1 Synchrotron radiation 1.1 Qualitative discussion Consider a particle moving along a circular path. The radiation is beamed into a cone of opening angle » 1=°; as shown above. Thus an observer at P sees radiation while the particle is pointed within an angle » 1=° of P; and thus while the particle travels an arc of length s » °2 r; where r is the radius of the circle. The particle travels this distance in a time ¢t = 2r °v Radiation emitted at A at time t1 reaches P , distance d away, at time T 1 = dc + t1: Radiation emitted at B at time t2 = t1 + ¢t = t1 + 2r=°v reaches P at time 2r T 2 = dc ¡ °c + t1 + 2r : The length of the observed pulse is °v 2r ¢T = T 2 ¡ T 1 = ° Now °2 = 1 1¡¯ 2 and so ¯ 2 = 1 ¡ 1 = ¯ Thus: 2r ¢T = °c µ µ 1 °2 1¡ µ 1 1 ¡ v c ¶ and then: 1 °2 1 ¡1 ¯ ¶ ¡1=2 ¶ 2r = °c ' 1+ µ 1 2° 2 ¶ 1 r ¡1 = 3 ¯ ° c But for an extremely relativistic particle, ! 0 = v=r ' c=r; so ¢T = 1=°3 ! 0 : Now a pulse of width ¢T has Fourier components up to at least 1=¢T ; and so the observed frequencies extend to at least °3 ! 0 ; where !0 = eB=°mc = ! B =°: An exact calculation (See eg Jackson Ch 14) shows that the spectrum actually peaks around this high frequency º ¼ ° 2 º B : We can ¤nd a typical value for 1 ºB : ºB = eB 4:8 £ 10 ¡10 esu £ 1 £ 10¡ 6 G = B¹G 2¼mc 2¼ (511keV/c) Units: In this unit system 1G = 1 esu 2 (1 cm) and 1 esu 2 1 cm 1 erg = So ºB = 4:8 £ 10 ¡10 esu £ 1 £ 10 ¡6 G 3 £ 10 10 cm/s B¹G 2¼ (511 £ 1:6 £ 10 ¡9 erg) 4:8 £ 10 ¡10 esu £ 1 £ 10 ¡6 esu/cm2 3 £ 10 10 cm/s B¹G 2¼ (511 £ 1:6 £ 10 ¡9 erg) = 2:8 Hz B¹G = (1) This is a useful number to remember. For cyclotron radiation, the power radiated is µ ¶2 2 e2 2 2 e2 evB? P = a = 3 c3 3 c3 mc = 2 e4 v 2 2 B 3 m 2 c5 ? For relativistic particles, v ' c; we can obtain the correct result by writing the formula in covariant form. Since P » E=t and both E and t are 0¡components of 4-vectors, we may write 2 e2 # # P =¡ 3a¢ a 3c where µ ¶ # dv d° d # a= = ° c ; (°v) d¿ dt dt and d° d 1 ~a = p = ° 3 ~¯ ¢ dt dt 1 ¡ ~v ¢ ~v =c2 c Thus # # ¡a ¢ a # ¶2 d° 2 2 = ¡° ¡v ¡° a dt " # µ ¶2 ¡ ¢ a 2 2 2 2 3~ ~ 2 = ° ° a ¡c ° ¯¢ 1¡¯ c · ³ ´2 ¸ 4 2 2 ~ = ° a ¡ ° ¯ ¢ ~a 2 "µ d° c dt ¶2 2 2 µ For synchrotron radiation with ~a?~v ; # # ¡ a ¢ a = ° 4 a2 and thus P = = µ ¶2 2 e2 4 evB? ° 3 c3 °mc 4 2 e 2 ° 2 B? 3 m2 c3 If ~v makes an angle ® with the magnetic ¤eld, then B? = B sin ® and P = 2 e4 2 2 ° B sin 2 ® 3 m 2 c3 For an isotropic distribution of particle velocities Z ¢ 1 +1 ¡ 2 < sin 2 ® >= 1 ¡ ¹2 d¹ = 2 ¡1 3 Thus 4 8¼e4 2 B 2 4 ° = ¾ T c° 2 uB 2 3 9m c 8¼ 3 This should be compared with the result for Compton scattering (eqn 1 in those notes) 4 P = ¾ T c°2 u p h 3 Synchrotron radiation