Radiation damping, line pro®les and Rayleigh scattering S.M.Lea 1 Radiation damping. An accelerating particle radiates energy at the rate 2 e2 2 a 3 c3 The energy radiated must come from the electronzs kinetic energy, so P = dE d 1 mv 2 =P = mv 2 » dt dt 2 tloss And thus the time scale for the particle to lose an appreciable amount of energy is: µ ¶ 3 mc3 v 2 3 mc3 2 t0 tloss » » t0 = t0 2 2 2 2 e a 2 e ¿ where t0 = v=a is a characteristic time assocuated with the particlezs motion. (For circular motion or oscillatory motion, t0 is approximately the period.) In this expression the timescale ¡ ¢2 4:0 £ 10 ¡10 esu 2 e2 2 ¿ = = = 4 £ 10¡ 24 s (1) 3 mc3 3 (9 £ 10 ¡28 g) (3 £ 10 10 cm/s)3 where the numerical value is for an electron. Heavier particles have smaller values of ¿ : Thus the loss time is in general very long, and the radiation loss process is most important for systems with small values of t0: (This result is surprisng, perhaps.) To ®nd the force that acts on the electron to remove energy from it, look at the integrated energy loss: Z t2 4E = P (t)dt t1 t2 = Z t1 ~ rad ¢~ ¡F v dt = 1 Z t2 t1 2 e2 d v ¢~ ~ a dt 3 c3 dt Integrate by parts: = Z t2 t1 ¯ t2 Z t2 ¯ 2 e2 2 e2 d ~ ¯ ¡ ¡ Fra d ¢~ vdt = v ~ ¢ a ~ a ¢v ~ ~ dt ¯ 3 3 c3 t1 3 c dt t1 The integrated term is zero if the motion is periodic, and t2 ¡ t1 is a whole number of periods, or for circular motion where v ~ is perpendicular to ~ a : Then we have: ¶ Z t2 µ 2 2 e d ~ ra d ¡ F a ¢~ ~ v dt = 0 3 c3 dt t1 Thus it is reasonable to suppose that in a time-averaged sense we may write: 2 d ~ ra d = 2 e d ~ F a =m¿ ~ a 3 c3 dt dt (2) 2 Application to atomic systems Model an atom as a classical, damped oscillator with natural frequency ! 0 : including the radiation damping, the equation of motion for the system is: m d2 ~ x d3 2 = ¡m! x ~ +m¿ x ~ 0 dt2 dt3 Then, (3) We expect a solution of the form: x=~ ¹ x0 (t) cos (! 0 t) where the amplitude x ~0 (t) is a slowly decreasing function of time due to the damping. Then from equation 3, we then have: µ ¶ µ ¶ d3 d d2 ~ x d d3 2 x ~ = = ¡! x ~ +¿ x ~ 0 dt3 dt dt2 dt dt3 µ ¶ d¹ x ' ¡! 20 dt to zeroth order in the small quantity ! 0 ¿ : We only need zeroth order since this derivative is multiplied by another ¿ in equation 3. So thedifferential equation becomes: µ ¶ d2 ~ x d¹ x 2 2 = ¡!0 x ~¡¿ ! 0 2 dt dt Now look for a solution of the form: x ¹=~ x0 e®t We ®nd ®2 + !20 + ¿ ®! 20 = 0 which has the solutions: ®= where ¡! 20 ¿ § q 2 (! 20 ¿ ) ¡ 4! 20 2 = §i! 0 p 1 ¡ ¡2 =4 ¡ ¡ 2 ¡ = ! 20 ¿ (4) Thus the solution is a damped oscillation at a 2frequency very close to the natural oscillation frequency. The solution that satis®es the initial condition ~ x=x ~0 ¡¡t=2 x (t) = ~ ~ x0 e at t = 0 is: cos !0 t and its Fourier transform is: Z 1 1 x (!) = p ~ x0 e¡ ¡t=2 cos ! 0 te i!t dt ~ 2¼ 0 µ ¶¯ 1 1 exp (¡¡t=2 + i! 0 t + i!t) exp (¡¡t=2 ¡ i! 0 t + i!t) ¯¯ = p ~ x0 ¡ ¯ ¡¡=2 + i (! 0 + !) ¡¡=2 + i (¡!0 + !) 2 2¼ 0 µ ¶¯ ¯ 1 1 1 ¯ = p ~ x0 ¡ + ¡¡=2 + i (! 0 + !) ¡¡=2 + i (¡! 