PDF Slides

Power Dissipation in Nanoscale
CMOS and Carbon Nanotubes
Eric Pop
Dept. of Electrical & Computer Engineering
http://poplab.ece.uiuc.edu
E. Pop
1
Power and Heat: The Big Picture
2
(W/cm
Density
Power
(W/cm 2))
Density
Power
1000
100
AMD
Intel
Power PC
Trend
Rocket
Nozzle
Nuclear
Reactor
Hot
Plate
10
1
1990
1994
1998
2002
2006
2010
Sun surface? 6000 W/cm2
http://phys.ncku.edu.tw/~htsu/humor/fry_egg.html
E. Pop
2
Thermal Management Challenges
•
•
IBM S/390 refrigeration
Grid computing: power plants co-located near computer farms
E. Pop
3
Power and Heat: The Tiny Picture
Suspended
On substrate
Carbon nanotubes burn at high enough applied voltage
(they also emit light when they get this hot)
E. Pop
4
Power, Thermal Management Methods
System Level
 Active Microchannel Cooling (Cooligy)
Is there a bottom-up
IBM
approach?
Circuit + Software Level
 active power management
(turn parts of circuit on/off)
From the device and
materials level?
E. Pop
5
Chip-Level Thermal Network
Intel Itanium
Cinterconnect
Top view
Hottest spots > 300 W/cm2
Tinterconnect
Ctransistor
Rdielectric
Ttransistors
Cchip
Cross-section
8 metal levels + ILD
Rspreading
Intel 65 nm
Tchip
Cheat sink
Rchip
Theat sink
chip carrier
Si chip
heat spreader
fin array heat sink
Rconvection
fan
Tcoolant
Transistor < 100 nm
E. Pop
6
Thermal and Electrical Resistance
P = I2 × R
∆T = P × RTH
∆V=I×R
R = f(∆T)
Fourier’s Law (1822)
Ohm’s Law (1827)
E. Pop
7
Device-Level Thermal Challenges
• Small geometry
Device Level:
Confined Geometries, Novel Materials
– High power density (device-level
hot spot)
– Higher surface-to-volume ratio, i.e.
higher role of thermal interfaces
between materials
• Lower thermal conductivity
• Lowering power (but can it
ever be low enough?!)
• Device-level thermal design
(phonon engineering)
Material
k (W/m/K)
Si
148
Ge
60
Silicides
40
Si (10 nm)
13
SiO2
1.4
Source: E. Pop (Proc. IEEE 2006)
E. Pop
8
Thermal Resistance of a Single Device
Single-wall
nanotube SWNT
100000
High thermal resistances:
• SWNT due to small thermal
conductance (very small d ~ 2 nm)
10000
RTH (K/mW)
1000
100
• Others due to low thermal
conductivity, decreasing dimensions,
increased role of interfaces
GST
Phase-change
Memory (PCM)
Silicon-onInsulator FET
SiO2
10
Cu
Cu Via
Power input also matters:
L ~ channel length
• SWNT
~ diameter
0.01-0.1 mW
or via
1
Si
0.1
0.01
0.1
Bulk FET
L (mm)
• Others ~ 0.1-1 mW
1
10
Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996),
Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006).
E. Pop
9
Modeling Device Thermal Resistance
100000
• Steady-state models
RTH (K/mW)
10000
– Lumped: Mautry (1990), Goodson-Su
(1994-5), Pop (2004), Darwish (2005)
1000
100
SOI FET
10
1
– Finite-Element models
0.1
0.01
Bulk FET
0.1
L (mm)
1
10
D
L
tSi
W
tBOX
Bulk Si FET
RTH 
E. Pop
1
1

