Perturbation theory for scattering in an almost uniform medium S.M.Lea Suppose we have a medium with average dielectic constant "0 and magnetic permeability ¹0 ; but with " 6= " 0 and ¹ 6= ¹0 in small regions. Note: We are in Gaussian units. "0 is NOT the SI " 0 ; but the unperturbed value of ": Maxwellzs equations for this system are: ~ ¢B ~ =0 r (1) (no free charge) and together with ~ ¢D ~ =0 r (2) ~ ~ £E ~ = ¡ 1 @B r c @t (3) ~ ~ £H ~ = 1 @D r c @t (4) ~ = "E ~ D (5) and ~ = ¹H ~ B (6) We want to separate out those regions which deviate from the uniform properties, so we write: ~ =D ~ ¡ "0 E ~ + "0 E ~ D Then à ! h ³ ´i ³ ´ ~ 1 @B ~ ~ ~ ~ ~ ~ ~ ~ r £ r £ D ¡ "0 E = r £ r £ D ¡ " 0 r £ ¡ c @t where we used equation (3). Thus: h ³ ´i ³ ´ ³ ´ ~ £ r ~ £ D ~ ¡ "0 E ~ ~ r ~ ¢D ~ ¡ r2 D ~ + "0 @ r ~ £B ~ r = r c @t ´ "0 @ ³ ~ 2~ ~ = ¡r D+ r£B c @t ~ : where we used equation (2). Now we do the same kind of thing with B ~ =B ~¡¹ H ~ +¹ H ~ B 0 0 1 so ~ £B ~ r = = ³ ´ ~ £ B ~ ¡¹ H ~ +¹ H ~ r 0 0 ³ ´ ~ ~ £ B ~ ¡¹ H ~ + ¹0 @ D r 0 c @t (equation 4) Thus: " # h ³ ´i ³ ´ ¹ @D ~ " @ 0 2 0 ~ £ r ~ £ D ~ ¡ "0 E ~ ~ + ~ £ B ~ ¡¹ H ~ + r = ¡r D r 0 c @t c @t and thus: h ³ ´i " @ ³ ´ ~ ¹0 "0 @ 2 D 0 ~ £ r ~ £ D ~ ¡ "0 E ~ ~ £ B ~¡¹ H ~ = ¡ r + r (7) 0 c2 @t2 c @t ~ and its average value This equation shows that the differences between the local value of D ~ ave = "0 E ~ ; and between the local value of B ~ and its average value B ~ ave = ¹0 H ~ act as D ~ sources for D: Now let all quantities have the oscillating form e¡i!t : The equation (7) becomes h ³ ´i ³ ´ ¡ 2 ¢ ~ = ¡r ~ £ r ~ £ D ~ ¡ "0E ~ ¡ i "0 ! r ~ £ B ~ ¡¹ H ~ r + k2 D 0 c where ¹ "0 !2 k2 = 02 ! 2 = 2 c v p and v = c= ¹0 "0 is the wave speed in the medium. We can use the Greenzs function for the ~ : wave equation to obtain an expression for D Z h ³ ´i ³ ´o exp (ik j~x ¡ ~x0 j) n ~ "0! ~ ~ =D ~ (0)+ 1 ~ £ D ~ ¡ "0 E ~ ~ ¡¹ H ~ D dV r £ r + i r £ B 0 4¼ j~x ¡ ~x0 j c (8) ~ appears on the right hand side as well. Of course this is not really a solution yet, because D Now we expect the solution to be a radiation ®eld of the form ~ ¡ r 2D ikr ~ =D ~ ( 0) + A ~ sc e D r where, from equation 8, the scattering