0 + !) ¯ 2 2¼ This function is strongly peaked around the two values of ! = §! 0 : Now the energy radiated by the system per unit frequency is: ¯2 dE 2 e2 2 e2 ¯¯ 2 2 ¯ = j~ a (!)j = ! x ~ (!) d! 3 c3 3 c3 2 e2 x 20 !4 = 3 c3 8¼ (¡=2) 2 + (! ¡ ! 0 )2 for frequencies near ! 0 : There is an equal contribution for frequncies near ¡!0 ; which corresponds to the same real frequency. Thus, including both contributions, and using equation 1 we get: dE x2 !20 = 0 m¿ !20 2 d! 4¼ (¡=2) + (! ¡ ! 0 )2 where we set ! ' ! 0 except where they are subtracted. Simplifying, and using equation 4: dE x 20 ¡=2 = m!20 2 2 d! 2¼ (¡=2) + (! ¡ ! 0 ) 1 = m!20 x 20 Á (!) 2 where 12 m! 20 x 20 is the oscillatorzs energy at t = 0 and Á (!) is the Lorentz line pro®le function that describes how energy is distributed in frequency. Note that: Z 1 Z 1 1 ¡=2 Á (!) d! = d! ¼ 0 (¡=2) 2 + (! ¡ ! 0 )2 0 Z 1 ¼=2 sec2 µ = dµ ¼ µmin 1 + tan2 µ where we used the substitution ! ¡ ! 0 = (¡=2)tanµ; µmin = tan since ¡ ¿ ! 0 : Thus: Z 0 as required. 1 ¡1 Á (!) d! = and the lower limit is (¡2! 0 =¡) ' ¡¼=2 1 ³ ¼ ³ ¼ ´´ ¡ ¡ =1 ¼ 2 2 3 3 Scattering by atoms If the oscillator is now driven by an externally applied force due to an incoming EM wave, The equation of motion becomes: m d2 ~ x d3 2 ~ = ¡m! x ~ +m¿ x¡e E ~ 0 dt2 dt3 or d2 ~ x d3 2 ~ 0 cos !t = ¡ e Re E ~ 0 ei!t + ! x ~ ¡ ¿ x = ¡e E ~ 0 2 3 dt dt m ¡ ¢ The expected solution is an oscillation at the same frequency !: So letting ~ x = Re ~ x0 ei!t we ®nd: ¡ 2 ¢ e~ ¡! + ! 20 + i¿ ! 3 ~ x0 = ¡ E 0 m or 1 ~0 e x ~0 = ¡ E m (¡! 2 + ! 20 + i¿ ! 3 ) and the radiated power at frequency ! is: P (!) = 2 e2 2 2 e2 2 e2 !4 ´ cos 2 (!t + Á) a = E0 2 ³ 3 3 3c 3c m (! 2 ¡ !2 ) 2 + (¿ ! 3 )2 0 where the phase shift Á is given by: tan Á = Now we take the time average to get: < P (!) >= ¿ !3 ! 2 ¡ !20 1 e4 !4 2 ³ ´ E 0 2 2 3 m 2 c3 (! 2 ¡ ! 2 ) + (¿ ! 3 ) 0 and the scattering cross section is: ¾ (!) = = < P (!) > 8¼ e4 !4 ³ ´ = 2 2 4 cE 0 =8¼ 3 m c (!2 ¡ !2 )2 + (¿ ! 3 )2 0 ¾T ³ !4 2 2 (! 2 ¡ ! 20 ) + (¿ !3 ) Now letzs look at some limits: For ! À !0 ´ ¾ (!) = ¾ T At high frequencies the electron }looks like} a free electron, and the cross section is the Thomson scattering cross section For ! ¿ !0 !4 ¾ (!) = ¾ T 4 !0 which is Rayleigh scattering. 4 (5) Finally, near the resonance, ! ¼ ! 0 ; we have: !4 ¾ (!) = ¾T ³ (! ¡ ! 0 ) (! + ! 0 ) + (¿ !3 ) ' ¾T ³ (! ¡ ! 0 )2 (2! 0 )2 + (¿ ! 30 ) = = = = ¾T ³ 2 2 !40 2 ! 20 2 2 (! ¡ ! 0 ) 4 + (¿ ! 20 ) ´ 2 ´ ´ ¾T ! 20 ¿ =2 ³ ´ 2¿ (! ¡ ! 0 )2 + (¡=2)2 8¼ e4 3mc3 ¡=2 ³ ´ 2 4 2 2 2 3 m c 4e (! ¡ ! 0 ) + (¡=2) 2¼ e2 ¡=2 ³ ´ mc (! ¡ ! 0 )2 + (¡=2)2 And we regain the Lorentz line pro®le. Using our previous result for the inetgral, we get: µ 2¶ Z ¼e ¾ (!) d! = 2¼ mc or, equivalently: Z ¼e2 ¾ (º ) dº = mc The classical calculation should be modi®ed to allow for quantum mechanical effects by including the oscilltor strength f : Then ¾ (º) = f ¼e2 Á (º) mc 5 Lorentz pro®le with ¡ = 0:1 :1=2 1 ¼ (:1=2)2 +(!¡5)2 6 5 4 3 2 1 0 4 4.2 4.4 4.6 4.8 5 6 5.2 5.4 5.6 5.8 6
© Copyright 2026 Paperzz