2kSi D 4kSi LW
SOI FET
RTH 
1
2W
1/ 2
 tBOX 


 k BOX kSi tSi 
10
A More Detailed Look
1. Monte Carlo heat generation
in bulk and strained silicon
Gate
Buried oxide
2. Self-heating in thin-body
SOI and GOI devices
Silicon substrate
3. Self-heating and lessons
from carbon nanotubes
nanotube on
substrate
2 μm
suspended
over trench
E. Pop
11
Quick Recap of Phonons
Graphene Phonons [100]
200 meV
CO2 molecule
vibrations
transverse
small k
transverse
max k=2p/a
Frequency ω (cm-1)
160 meV
100 meV
silicon
26 meV =
300 K
u(r, t )  A exp[i(k  r  it )]
k
•
•
•
E. Pop
Phonons = lattice vibration waves
Phonons are responsible for heat transport in semiconductors
“Hot phonons” = highly occupied modes above room temperature
12
Details Picture of Joule Heating
High Electric
Field
Hot Electrons
(Energy E)
E > 50 meV
t ~ 0.1ps
60
optical
(vop ~ 1000 m/s)
Optical Phonons
t ~ 1 ms – 1 s
(vac ~ 9000 m/s)
40
30
Freq (Hz)
t ~ 5 ps
Acoustic Phonons
50
20
acoustic
Heat Conduction
to Package
Energy (meV)
E < 50 meV
t ~ 0.1ps
Note: optical phonon energy
in CNTs (180 meV) about 3x
higher than in Si (60 meV)
10
Wave vector qa/2p
E. Pop
13
2D Thin-Body SOI Simulation
E. Pop et al., Proc. IEEE, 2006
Mesh
Study of device matching
LG = 18 nm ITRS specs
E-field
if W/L = 4 then Nelec ~ 2500 total!
Current
Monte Carlo (MONET)
Notice heat is dissipated
in device drain
E. Pop
14
Heat Generation in Quasi-Ballistic Devices
E. Pop et al., SISPAD 2005
L=500 nm
100 nm
20 nm
Heat Gen. (eV/cm3/s)
Monte Carlo
Medici
source
channel
Error: DL/L = 0.10
DL
drain
source
channel
Medici
drain
source
DL/L = 0.38
Monte Carlo
channel
drain
DL/L = 0.80
• Monte Carlo vs. Medici (drift-diffusion commercial code):
– “Long” (500 nm) device: same current, potential, nearly identical
– Importance of non-local transport in short devices
– Heat dissipation in DRAIN (optical, acoustic) of shortest devices
E. Pop
15
Phonon Generation Spectrum in Silicon
E. Pop et al., Appl. Phys. Lett. 86, 082101 (2005)
• Complete spectral information on phonon generation rates
• Note: effect of scattering selection rules (less f-scat in strained Si)
• Note: same heat generation at high-field in Si and strained Si
E. Pop
16
What About Device Design?
Monte Carlo
Analysis
Thermal
Conductivity
Design and
Scaling
E. Pop
17
Thin Film Thermal Conductivity
E. Pop et al., Proc. IEDM 2003-2004
80
Bulk Si ~ 150, Ge ~ 60 W/m/K
70
Intel DST/SOI Transistor
k (W/m/K)
60
Thin Si
50
Thin Ge
40
30
20
Si NW
10
SiGe NW
0
0
50
d (nm)
100
150
•
Phonon boundary scattering and confinement
•
Strong decrease in thin film or nanowire thermal conductivity (k), up to
10-100x lower than bulk
•
How does this affect nanometer scale devices?
E. Pop
18
Boundary Thermal Resistance
E. Pop et al., Proc. IEEE (2006)
Lyeo, Cahill
(2006)
Intel DST/SOI Transistor
Al/SiO2/Si
GST/ZnS/SiO2
• Thermal interface resistance at solid-solid material interfaces
• Caused by phonon dispersion mismatch b/w materials (~Cv/4), electronphonon energy conversion at boundary, roughness at boundary
• Approximately equivalent to ~10-100 nm additional SiO2
E. Pop
19
Self-Consistent Electro-Thermal Model
E. Pop et al., Proc. IEDM 2004
P=VI
Cex  2sw ln 1  Lex / tox  / p
Rxd  Rex  RQ  Rsd  Rco
(RQ due to heat source position)
R
P=VI
Geometry
C
E. Pop
T=PR
t=CV/I
T 1.4
I
I ~ m  Vdd  Vt 
n
 0.7 mV/K
20
SOI/GOI Device Design Optimization
E. Pop et al., Proc. IEDM 2004
Intrinsic Delay (ps)
CV/I
tSD
tfilm
tSD = ntfilm
n = 1... 5
Lex
Gate Length Lg (nm)
• Larger Source/Drain (S/D) volume will help heat spreading in drain
• BUT… no improvement for S/D thickness tSD > 3-4 x tfilm = Effect of
parasitic side-wall capacitance on Intrinsic Delay
• Optimized, “well-behaved” GOI devices 30% faster than optimized SOI
E. Pop
21
Transient Device Thermal Modeling
100 nm
Silicon
72 nm
Silicon
Dioxide
Heat Generation
315 nm
1633 nm
0
20
40
60
80
70
Temperature Swings
60
TTM (ton=2.52ps)
50
Fourier (ton=5.04ps)
TTM (ton=5.04ps)
40
30
20
0
Fourier (ton=2.52ps)
50
100
150
Time elapsed (ps)
100
ITRS 2014
device specs
9
200
8
(TL)
Relative Leakage
900 nm
TL in center of hotspot (K)
Z.-Y. Ong and E. Pop, submitted (2008)
7
5
Fourier (Pulsed)
Fourier (Steady)
4
3
2
0
•
TTM (Steady)
TTM (Pulsed)
6
Compact thermal device model including:
50
100
150
Time elapsed (ps)
200
– Non-equilibrium heat generation from Monte Carlo
– Phonon relaxation parameter-matched to Boltzmann Transport Eq.
•
•
E. Pop
Capture spatial and temporal temperature excursions
What is the effect on leakage & reliability?
22
Onto Carbon Nanotubes…
Single-wall
nanotube SWNT
100000
RTH (K/mW)
10000
1000
100
Silicon-onInsulator FET
SiO2
10
1
0.1
0.01
0.1
L (mm)
1
10
Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek
(1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006).
E. Pop
23
Where Carbon Nanotubes Fit In
Allotropes of Carbon:
Graphite (pencil lead)
Diamond
Buckyball
(C60)
Amorphous
(soot)
Single-Walled Nanotube
E. Pop
24
Carbon Nanotubes for Electronics
• Carbon nanotube = rolled up graphene sheet
• Great electrical properties
– Semiconducting  Transistors
– Metallic  Interconnects
d ~ 1-3 nm
– Electrical Conductivity σ ≈ 100 x σCu
– Thermal Conductivity k ≈ kdiamond ≈ 5 x kCu
HfO2
• Nanotube challenges:
top gate (Al)
S (Pd)
– Reproducible growth
– Control of electrical and thermal properties
– Going “from one to a billion”
CNT
D (Pd)
SiO2
back gate
(p++ Si)
E. Pop
25
Nanotube Back-of-the-Envelope Estimates
DT
• Typical L ~ 2 mm, d ~ 2 nm
• On insulating solid substrate
Pt
• Heat dissipated into substrate
– Moderate power ~ 10 mW/mm
– Peak DT ~ 60 K
g
SiO2
DT
• Thermal conductivity k ~ 3000 W/m/K
• Freely suspended nanotube
k
Pt
• Heat dissipated along tube length
– Moderate power ~ 10 mW (10 mA @ 1 V)
– Peak DT ~ 400 K!
E. Pop
SiO2
26
Transport in Suspended Nanotubes
E. Pop et al., Phys. Rev. Lett. 95, 155505 (2005)
nanotube on
substrate
2 μm
nanotube
Pt
suspended
over trench
Pt gate
Si3N4
SiO2
• Observation: significant current degradation and negative
differential conductance at high bias in suspended tubes
• Question: Why? Answer: Tube gets HOT (how?)
E. Pop
27
Transport Model Including Hot Phonons
E. Pop et al., Phys. Rev. Lett. 95, 155505 (2005)
I2(R-Rc)
Non-equilibrium OP:
TOP
TOP  TAC   (TAC  T0 )
ROP
TAC = TL
Heat transfer via AC:
RTH
A(kT )  I 2 ( R  RC ) / L  0
T0
Phonon Temperature (K)
1000
I2(R-RC)
900
800
Landauer electrical resistance
700
TAC = TL
600
R(V , T )  RC 
Optical TOP
500
h  L  eff (V , T ) 


