Greenzs function for the wave equation Non-relativistic case 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials in Lorentz Gauge and Gaussian units are: 2 ~ ~ 1 @ A = ¡ 4¼ ~j r 2A¡ (1) 2 c @t2 c and 1 @2 © r2 ©¡ 2 = ¡4¼½ (2) c @t2 The Gauge condition is: ~ ¢A ~ + 1 @© = 0 r (3) c @t 2 The Greenzs function For both potentials we have a wave equation of the form 1 @2© = ¡4¼ (source) c2 @t2 ~ The corresponding where © can be either the scalar potential or a cartesian component of A: Greenzs function problem is: r2 ©¡ 1 @2G = ¡4¼± (~x ¡ ~x 0) ± (t ¡ t0 ) c2 @t2 where the source is now a unit event located at ~x = ~x0 and happening at t = t0 : To solve this equation we ®rst Fourier transform in time: Z 1 1 G (~x ; t; ~x 0 ; t0 ) = p G (~x ; !; ~x 0 ; t0 ) e ¡i!td! 2¼ ¡ 1 and the equation becomes µ ¶ Z 1 !2 1 r2 + 2 G (~x; !; ~x0 ; t0 ) = ¡4¼ p ± (~x ¡ ~x0 ) ± (t ¡ t0 ) ei!t dt c 2¼ ¡1 p 0 = ¡2 2¼± (~x ¡ ~x 0) ei!t r2 G (~x; t; ~x 0; t0 ) ¡ 1 0 p So let G (~x ; !; ~x0 ; t0) = g (~x ; ~x 0) ei!t = 2¼ and then g satis®es the equation ¡ 2 ¢ r + k2 g = ¡4¼± (~x ¡ ~x0 ) Now in free space without boundaries, g must be a function only of R = j~x ¡ ~x 0 j and must posess spherical symmetry about the source point. Thus in spherical coordinates, we can write: ³ ´ 1 d2 2 ~ (Rg) + k g = ¡4¼± R (4) R dR2 ~ For R 6= 0; the right hand side is zero. Then the function Rg satis®es the exponential equation, and the solution is: AeikR + Be ¡ikR ¢ 1 ¡ ikR g = Ae + Be¡ ikR (5) R Near the origin, where the delta-function contributes, the second term on the LHS is negligible compared with the ®rst, and the eequation becomes: Rg = r2 g = ¡4¼± (~x ¡ ~x 0) and we know that this has solution g= This is consistent with equation 5 provided that 1 R A+B=1 (You should convince yourself that this solution is correct by differentiating and stuf®ng back into equation 4.) Thus we have the solution ¢ 1 ¡ ikR 0 G (~x ; !; ~x 0; t0 ) = p Ae + Be¡ikR ei!t 2¼R Now we do the inverse transform: Z 1 ¢ 0 1 1 ¡ ikR G (~x; t; ~x0 ; t0) = p p Ae + Be¡ikR ei!t e¡ i!t d! 2¼ ¡1 2¼R Z 1 1 = A exp (i! (R=c + t0 ¡ t)) + B exp (i! (¡R=c + t0 ¡ t)) d! 2¼ ¡1 = A± (t0 ¡ (t ¡ R=c)) + B± (t0 ¡ (t + R=c)) (6) The second term is usually rejected because it predicts a response to an event occurring in the future. However, Feynman and Wheeler have proposed a theory in which both terms are kept. They show that this theory can be consistent with observed causality provided that the universe is perfectly absorbing in the in®nite future. The time t ¡ R=c that appears in the ®rst term is called the retarded time tret. The symmetry of this Greenzs function is: G (~x; t; ~x 0; t0 ) = G (~x 0 ; ¡t0 ; ~x ; ¡t) (See Morse and Feshbach Ch 7 pg 834-835). Causality requires: G (~x; ¡1; ~x0 ; t0 ) = 0 2 and G (~x; t; ~x0 ; t0 ) = 0 for t < t0 3 The potentials Now that we have the Greenzs function, we can solve our original equations. Z ½ (~x0 ; t0 ) © (~x ; t) = ± (t0 ¡ tret ) dt0 d3 x0 (7) R Z ½ (~x0 ; tret ) 3 0 = d x (8) R in Lorentz Gauge, and similarly: Z ~ 0 j (~x ; tret ) 3 0 ~ (~x ; t) = 1 A d x (9) c R Notice that these equations have the same form as the static potentials (equations 1.17 and 5.32 in Jackson). 