may be viewed as scattering of virtual photons associated with the magnetic ¤eld. P » 3 1.2 Spectrum of emitted radiation 1.3 For a power law distribution of electrons, we may compute the radiated spectrum as we did for compton scattering. We approximate by assuming that all the emission is at the peak frequency, and using a delta function. Z Z ¡ ¢ 1 1 4 jº = Pº (°) n (°) d° = ¾T c° 2uB ± º ¡ ° 2 ºB K° ¡pd° 4¼ 4¼ ´3 ³ p Z ± ° ¡ º=º B ¾T c = K uB ° 2 ° ¡p d° 3¼ 2°º B µr ¶¡p+1 ¾T c 1 º = K uB 3¼ 2º B ºB ¾ T c º (p¡3)=2 uB B º ¡(p¡1)=2 3¼ 2 µ ¶ 8¼e4 c B2 eB (p¡3)=2 ¡(p¡1)=2 = K º 3m2c3 6¼ 8¼ 2¼mc ³ e ´(p¡3)=2 e4 = K B (p+1)=2º ¡(p¡1)=2 2 2 18¼m c 2¼mc Thus the emiited spectrum is also a power law whose slope re¢ects the slope of the underlying electron spectrum. p¡1 jº / º¡® with ® = 2 The emission is also proportional to the electron density (through K ) and to the magnetic ¤eld strength = K jº / B (p+1)=2 = B ®+1 Astrophysical sources of synchrotron radiation 1.3.1 Supernova remnants Some supernova remnants have a shell structure- wezll talk about these more when we get to ¢uids and shock waves. But some look "¤lled" on the sky. These sources are called plerions. The prototypical source is the Crab Nebula. These sources typically exhibit power-law spectra in the radio with spectral index ® » 0:8: The pulsar (remnant of the exploded star) accelerates electrons to high energy, and these particles produce synchroton radiation. The crab radiates all the way out to gamma rays. 4 If all the particles are accelerated in the initrial explosion, then as the remnant expands the density of particles (and also the magnetic ¤eld) decreases. This leads to a dimming of the source. The resulting relation between synchrotron surface brightness and size was used to determine distances. However there are pitfalls because there are di¤erent phases in SNR evolution, as wezll see. An electron of energy °mc2 loses energy at a rate P and so has a lifetime ¡ ¢3 °mc2 °mc2 9 m 3 c5 9 mc2 ¿ = = 4 e4 = = 2 2 P 4° e4 B 2 4° ce 4B 2 9 m2c 3 ° B 19 (511 keV) 3 2 ° 4 (3 £ 10 10 cm/s) (4:8 £ 10¡ 10 esu)4 (10 ¡6 G)2 B¹G = So ¿ = 19 °4 ¢3 1:6 £ 10 ¡9 erg/keV ³ ´2 4 2 cm/s) (4:8 £ 10 ¡10 esu) 10 ¡6 esu/cm B2¹G 3 (511 keV) (3 £ 10 10 ¡ = 3 1 20 erg cm3 ¢ s 2 7:721 8 £ 10 °B¹G esu 6 = 1 7:7 £ 10 20 s 1 13 = y 2 2 2:5 £ 10 7 °B¹G ¼ £ 10 s/y °B¹G (2) The value of ° needed to produce a photon of energy E is given by °2 So ° = = = = eB E =º= 2¼mc h r r E 2¼mc E 2¼mc2 = h eB hc eB s v u Eke V u 2¼ (511 keV) (1 keV) ³ ´ t B¹G (1:24 keV ¢ nm) (4:8 £ 10¡10 esu) 10¡ 6 esu/cm2 s v Eke V u 2¼ (511) (1:6 £ 10¡ 9 erg) u ³ ´ t B¹G (1:24 £ 10 ¡7 cm) (4:8 £ 10¡ 10 esu) 10¡ 6 