More on thermal instability Let the cooling be due to (1) A line that radiates most at a tempertaure T 0: " µ ¶2 # T ¤ line = nLlin e » An exp ¡ ¡1 T0 (2) Bremmsstrahlung ¤B r = nLB r » Bn2 T 1=2 Thus " µ ¶2 # T L » A exp ¡ ¡1 + BnT 1=2 T0 At constant pressure n= So L» P kT ( " µ ) ¶2 # µ ¶ T P A exp ¡ ¡1 + BT 1=2 T0 kT This function ³ looks like ´ p 2 10 exp ¡ (x ¡ 1) + 1= x This graph shows P versus T at constant L: 1 There are three solutions at the same pressure and L; but only one is stable. Herezs another way to look at it. The red curve is greater L: In the central region, moving to higher temperature increases the cooling, so the temperature drops again. On the far right, lower temperature gets to a region of more cooling, and the temperature keeps dropping. On the far left, higher temp implies less cooling, and the temp keeps increasing. T 1 At constant entropy: P » ½° or T » ½°¡ 1 » ½2=3 so n » T 3=2 Thus " µ ¶2 # T L » A exp ¡ ¡1 + BT 5=2 T0 ³ ´ 2 10exp ¡ (x ¡ 1) + x5=2 2 3
© Copyright 2025 Paperzz