4 Radiation from a moving point charge (non-relativistic case) 4.1 The Lienard-Wiechert potentials Our source is a point charge moving with velocity ~v (t) : Then the charge and current densities are ½ (~x ; t) = q± (~x ¡ ~r (t)) and ~j (~x;t) = q~v ± (~x ¡ ~r (t)) Then from equation 7, we have: Z q± (~x0 ¡ ~r (t0)) © (~x ; t) = ± (t0 ¡ tret ) dt0 d3 x0 R We do the integral over the spatial coordinates ®rst. Z ± (t0 + R (t0 ) =c ¡ t) 0 © (~x ; t) = q dt R (t0 ) where R (t0 ) = j~x ¡ ~r (t0)j : Now to do the t0 integral, we must reexpress the delta-function. Recall: X 1 ± (f (x)) = ± (x ¡ xi ) 0 jf (xi )j 3 where f (xi ) = 0: In this case: f (t0) = t0 + R (t0 ) ¡t c and, since ~v = d~r=dt; 1 dR 1 (~x ¡ ~r (t0 )) d =1¡ ¢ (~x ¡ ~r (t0 )) 0 c dt c j~x ¡ ~r (t0 )j dt0 ~ ~v ¢ (~x ¡ ~r (t0 )) ~v ¢ R 1¡ = 1¡ 0 c j~x ¡ ~r (t )j cR f 0 (t0 ) = 1+ = The function f is zero when t0 = tret = t ¡ R=c: Thus, evaluating the integral, we get: ¯ ¯ ¯ q ´ ¯¯ © (~x; t) = ³ (10) ~ R 1 ¡ ~v¢cRR ¯ tret And similarly ¯ ¯ ¯ ~ ³ ´¯ A (~x; t) = ~ ¯ v ¢R ~ R 1 ¡ cR ¯ q~v (11) tret These are the Lienhard-Wiechert potentials. It is convenient to use the shorthand à ! ~ ~ ~v ¢ R ~v ¢ R rv = R 1 ¡ =R¡ cR c 4.2 (12) Calculating the ®elds In Lorentz Gauge, the ®elds are found using ~ ~ = ¡ r© ~ ¡ 1 @A E c @t and ~ =r ~ £A ~ B But our expressions for the potentials are in terms of ~x and tret ; not ~x and t; so we have to be very careful in taking the partial derivatives. We can put the origin at the instantaneous position of the charge to simplify things. Then R = r: Our potential may be written: © (~x ;t) ´ ª (~x ;tret ) Then ¯ ~ ¯¯ d© = r© const t ¢ d~x + ¯ @© @ª ~ ¯¯ dt ´ rª ¢ d~x + dtre t @t const t ret @tret But dtret = dt ¡ dr=c; so ¯ ¯ @© @ª dr @ª ~ ¯¯ ~ ¯¯ r© ¢ d~x + dt ´ rª ¢ d~x ¡ + dt const t @t const tret @tret c @tret 4 ~ must be modi®ed: Thus the r¡component of r© ¯ ¯ @© ¯¯ @ª ¯¯ 1 @ª = ¡ @r ¯ const t @r ¯ const tret c @tret (13) Now we can calculate the ®elds: ~ =r ~ q = ¡ q rr ~ v r© rv r2v and µ ¶ µ ¶ µ ¶ ^ ^ @ ~r ¢ ~v µ @ ~r ¢ ~v Á @ ~r ¢ ~v ~ rrv = r¡ ^r + r¡ + r¡ @r c r @µ c r sin µ @Á c We can choose our axes with polar axis along the instantaneous direction of ~v : Then ~r ¢ ~v = rv cos µ; and ³ ´ ´ ^³ ~ v = 1 ¡ v cos µ r^ + µ r v sin µ rr c r c In the non-relativistic limit, v=c ¿ 1; to zeroth order in v=c; this is ~ v = r^ rr We are also going to need @rv ~r ¢ ~a =¡ @t c Then we have ¯ ~ ¯¯ ¡ r© ~ 1 @© 1 @A r^ ¡ c @t c @t const tret µ ¶ q q ~r ¢ ~a q @ ~v r¡ 2 ¡ ^ ^r ¡ rv2 r c c @t rv µ v ¶ µ ¶ q ~r ¢ ~a q ~a q~v ~r ¢ ~a = r 1+ ^ ¡ + 2 r¡ rv2 c c rv crv c and again taking the non-relativistic limit, this becomes: µ ¶ ~ = q r^ 1 + ~r ¢ ~a ¡ q ~a E r2 c cr The ®rst term is the usual Coulomb ®eld. The other two terms depend on ~a : these are the radiation ®eld. ~ rad = q [(^ E r ¢ ~a) r^ ¡ ~a] rc q = (^ r £ (^ r £ ~a)) (14) rc ~ E = + 5 4.3 Radiated power The Poynting vector is ~ S = = = = = c ~ ~ rad E rad £ B 4¼ ³ ´ c ~ ~ rad E rad £ n ^£E 4¼ c 2 E ^n 4¼ rad à " #!2 c q d~¯ n ^ £ ^n £ n ^ 4¼ cR dt ¯ " #¯ 2 q 2 ¯¯ d~¯ ¯¯ ^£ n ^£ ^ ¯n ¯ n 4¼R2 c ¯ dt ¯ Thus the power radiated per unit solid angle is: dP = R2 S~ ¢ n ^ d¯ à ! ¯2 q2 ¯¯ d~¯ ¯¯ = ¯ ^n£ ^n £ ¯ 4¼c ¯ dt ¯ q2 2 2 a sin µ (15) 4¼c3 Thus is the Larmor formula, where a = dv=dt is the acceleration and µ is the angle between ~a and ^n: The total power radiated in the non-relativistic case is: Z Z +1 Z 2¼ ¢ dP q2 2 ¡ P = d- = d¹ dÁ a 1 ¡ ¹2 3 d4¼c ¡1 0 µ ¶¯ 2 3 ¯ +1 q 2 ¹ ¯ 2q2 = a ¹¡ = 3 a2 (16) 3 ¯ 2c 3 3c ¡1 6
© Copyright 2026 Paperzz