Bremmstrahlung Spring 2004 An electron approaches a nucleus of charge Z: As a result of the encounter, the electron is accelerated and moves o¤ in a di¤erent direction. In the absence of radiation, the electron would emerge from the encounter at the same speed that it entered. But the radiated photon decreases the electronzs KE. We start by looking at encounters in which the electronzs direction of motion changes very little. The electric force produces an impulse Z I = e E?dt perpendicular to the electronzs path. In this approximation the impulse along the path is zero. The electric ¤eld component we need is Ze Zeb E? = 2 cos µ = ¡ ¢3=2 r b2 + (vt)2 Thus 2 I = Ze b Z +1 ¡1 ¡ 1 1 b2 + (vt)2 ¢3=2 dt Let vt = b tan µ: Then 2 I = Ze b Z ¼=2 (b=v) sec2 µdµ b3 sec3 µ ¡¼=2 Ze2 2 bv Thus the electronzs momentum changes by an amount = ¢p = I The length of the encounter is approximately 2b=v; since the electric ¤eld decreases rapidly once vt ¸ b: (This approximation gets better if the electron moves relativistically.) Thus ¢p Ze2 v Ze2 ' 2 = 2 ¢t bv 2b b and the average acceleration is a= 1 ¢p Ze2 = m ¢t mb2 and it occurs over the interval ¡¢t=2 < t < ¢t=2: Thus the Fourier transform is ¯+b=v Z +b=v 1 Ze2 i!t 1 Ze2 ei!t ¯¯ 1 2Ze2 sin !b v p p a (!) = p e dt = = 2¼ ¡b=v mb2 2¼ mb2 i! ¯¡b=v 2¼ mb2 ! Thus, from the Larmor formula, the radiation spectrum is: à !2 ¯ dP ¯¯ 2 e2 2 e2 1 2Ze2 sin !b 2 v = a (!) = 3 p d! ¯one electron 3 c3 3c 2¼ mb2 ! At low frequencies, ! ¿ b=v; the spectrum is ¢at: ¯ µ ¶2 dP ¯¯ 2 e2 1 2Ze2 4 Z 2e6 ' p = d! ¯ one electron 3 c3 3¼ m2b2v2 c3 2¼ mbv At higher frequencies, ! À v=b; the emission oscillates wildly and is close to zero. Converting to frequency º; where ! = 2¼º; dP 8 Z2 e6 2¼v = for º < 2 2 2 3 dº 3m b v c b 2 Now we sum up over all the electrons. The total number of electrons passing the ion between distances b and b + db per second is nv2¼bdb and thus Z Z 1 8 Z 2 e6 4 Z 2e 6 4 Z 2e6 jº = nv2¼bdb = ndb = n ln b 4¼ 3 m 2b 2v 2c 3 3 m2bvc3 3 m2vc3 The factor 1=4¼ appears because jº is the emission per steradian. Now we need to ponder the limits of the integral. The logarithm diverges at b = 0 and at b = 1; so there must be maximum and minimum values of b. We already found bmax above: it is approximately 2¼v=º: Quantum mechanical considerations determine bmin : 4 Z 2e6 bmax jº = n ln 2 3 3 m vc bmin Now this result still assumes only one ion interacting with all the electrons. Of course, there are many ions. So accounting for interactions with all the ions, we have: 4 Z 2e 6 bmax jº = n en i ln 2 3 3 m vc bmin The last step is to integrate over the electron speed distribution- a Maxwellian in a thermal plasma. The lower limit is not zero, because the electron cannot radiate more than its own energy. Thus 1 2 mv = hº 2 min Then: jº = = = = µ ¶ Z 4 Z 2e6 bmax 1 1 ³ m ´3=2 mv 2 n n ln exp ¡ 4¼v2 dv 3 m2c3 e i bmin p 2hº=m v 2¼kT 2kT Z µ 2¶ 16¼ Z 2e 6 ³ m ´3=2 bmax kT 1 v2 mv ¡ 12 m kT ne ni ln e d p 2 3 3 m c 2¼kT bmin m 2kT 2hº =m ¯ 16¼ Z2 e6 ³ m ´1=2 bmax v2 ¯ 1 ¡ 12 m kT n n ln ¡e ¯p e i bmin 2hº=m 3 (2¼)3=2 m2c3 kT ³ ´ 8 Z 2e6 m 1=2 bmax ¡ hº p n en i ln e kT 2 bmin 3 2¼ m c kT This result is an approximation. Compare the exact result hº 16 ³ ¼ ´1=2 Z 2e 6 ³ m ´1=2 jº = ne ni e¡ kT g 2 3 6 m c kT 3 where g is the Gaunt factor. We have captured the correct dependence on all the physical parameters. The ratio of the two expressions is r approx 8 3 6 = p = 0:28 exact 3 2¼ 16 ¼ It is also useful to look at the total energy radiated, as this leads to cooling of the plasma. The electrons radiate, but collisions reestablish equilibrium Z Z 1 16 ³ ¼ ´1=2 Z 2e6 ³ m ´1=2 hº P = 4¼ jº dº = 4¼ n e ni e¡ kT gdº 2 3 6 m c kT 0 ³ ´ ³ ´ 2 6 1=2 1=2 16 ¼ Z e m kT = 4¼ ne ni g 2 3 6 m c pkT h ³ ´ 2 6 1=2 16 ¼ Z e kT = 4¼ n en ig 3=2 3 6 m c h The important features to notice are that P _ n 2T 1=2: Putting in numbers, we get nn jº = 5:4 £ 10¡39Z 2 e1=2i e¡hº=kT gf f erg ¢ cm¡3 ¢ s¡1 ¢ Hz¡1 ¢ ster ¡1 T Averaging over cosmic abundances, we ¤nd n2e ¡hº=kT j º = 6:2 £ 10 e gf f erg ¢ cm¡3 ¢ s¡1 ¢ Hz¡1 ¢ ster¡1 1=2 T And integrating over frequencies gives ¡39 P = 1:4 £ 10¡27 Z2 ne ni T 1=2 erg ¢ cm¡3 ¢ s¡1 Astrophysical sites where Bremmstrahlung is an important emission mechanism include HII regions (T » few £103 K, so kT =h » 1:4£10¡16 erg/K£few£103 K= 6:6 £10¡27 erg¢s = 6£ 1013 Hz, so the emission is in the IR and the radio) and clusters of galaxies (T »few£107 ¡ 108 K, emission in the x-ray.) . The cooling time is (ne + ni ) kT 3 £ (1:4 £ 10¡16 erg/K) T (K) = P 1:4 £ 10¡27 Z2 ne T 1=2 erg ¢ cm¡3 ¢ s¡1 T 1=2 T 1=2 = 3:0 £ 1011 s = 104 s n n If T = 108 K and n = 10¡2 cm¡3; as in clusters; then ¿ = 1010 yr, the age of the universe. ¿ = 3 2 4
© Copyright 2025 Paperzz