Stellar atmospheres 1 The Eddington approximation and the two-stream model A stellar atmosphere is a thin region with total depth much less than the stellar radius. Thus we usually model it as a -at slab. The opical depth is measured vertically downward from the surface. Letzs start by looking at a |grey} atmosphere in which ® has no frequency dependence. Then we can drop the subscript º : For a ray travelling at angle µ to the normal, dI = ¡®I + j ds where ds = ¡dz= cos µ and d¿ = ®dz: Thus dI cos µ = I ¡S d¿ We now de®ne the moments: Z 1 mean intensity: J = Id4¼ Z 1 Flux: H = I¹d4¼ Z 1 radiation pressure K = I¹2 d4¼ Now we take moments of the radiative transfer equation. First, integrate the equation over solid angle to obtain: dH = J ¡S d¿ Next multiply by ¹ before integrating, to get dK =H d¿ Now in an atmosphere we do not expect any energy generation, and thus H =constant ( and J = S): . Thus from the last equation, K = H¿ + constant 1 (1) To make further progress, we need to assume something about the angular distribution of radiation. The simplest model is the two-stream approximation, in which ½ I1 if 0 < µ < ¼=2 (outgoing radiation) I = I2 if ¼=2 < µ < ¼ (incoming radiation) Then the moments are J H K = 1 2 = 1 2 = 1 2 ½Z ½Z ½Z 1 I1 d¹ + 0 1 Z 0 I2 d¹ ¡1 I1 ¹d¹ + 0 1 2 Z I1 ¹ d¹ + 0 0 = I2 ¹d¹ ¡1 0 Z ¾ 2 ¾ I2 ¹ d¹ ¡1 1 (I1 + I2 ) 2 = ¾ 1 (I1 ¡ I2 ) 4 = 1 J 3 The third relation is not unexpected! This is the Eddington approximation. At the surface, we have I2 = 0 at ¿ = 0 Thus, at ¿ = 0; J = 2H = 3K: Thus the constant in equation (1) equals 2H=3: Thus K = H (¿ + 2=3) and J = H (3¿ + 2) With J = ¾T 4 , this becomes a relation for temperature versus depth: µ ¶ T e4 3 4 T = 1+ ¿ 2 2 (2) where the effective temperature T e is de®ned to be the temperature of a surface emitting an amount of radiation equal to that from the star. The effective temperature equals the actual temperature at an optical depth ¿ = 23 : Thus we may interpret "the surface" of the star to be at ¿ = 2=3: See R&L p 42-45 for an alternative treatment of this topic. 2 Limb darkening Using the formal solution of the transfer equation, with ¿ ! 1 at the bottom of the atmosphere, and assuming LTE (S º = Bº (T ) ), we have: Z 1 Iv (µ; 0) = Bº (T (¿ )) e ¡¿ º sec µ d¿ º sec µ 0 Now we expand B º in a Taylor series about the optical depth ¿ ¤ (unspeci®ed for the moment): ¯ dB º ¯¯ Bº (T (¿ )) = Bº (T (¿ ¤ )) + (¿ º ¡ ¿ ¤ ) + ¢ ¢ ¢ d¿ ¯¿ ¤ Putting this into the integral, the ®rst term is £ ¤1 Bº (T (¿ ¤ )) ¡e¡ ¿ º sec µ 0 = Bº (T (¿ ¤ )) 2 In the second term, we integrate by parts: Z 1 Z 1 (¿ º ¡ ¿ ¤ ) e¡ ¿ º s ec µ d¿ º sec µ = cos µ (x ¡ x ¤ ) e ¡x dx where x = ¿ sec µ 0 0 · Z 1 ¸ ¯1 = cos µ ¡ (x ¡ x¤ ) e¡x ¯0 + e¡x dx ¯ ¤ 0 £ ¤ ¡x ¯1 = cos µ ¡¿ sec µ ¡ e 0 = cos µ ¡ ¿ ¤ ¯ dBº ¯¯ (cos µ ¡ ¿ ¤ ) + ¢ ¢ ¢ d¿ ¯¿ ¤ If we now choose ¿ ¤ = cos µ; we obtain, correct to 2nd order: Thus Iv (µ; 0) = Bº (T (¿ ¤ )) + Iv (µ; 0) = Bº (T (¿ = cos µ)) Then for µ = 0 (ray from the center of the stellar disk) while from the limb (µ = ¼=2) Iº (0; 0) ' Bº (T (¿ = 1)) Iº ³¼ ´ ; 0 ' Bº (T (¿ = 0)) 2 Since temperature increases inward (equation 2), the intensity is less at the limb. This is the phenomenon of |limb darkening}. 3
© Copyright 2026 Paperzz