Scattering S.M.Lea 1 Polarization ~ in terms of two orthogonal polarization vectors e^1 and Letzs describe the electric ®eld E ^e2 : Then: ~ =E ~ ¢ ^e1 + E ~ ¢ ^e2 E and ¯ ¯2 ³ ´2 ³ ´2 ¯ ~¯ ~ ¢ e^1 + E ~ ¢ ^e2 ¯ E¯ = E ¯ ¯2 ¯~ ¯ Thus the power radiated, which is proportional to ¯E ¯ ; is the sum of the powers radiated into the two orthogonal polarizations. ~ / ^n £ (^ Now in the non-relativistic case, or with ~a parallel to ~¯; E n£~ a) and so ~ E ¢ ^e1 / (^ n £ (^ n £ ~a)) ¢ e^1 = = (^ n (^ n ¢ ~a) ¡ ~a) ¢ e^1 (^ n ¢ ~a) n ^ ¢ e^1 ¡ ~a ¢ e^1 But since n ^ is perpendicular to ^e1 ; then ~ ¢ ^e1 / ~a ¢ e^1 E Generally this is the easiest way to compute the power. 2 Thomson scattering Let the incident wave be described by: ³ h i´ ~ (~x ; t) = ^"0 E0 exp i ~k ¢ ~x ¡!t E where ^"0 is a vector describing the polarization. The electric ®eld is incident on an electron and gives it an acceleration: ³ h i´ ¡e ~a = ^"0 E 0 exp i ~k ¢ ~x¡!t m 1 and then the power radiated into polarization i is: dP i d- = = and the time average is e2 2 j~a ¢ ^e1 j 4¼c3 ´2 ³ ³ h i´ ´2 e2 ³ e ~k ¢ ~x ¡ !t ¢ e^¤1 E " ^ exp i 0 0 4¼c3 m dP i e4 E 20 >= (^"0 ¢ ^e¤i )2 d4¼m 2 c3 2 Note: by using the complex conjugate of the polarization vector to compute the absolute value, we can include circular polarizations in our results. The differential scattering cross section is de®ned as: d¾ energy radiated/unit time/unit solid angle ´ dincident -ux and thus < d¾ i d- = = = 2 e4 2 "0 ¢ ^e¤i ) 8¼ m2 c3 E 0 (^ cE 20 =8¼ e4 (^"0 ¢ ^e¤i )2 2 4 m c r20 (^"0 ¢ ^ e¤i )2 where r0 = e2 mc2 is the classical electron radius. Letzs assume the incident wave is incident along the z¡axis and is linearly polarized along the x^ ¡axis: ^" 0 = x^ : An outgoing wave scattered at angle µ may be described in terms of the polarization vectors e1 = cos µ (^ ^ x cos Á + y ^ sin Á) ¡ ^z sin µ and as shown in the diagram: e2 = ¡^ ^ x sin Á + ^ y cos Á 2 (1) Then "0 ¢ ^e1 = cos µ cos Á ^ and "0 ¢ ^e2 = ¡ sin Á ^ Thus: d¾ d- d¾ 1 d¾ 2 + d-¡ d¢ = r02 cos2 µ cos 2 Á + sin2 Á = For the perpendicular incident polarization ^ "0 = ^ y; we have: ¡ ¢ d¾ = r20 cos2 µ sin 2 Á + cos 2 Á dand thus the differential scattering cross section for unpolarized incident radiation is: ¢ d¾ r2 ¡ = 0 1 + cos 2 µ d2 and thus the total scattering cross section is: µ ¶¯ +1 Z Z ¢ d¾ r2 +1 ¡ ¹3 ¯¯ ¾ = d- = 2¼ 0 1 + ¹2 d¹ = ¼r02 ¹ + d2 ¡1 3 ¯ ¡1 8¼ 2 = r = 0:665 £ 10 ¡24 cm2 3 0 3 This result is valid for hº ¿ mc2 = 511 keV, and an electron at rest or moving with v ¿ c: 3 Compton scattering For high-energy photons it is important to include the photon momentum and regard the scattering process as a particle collision. Then we have: Energy conservation: mc2 + hº = °mc2 + hº 0 (2) and momentum conservation: x¡component hº hº 0 = °mv cos Á + cos µ c c and y¡component (3) hº 0 0 = °mv sin Á ¡ sin µ (4) c Now square equations (3) and (4) and add: µ 0 ¶2 µ 0 ¶2 hº hº hº 2 2 2 (°mv cos Á) + (°mv sin Á) = (°mv) = sin µ + cos µ ¡ c c c µ 0 ¶2 µ ¶2 2 0 hº hº 2h ºº = + ¡ cos µ c c c2 But 1 ¯ 2 = 1 ¡ 2 ) ° 2 ¯ 2 = °2 ¡ 1 ° So µ ¶ µ 0 ¶2 ¡ 2 ¢ mc2 2 º º0 ° ¡1 =1+ ¡ 2 cos µ (5) hº º º Then squaring equation (2) gives: µ 2 ¶2 µ ¶2 µ 0 ¶2 mc º0 º º0 2 (° ¡ 1) = 1¡ = 1+ ¡2 (6) hº º º º Subtracting equations (6) and (5), we get: µ 2 ¶2 mc º0 2 (° ¡ 1) = 2 (1 ¡ cos µ) hº º Then using equation (2) again gives: µ 2 ¶2 µ ¶ º0 mc hº º0 (1 ¡ cos µ) = 1 ¡ º hº mc2 º µ ¶ 0 2 2 º mc mc 1 ¡ cos µ + = º hº hº 4 and so º 0 = º = µ mc2 hº hº 1 + mc 2 ¶ 1 1 ¡ cos µ + º (1 ¡ cos µ) ¡ mc2 ¢ hº The differential cross section is modi®ed by the frequency shift: ¯ µ 0 ¶2 d¾ ¯¯ º 2 ¤ 2 = r (^ " ¢ e ^ ) 0 0 i d- ¯ QM º 5
© Copyright 2026 Paperzz