esu/cm2 s Eke V 2:9 £ 108 B¹G (3) Thus the lifetime of the particle in terms of the energy of the emitted photon is r 1 2: 5 £ 10 13 y B¹G ¿ = B2¹G 2:9 £ 108 Eke V = 8: 6 £ 104 y q 3 B¹G Ek eV 5 So if we observe °¡rays with energy 10 MeV, the lifetime is 8: 6 £ 104 y 1 ¿ » p q = 860 y q 104 B3¹G B3¹G Since the crab was formed in 1054, 950 years ago, we conclude that energetic particles must be continually supplied to the remnant. 1.3.2 Extragalactic radio sources These are most often associated with giant elliptical galaxies, and they are double-lobed. Each lobe is fed by a jet that runs from the central engine at the nucleus out to the lobe. The specturm is a power law with ® » 1: Letting E = °mc2 be the electron energy, the total luminosity is Z L = P (°) N (°) d° Z °m a x 4 = ¾ T c° 2 uB K °¡ p d° 3 °m i n ¸° 3¡ p 4 ° 3¡p m a x 4 ° 3¡ p ¡ ° min = ¾ T cuB K = ¾ T cuB K max (4) 3 3 ¡ p °m i n 3 3¡p We can obtain °max from the maximum frequency in the observed spectrum. Then (equation1) r r 2¼º m ax mc ºm a x °m ax = = eB 3 (Hz/¹G) B¹G Then since ® = (p ¡ 1) =2; p ¡ 1 = 2® and 3 ¡ p = 2 (1 ¡ ®) : L = = = µ ¶ (3¡p)=2 (3¡p)=2 4 B2 2¼mc º max ¡ º (3¡p)=2 min ¾T c K 3 8¼ eB 3¡ p µ ¶ 1¡® · 1¡® ¸ 1 2¼mc K 1+® º 1¡® max ¡ º min ¾T c B 3 e 2¼ 2 (1 ¡ ®) · 1¡® ³ ´ 1¡ ® ¸ 1 mc 1¡ ® K 1+ ® º max ¡ º min ¾T c ®B 3 e (2¼) 2 (1 ¡ ®) The total energy in electrons is: Ee = = = Z °mc2 N (°) d° ¯ 2¡p ¯° max 2 ° ¯ Kmc 2 ¡ p ¯° min Kmc2 6 2¡p °2¡p max ¡ ° min 2¡ p (5) We can replace the unobservable parameter K with the observable Luminosity L; (equation 5) and 2 ¡ p = 1 ¡ 2® 2¡ p Ee = mc2 = = p ° 2¡ max ¡ °min 2¡p L ° 3¡p ¡° 3¡p 4 ¾ cuB max3¡ p min 3 T 2¡ p 3 mc ° 2¡p max ¡ ° min L 3 ¡ p 8¼ 3¡ p 2 4 ¾ T ° 3¡p max ¡ ° min B 2 ¡ p 2¡p mc 1 ¡ (° min=°max ) L 2 (1 ¡ ®) 6¼ ¾ T ° max 1 ¡ (° min=°max )3¡p B 2 1 ¡ 2® The energy stored in the magnetic ¤eld in the source volume V is UB = B2 V 8¼ Thus the total energy is 1¡2® Ee + UB = 6¼ mc 1 ¡ (° min=°max ) L 2 (1 ¡ ®) B 2 + V 2(1¡ ®) ¾ T ° max 1 ¡ (° =° B2 1 ¡ 2® 8¼ ) min max Writing the result in terms of the observed frequencies, we have E e + U B = 6¼ r eB mc 1 ¡ (º min=º max )(1¡2®)=2 L 2 (1 ¡ ®) B 2 + V 2¼º m ax mc ¾ T 1 ¡ (º min=º max )(1¡®) B 2 1 ¡ 2® 8¼ The ¤rst term is (roughly) inversely proportional to B3=2 while the second is directly proportional to B2 : E tot = with A= 3 ¾T r A V + B2 B 3=2 8¼ (1¡ 2®)=2 2¼emc 1 ¡ (º min=º max ) 2 (1 ¡ ®) L º m ax 1 ¡ (º min=º max )(1¡ ®) 1 ¡ 2® (6) Thus we can minimize the energy required to produce the observed luminosity by adjusting B : dE to t 3 A BV =¡ + =0 )B = dB 2 B5=2 4¼ µ 6¼A V With this value we ¤nd UB = µ 6¼A V ¶ 4=7 4 V 6 7 V 3=7 4=7 = A 8¼ 