amplitude is: Z n 0 h 0 ³ ´i ´o "0 ! ~ 0 ³ ~ ~ sc = 1 ~ £ r ~ £ D ~ ¡ "0 E ~ ~ A dV 0 exp (ik^ r ¢ ~x 0 ) r +i r £ B ¡ ¹0 H 4¼ c exp ( ik j ~ x¡~ x0 j) (We have made the usual approximations in evaluating ): Now we do the j~ x¡~ x0 j }integration by parts} trick. The integral is of the form: Z Z Z ³ ´ ³ ´ ³ ´ ~ £ r ~ £ ~y dV = ~ £ eik^r ¢~x r ~ £ ~y dV ¡ re ~ £ r ~ £ ~y dV exp (ik^r ¢ ~x) r r Z Z ³ ´ ³ ´ ~ £ ~y dS ¡ ik^r £ eik^r ¢~x r ~ £ ~y dV = n ^ £ eik^r¢~x r Z ³ ´ ~ £ ~y dV = 0 ¡ ik^r £ eik^r¢~x r 2 Then we can do it again to get: µ Z ¶ (ik)2 r^ £ r^£ eik^r¢~x ~y dV ~ is Thus the expression for A · ³ ³ ´´ r " ³ ´¸ 2 Z k 0 ik^ r¢~ x0 ~ ~ ~ ~ ~ Asc = dV e ¡^r£ ^ r £ D ¡ "0 E + ^r£ B ¡ ¹0 H 4¼ ¹0 Z · ³ ³ ´´ r " ³ ´¸ k2 0 0 ~ ¡ "0 E ~ ~¡¹ H ~ = dV eik^r¢~x ¡^r£ ^ r£ D + ^r£ B 0 4¼ ¹0 (Jackson and I differ by a sign here.) In this expression we can recognize the electric dipole moment (pg 4 of your multipole notes) Z ³ ´ 0 ~ ¡ "0 E ~ dV ~p = eik^r¢~x D and the magnetic dipole moment (pg 7) r Z ³ ´ "0 0 ~ ¡¹ H ~ dV m ~ =¡ eik^r¢~x B 0 ¹0 The differential cross section for scattering into polarization ^" is: ¯ ¯ ¯ ¤ ~ ¯2 " ^ ¢ A ¯ ¯ sc d¾ = ¯ ¯2 d¯ ~ ( 0) ¯ ¯D ¯ = k4 ¤ r £ ^"¤ ) ¢ m ~j ¯ ¯ j^" ¢ ~p + (^ ¯ ~ (0)¯ 2 ¯D ¯ Now to get an explicit solution we must approximate. We write ~ = "0 E ~ + ±"E ~ D ~ Then and similarly for B: ~ ¡ "0E ~ D = ~ = ±"E ±" ~ (0) D "0 ±" D0 ^ e0 eik^n0¢~x "0 where we can use the unperturbed ®eld on the right hand side since it is multiplied by the small quantity ±" "0 : Then the dipole moment is Z 0 ±" n 0¢~ x ~p = eik^r¢~x dV D0e^0 eik^ "0 = 3 Similarly r Z 0 ±¹ "0 ¡ eik^r¢~x dV B 0 ^ n0 £ ^ e0 ¹0 ¹0 Z 0 ±¹ = ¡ eik^r¢~x dV D0 ^ n 0 £ ^e0 ¹0 !p ~0 = i! B ~ ~ 0 = "0 ! B ~ since, from Faradayzs law, ik^ n0 £ E ^0 £ D c 0 ; and so c ¹0 "0 n c 0; q ¹0 B0 = D0: Then the scattering cross section is: "0 ¯ · ¸¯ 2 Z ¯ 1 ¯ d¾ ±" ±¹ = k4 ¯¯ dV 0 exp (i~q ¢ ~x 0 ) e0 ¢ ~ ^ "¤ ¡ (^r £ ^ "¤ ) ¢ (^ n0 £ ^ e0 ) ¯¯ (9) d4¼ "0 ¹0 where ~q = k (^ n 0 ¡ ^r) If the wavelength ¸ À the scale of the -uctuations ±" and ±¹; then ei~q¢~x ¼ 1; and we have dipole radiation. You will need equation (9) in problem 10.20. m ~ = 4
© Copyright 2026 Paperzz