles radiate, and the energy radiated must come from the particlezs energy, and so tha back-reaction of the ¤eld son the particles cannot be ignored. Letzs use a simple example to see when this e¤ect is likely to be important. A particle with charge q and acceleration a radiates power (by the Larmor formula) 2 q 2 a2 P = 3 c3 Thus the energy lost in time t is ¢E = P t = 2 q 2 a2 t 3 c3 If the particle starts from rest, it gains energy in time t equal to 1 1 K = mv 2 = m (at)2 2 2 Thus the energy lost by radiation is negligible if ¢E¿ 4 2 q 2 a2 t 3 c3 or tÀ ¿ K 1 ma2 t2 2 (1) 4 q2 ´ 2¿ 3 mc3 where we have de¤ned 2 q2 2 r0 = (2) 3 mc3 3 c where the last equality gives the result for an electron, and r0 is the classical electron radius. Thus this e¤ect is important for very short time-scale phenomena, or in the very ¤rst instants of a particlezs acceleration. Since ¿ / 1=m; the e¤ect is greatest for the particles with smallest mass. For an electron ¿ = ¿ (electron) = ¡ ¢2 4:8 £ 10 ¡10 esu 2 = 6 £ 10 ¡24 s 3 (9 £ 10 ¡28 gm) (3 £ 10 10 cm)3 (3) This is a very short time! Another example. For a particle undergoing oscillatory motion with amplitude d and frequency ! 0 , its energy is E ' m! 20 d2 1 and its acceleration is a ' ! 20 d With t equal to the period, equation (1) for this system takes the form ¡ ¢2 2 q2 ! 20 d 1 3 c3 !0 !0 ¿ ¿ m! 20 d2 ¿ 1 So again the e¤ect is important for systems with very short periods. Radiation reaction Neglecting radiation, the equation of motion for a particle acted upon by an external force is: d~v m = F~e x t dt To incorporate the energy loss due to radiation, we assume there is an e¤ective force F~ rad that also acts on the particle, so that the true equation of motion is: m d~v = F~ e xt + F~ rad dt The known properties of this force are: ² F~ra d must ! 0 if the acceleration a ! 0; because then no power is radiated. ² F~ra d should be proportional to q 2 because P is. (The sign of the charge should not appear) ² F~ra d most likely involves the timescale ¿ : Now we invoke energy conservation. The work done by this force over a time interval must equal the energy radiated. Thus Z t2 Z t2 Z t2 2 q 2 d~v d~v F~ rad :~v dt = ¡ P (t) dt = ¡ ¢ dt 3 dt t1 t1 t1 3 c dt Integrate by parts: Z t2 t1 ¯t Z t2 2 q 2 d~v ¯¯ 2 2 q2 d2~v F~ra d :~v dt = ¡ ¢ ~ v + ¢ ~v dt ¯ 3 2 3 c3 dt t1 3 c dt t1 The integrated term is zero if: ² We have uniform circular motion so that d~ v dt ¢ ~v = 0 at all times ² The motion is periodic and the time interval t2 ¡ t1 is a whole number of periods ² The acceleration lasts for a ¤nite time less than, and included within, t2 ¡ t1 2 In any of these cases, we have: Z t2 Z ~ rad :~v dt = F t1 or Z t2 t1 µ t2 t1 2 q 2 d2~v ¢ ~v dt 3 c3 dt2 2 q 2 d2~v F~ rad ¡ 3 c3 dt2 ¶ :~v dt = 0 Thus in a time-averaged sense, we may say that 2 q2 d2 ~v d2 ~v F~ rad = = m¿ 2 3 2 3 c dt dt (4) This result satis¤es the preoperties we previously enumerated for F~ rad : The equation of motion for the particle now becomes: µ ¶ d~v d2~v m ¡ ¿ 2 = F~ ex t (5) dt dt This is the Abraham-Lorentz Equation of motion. Implications of the Abraham-Lorentz equation To understand the implications of this, we solve the equation using an integrating factor: Let d~v = ~u et=¿ dt Then d2 ~v d~u t=¿ 1 = e + ~u et=¿ dt2 d¿ ¿ and inserting this result into equation (5), we have ¡m¿ d~u t=¿ e = F~ ex t d¿ We may now integrate directly to get: ~u = d~v ¡ t=¿ ¡1 e = dt m¿ Z F~ e xt (t0 ) e ¡t 0 =¿ dt0 To avoid an unknow integration constant, wezd like to inetgrate over a ¤xed interval, with the variable t at one end. But we know the e¤ects of radiation reaction are negligible at large times, so d~v F~e xt ! as t ! 