8 ¼ 3=7 7 ¶2=7 (7) while Ee = A µ 6¼A V ¶ ¡3=7 3 = 67 V 3=7 4=7 4 A = UB ¼ 3=7 3 Thus the least possible total energy is required if the energy is almost equally divided between the electrons and the magnetic ¤eld. This condition is referred to as "equipartition". Then the total energy is E tot = = 7 V 3=7 4=7 A 4 (6¼)3=7 " r # 4=7 (1¡ 2®)=2 7 V 3=7L 4=7 3 2¼emc 1 ¡ (º min=º max ) 2 (1 ¡ ®) 4 (6¼)3=7 ¾ T º m ax 1 ¡ (º min=º max )(1¡ ®) 1 ¡ 2® Example: Cygnus A ® = 0:75; Flux = 1:3 £ 104 Jy @ 100 MHz. Angular size of each lobe is 38", distance is 220 Mpc. º min » 1 MHz and º max » 1500 MHz. Then µ ¶ 4 3 V =2 ¼r 3 with r = = Thus V = and L = = = = = Z º max º min µ F0 (µ 1 38 ¼ (220 Mpc) £ £ 2 60 £ 60 180 2:0 £ 10 ¡2 Mpc = 20 kpc ¢3 8 ¡ ¼ 20 £ 3 £ 10 21 cm = 1:8 £ 10 69 cm3 3 º º0 ¶¡ ® dº £ 4¼d2 ¶ 1¡® µ ¶ 1¡ ®) F0 º 0 º max º min ¡ £ 4¼d2 1¡ ® º0 º0 ¡ ¢¡ ¢( µ ¶ 0:25 ) 1:3 £ 104 Jy 100 £ 10 6 Hz 1 :25 15 ¡ £ 4¼ (220 Mpc)2 0:25 10 ³ ´¡ ¢ 2 1:3 £ 104 £ 10 ¡26 W/m ¢ Hz 100 £ 106 Hz ¡ ¢2 f1:4g £ 4¼ 220 £ 3 £ 1022 m 0:25 3:985 £ 10 37 W = 4 £ 1044 erg/s ' 10 11 L ¯ 8 Then Be q = = µ µ 6¼A V ¶ 2=7 6¼ 1:8 £ 1069 cm3 ¶ 2=7 " 3 ¾T r (1¡ 2®)=2 2¼emc 1 ¡ (º min=º max ) 2 (1 ¡ ®) L º m ax 1 ¡ (º min =º max )(1¡ ®) 1 ¡ 2® # 2=7 # 2=7 µ ¶ 2=7 " ¶ 1=7 ¡1=4 6¼ 3 1 ¡ (1=1500) 0:5 2¼emc 44 = 4 £ 10 erg/s 1:8 £ 1069 cm3 0:66 £ 10 ¡24 cm2 1 ¡ (1=1500)1=4 ¡0:5 º m ax µ ¶ µ ¶ 1=7 2=7 2¼ £ 4:8 £ 10 ¡10 esu 9 £ 10 ¡28 g 3 £ 10 10 cm/s erg/s = 3: 912 6 1500 £ 10 6 Hz cm5 µ ¶2=7 esu2 = 5 £ 10¡ 5 (esu ¢ g ¢ cm)1=7 cm6 ¢ s µ Check the units: µ ¶ 2=7 esu2 1=7 (esu ¢ g ¢ cm) cm6 ¢ s = = µ µ esu5 ¢ g ¢ cm cm 12 ¢ s 2 ¶ 1=7 esu5 ¢ esu2 =cm cm14 = ¶ 1=7 µ = esu5 ¢ erg/cm cm12 ¶ 1=7 esu =G cm2 Whew! Thus the equipartition ¤eld is about 50 ¹G. The minimum energy is then E tot = = = 7 7 Be2q UB = V 3 3 8¼ ¡ ¢2 ¢ 7 5 £ 10 ¡5 G ¡ 1:8 £ 10 69 cm3 3 8¼ 4: £ 10 59 erg and the ° we need to get a 1500 MHz photon is r r º ma x 1500 £ 106 °max = = = 3: £ 103 3 (Hz/¹G) B ¹G 3 £ 50 and the lifetime of this electron is (equation2): ¿ = 1 1 13 13 y= y 2 2:5 £ 10 2 2:5 £ 10 °B¹G 3000 (50) = 3: £ 10 6 y Thus sources like Cygnus A are either very short-lived (by astronomical standards) or the relativistic particles must be resupplied by reacceleration in situ or transport from a central engine. 9 The jets visible in this radio image may be the source of resupply, but, if so, it is an ine¢cient process. (We can see the jets, therefore they radiate away some of the transported energy.) When observations of B can be made, it appears that B is less than the equipartition value. This increases the energy requirements but also increases the source lifetime. 10
© Copyright 2026 Paperzz