PDF

Thermal Challenges in Nanoscale
Devices and Packaging
http:nanoheat.stanford.edu
Silicon Nanoelectronics and Beyond
SRC/Intel/NNI Workshop, October 29-30, 2003
Eric Pop1
Kenneth Goodson2 and Robert Dutton1
Dept. of Electrical1 and Mechanical2 Engineering
Stanford University
E.Pop, Stanford U.
SRC SiNB Workshop, 2003
Transistor Thermal Challenges
0.8 µm
0.35 µm
0.13 µm
0.05 µm
AMD
Intel
100
PowerPC
Trend
10
AMD
Intel
Nuclear
Reactor
Power PC
100
Trend
Hot
Plate
10
F.Labonte
1
1
1990
Rocket
Nozzle
1000
Power Density (W/cm2)
Transistor Count (millions)
1000
1994
1998
2002
2006
2010
1990
1994
1998
2002
2006
2010
Confined Geometries, Novel Materials
Electrostatic Discharge (ESD)
1 µm
IBM
Siemens
E.Pop, Stanford U.
SRC SiNB Workshop, 2003
Packaging Work and Challenges
Heat sinks are 3000x larger & heavier than the chip
They crowd away power deliver components
Unable to address local chip-level hotspots
Mixed signal integration competes for I/O area
Grand Challenge – power delivery & heat removal
Microchannel cooling of chip-level hotspots
Solid-state electroosmotic pumping
Thermofluidic CAD
Microprocessor with Integrated Power Module:
(Stanford - MARCO)
Photonic I/O
RF
conventional heat sink
Integrated MEMS
Sensing
Fluidic I/O
Electrical
Connections
E.Pop, Stanford U.
Microprocessor
Fluidic
Cooling
SRC SiNB Workshop, 2003
Sub-Continuum Heat Transport
Macroscale (D » Λ)
∂T
= ∇ ⋅ (k s ∇ T ) + Q ′′′
Cs
Ox
Me
tsi
∂t
D
Nanoscale (D < Λ)
′′ − e′′
eeq
∂e′′ r
+ v ⋅ ∇e′′ =
+ Q′′′
∂t
τ phon
Heat transfer issues
Bulk
Devices
E.Pop, Stanford U.
optical-acoustic
small heat source
impurity scattering
boundary scattering
boundary thermal res.
Λ ~ 200 nm
Ox
Thin Body
Devices
Si
SRC SiNB Workshop, 2003
Nanodevice Thermal Projections
Extract device self-heating
from comprehensive
electron-phonon Monte Carlo
Pop, Banerjee, Dutton, Goodson, IEDM 2001
∆T Increase (K)
Power Q’ (µW/µm)
Channel Length L (nm)
Bulk Devices
optical-acoustic bottleneck
small heat source
peak drain T estimate
E.Pop, Stanford U.
Drain T Rise (K)
Pop, Dutton, Goodson, IEDM 2003
Channel Length L (nm)
Thin Body (FD-SOI)
boundary scattering
thin, doped layers
boundary thermal resistance
role of raised source & drain
SRC SiNB Workshop, 2003
URL:
E.Pop, Stanford U.
http://nanoheat.stanford.edu
SRC SiNB Workshop, 2003
Summary
Device dimensions ↓↓ , kth ↓ , power (I.V) ↓
Result Æ power density and T ↑
Fundamental aspects of nano-heating
Complex codes fast enough for device design
Side-effect Æ compact, physical models
Nanoscale temperature rise is significant
Must learn electro-thermal device scaling
We CAN improve thermal device design
Need research on thin film phonon dispersion
New materials & boundary thermal properties
g
Strong ties with industry, information sharing
f
E.Pop, Stanford U.
SRC SiNB Workshop, 2003
Computed Phonon Generation
Optical
optical
acoustic
Acoustic
Near-full band MC complexity for analytic-band
MC speed – towards a device designer’s MC?
E.Pop, Stanford U.
SRC SiNB Workshop, 2003
Confined Electrons and Phonons
2-D Electrons
2-D Phonons
tsi
Electro-thermal transport in ultra-thin silicon
films (tsi ~ 5 nm): role of electron and phonon
confinement
E.Pop, Stanford U.
SRC SiNB Workshop, 2003
Overview
Device dimensions scale quicker than power (I.V)
Result Æ power density and T ↑
Work on fundamental aspects of nano-heating
Electron Monte Carlo Æ heat generation rates
Phonon Molecular Dynamics Æ scat./transport
Finite volume methods for BTE
Goal: electro-thermal simulator
Compact, physical models for devices
Goal: trends, circuit simulation
Apply to bulk and SOI/FinFETs
Goal: improve device design
E.Pop, Stanford U.
g
f
SRC SiNB Workshop, 2003