1 dt m Thus we use t ! 1 as the other limit. Then Z 0 d~v et=¿ 1 ~ = Fe x t (t0) e¡t =¿ dt0 dt m¿ t 3 (6) An integral over the future! Letting s = (t ¡ t0 ) =¿ ; this becomes d~v dt = = Z ¡1 ¡ 1 ~ F ex t (t ¡ s¿ ) es ds m 0 Z 0 1 F~ ex t (t ¡ s¿ ) es ds m ¡1 To verify that this makes sense, letzs expand our function # Z 0 " d~v 1 dF~ e xt (t) ~ = F ex t (t) + s¿ + ¢ ¢ ¢ es ds dt m ¡1 dt F~e xt (t) s 0 ¿ dF~e x t (t) 0 e j¡1 + (ses ¡ es )j¡ 1 + ¢ ¢ ¢ m m dt F~e xt (t) ¿ dF~e x t (t) ¡ m m dt = = The nth term involves the integral In = = Z 0 0 ¡1 sn esds = nsn es j¡1 ¡ n Z 0 sn¡1 es ds ¡1 n ¡nIn¡1 = n (n ¡ 1) In¡2 = (¡1) n! Thus d~v 1 X dn F~ e xt = (¡1)n ¿ n dt m dtn n=0 where the ¤rst term is the Newtonian result, while the remaining terms are the corrections for radiation reaction, and are increasingly negligible as n increases. We expect dn F~ e xt F~ e xt ¿n » ¿ n n ¿ F~ e xt n dt T The integral over the future extends over a time roughly or order ¿ because the exponential reduces the integrand appreciable for t0 >; and so this rather bizarre result doe not violate "macroscopic causality: The uncertainty principle restricts our knowledge: ¢E ¢t ¢t & ~ & ~ ¢E Then if the change in energy is or order mc2 ; the particlezs rest energy, the restirtcion on observable time intervals is ¢t & ~ ~c e 2 3 = = 137 £ ¿ » 200¿ mc2 e2 mc3 2 4 So the interval in the future that determines the radiation reaction e¤ects is within the quantum uncertainty. Now letzs apply this to an electron in an atom. The electron is bound by a restoring force F~re s = ¡m!20 ~x and so the equation of motion, including radiation reaction, is d2 ~x dt2 d2 m 2 ~x dt m = F~r es + F~ rad + F~ ex t = ¡m! 20~x ¡ m¿ d2~v ~ e xt +F dt2 Letzs begin by considering the case where F~ ex t = 0: The zeroth order solution, ignoring radiatin reaction, is ~x = ~x0 cos ! 0 t so letzs look for a solution ~x = ~x 0 e¡i!t Then stu¢ng in, we get 3 ¡m! 2 ~x + m!20 ~x + m¿ (¡i!) ~x = 0 and we expect ! = ! 0 + ° where ° ¿ ! 0 : Thus ¡ (! 0 + °)2 + ! 20 + i¿ (! 0 + °)3 = 0 and expanding to ¤rst order, we have ¡2! 0 ° + i¿ ! 30 = ° = 0 (! 0 ¿ ) !2 ¿ ¡ i !0 = i 0 ´ i 2 2 2 Now the solution is ~x (t) = ~x 0 cos !0 te¡ ¡t=2 and its Fourier transform is Z 1 1 ~x (!) = p ~x 0 cos ! 0 te¡¡t=2 ei!t dt 2¼ 0 · ¡¡t=2 i(!+! 0) t ¸1 1 e e e¡¡t=2 ei(!¡ ! 0)t p = ~x 0 + ¡¡=2 + i (! + ! 0 ) ¡¡=2 + i (! ¡ ! 0 ) 0 2 2¼ · ¸ 1 1 1 p ~x 0 = + ¡=2 ¡ i (! + ! 0 ) ¡=2 ¡ i (! ¡ ! 0 ) 2 2¼ " # 1 ¡=2 ¡ i (! + ! 0 ) + ¡=2 ¡ i (! ¡ ! 0 ) p ~x 0 = 2 2 2¼ (¡=2) ¡ i (! + ! 0 ) ¡=2 ¡ i (! ¡ ! 0 ) ¡=2 ¡ (! 2 ¡ ! 20 ) " # 1 ¡=2 ¡ i! = p ~x 0 2¼ (¡=2)2 ¡ i!¡ ¡ (!2 ¡ !20 ) 5 Then we can compute the power radiated: P (t) = W (t) = 2 e2 2 a (t) 3 c3 Z Z 2 e2 + 1 2 e 2 +1 2 2 a (t) dt = ja (!)j d! 3 c3 ¡1 3 c3 ¡1 where " # 1 ¡=2 ¡ i! ~a (!) = ¡! ~x (!) = ¡! p ~x 0 2 2¼ (¡=2) ¡ i!¡ ¡ (! 2 ¡ ! 20 ) 2 2 and thus dW d! 2 e2 ja (!)j2 3 c3 2 2 e 2 m! 4 x20 (¡=2) + !2 3 mc3 2¼ ! 2 ¡2 + (!2 ¡ !20 ) 2 = = Result is very peaked around ! = ! 0 so adding positive and negative frequency contributions, and noting that ¡ ¿ ! 0 , the power spectrum for positive (physical) frequencies is dW d! = = ' 2 m!20 x 20 ! 20 ¿ 2¼ ¡2 + !20 (1 ¡ ! 2 =! 20 )2 1 2 ¡ m! 20 x20 £ 2 ¼ ¡ 2 + ! 20 (1 ¡ ! 2 =! 20 )2 E0 Á (!) where E 0 is the initial energy of the oscillator and 2 ¡ ¼ ¡ 2 + ! 20 (1 ¡ !2 =! 20 )2 Á (!) = is the line shape function. Z 1 Z 1 2 ¡ 2¡ d! d! = 2 2 2 2 2 2 2 2 2 ¼ ¼! 0 ¡ + ! 0 (1 ¡ ! =!0 ) ¡ =! 0 + (1 ¡ ! 2 =! 20 ) 0 0 Now let ¡ 1 ¡ ! 2 =! 20 ¡ ¢ 2!d! !20 = = ¡ tan µ !0 ¡ 2d! sec2 µdµ ' ¡ !0 !0 6 As ! ! 1; µ ! ¡¼=2 and as ! ! 0; tan µ ! so µ » ¼=2: Thus Z 1 Á (!) d! !0 À1 ¡ Z ¼=2 = ¡ ¼! 20 = 1 ¼=1 ¼ 0 ¡¼ =2 ¡ sec2 µdµ ¡2 =! 20 sec2 µ Thus the total energy radiated is the initial energy of the oscillator, as expected. Now letzs look at a driven oscillator. This is a model for an atom encountering an incoming electromagnetic wave. m d2x d3 x = ¡m! 20 x + m¿ 3 ¡ eE 0 e¡i!t 2 dt dt We expect the response to be at the driving frequency: x = x 0 e¡i-t: Then: 3 ¡! 2 x + ! 20 x ¡ (¡i!) ¿ x = ¡ and thus, x (t) = e E0 m e 1 E0 2 e¡ i!t m (! ¡ ! 20 + i! 3 ¿ ) where as usual the real part is assumed. Thus a (t) = e ¡!2 E0 2 e¡i!t m (! ¡ !20 + i! 3 ¿ ) and and the time-averaged radiated power is: P = 1 2 e2 1 e2 4 e2 2 1 2 ja (t)j = ! E 2 3 c3 3 c3 m 2 0 (! 2 ¡ ! 2 )2 + (!3 ¿ )2 0 and the scattering cross section is: ¾ = P 8¼ e4 !4 = 2 cE 0 =8¼ 3 c4 m 2 (! 2 ¡ ! 20 )2 + (!3 ¿ )2 = ¾T !4 2 (! 2 ¡ ! 20 ) + (! 3 ¿ )2 (7) (a) For ! À !0 ; we have ¾ ¼ ¾ T : The electron scatters radiation as if it were free. (b)For ! ¿ ! 0 ; µ ¶4 ! ¾ = ¾T !0 7 and we have Rayleigh scattering. (c)For ! » ! 0 ; ¾ = = = ! 40 ¾T 2 ! 20 ) 2 !20 = ¾T 2 (! 2 ¡ + (! 30 ¿ ) ! 20 (1 ¡ !2 =! 20 ) + ¡2 ¾T ¼ 2 ¡ ¿ 2 ¼ !20 (1 ¡ !2 =! 20 )2 + ¡2 ¾T ¼ Á (!) ¿ 2 and we have an absorption line with the Lorentz pro¤le. In the plot below, we used ¡=!0 = 1=5 in equation (7). 25 20 15 y 10 5 0 0.5 1 1.5 x 2 2.5 3 In a log-log plot it looks like: .1e2 .1 x .5 5. .1e2 1. .1 .1e-1 y .1e-2 .1e-3 The total scattering cross section (frequency inegrated) for the line is: Z ¾T ¼ 1 ¾ = Á (!) d! = ¿ 2 0 ¾T = ¼ 2¿ 8 where we used our previous result for the integral over the line pro¤le . Thus ¾ 8¼ e4 1 ¼ e2 3 c4 m 2 2 23 mc 3 = = 2¼ 2 e2 ¼e2 = (2¼) mc mc which is independent of ! 0 . Thus we may write the result in terms of frequency º as: ¼e2 ¾ (º ) = f ' (º) mc where Z Z Z Á (!) d! = Á (º ) 2¼dº = ' (º ) d! ' (º ) = ' and 2 ¡ ¡=2¼ =4 2 2 ¼ ¡2 + ! 20 (1 ¡ ! 2 =!20 )2 ¡ + ! 0 (1 ¡ !=!0 ) 2 (1 + !=! 0 )2 ¡=2¼ ¡=2¼ 4 2 2 2 2 = 2 2 2 2 ¡ + (2¼) º 0 (1 ¡ º =º 0 ) (2) (2¼) (º ¡ º 0 ) + (¡=2) Z 1 Á (º) dº = 1 0 The fudge factor f is called the oscillator strength. It may be measured or calculated (for simple atoms) using quantum mechanics. It takes into account deviations from classical theory. Values of f are tabulated in reference works such as Allenzs Astrophysical Quantities. 9
© Copyright 2026 Paperzz