4q 2  eff (V , T ) 
Include OP absorption:
400
Acoustic TAC
300
0
E. Pop
oxidation T
TOP
0.2
0.4
0.6
V (V)
0.8
1
1.2
 1
1
1

1
eff  



 AC OP ,ems OP ,abs 
28
Extracting SWNT Thermal Conductivity
E. Pop et al., Nano Letters 6, 96 (2006)
Yu et al. (NL’05)
This work
• “Inverse” numerical extraction of k from the high bias (V > 0.3 V) tail
• Comparison to data from 100-300 K of UT Austin group (C. Yu, NL Sep’05)
• Result: first “complete” picture of SWNT thermal conductivity from 100 – 800 K
E. Pop
29
Light Emission from Metallic SWNTs
Wavelength (nm)
900
750
600
3
S
Vds = 1.4 V
suspended
2
D
1 Vds = 7 V
on substrate
0
E. Pop
1.4
1.6 1.8 2.0
Energy (eV)
0
-5
~ σT4
drain
0
1
2
γ (a.u.)
Polarization
1
γ (a.u.)
γ (a.u.)
– Comes from center, highly polarized
– Quasi-metallic = small band gaps
– Emitted photons at higher energy than
applied bias (high energy tail)
source
5
trench
• Joule-heated tubes emit light:
Distance (mm)
D. Mann et al., Nature Nano 2, 33 (2007)
S
2.2
0
0
90
angle
30
Return to SWNTs On Substrates
E. Pop et al., Proc IEDM 2005; Proc IEEE 2006
• SWNT on insulating solid substrate
• Heat dissipated into substrate rather than along tube length
• Q: How do I model heat loss into substrate?
• [A: need some gauge of the tube temperature]
DT
Pt
g
SiO2
E. Pop
31
Nanotube Temperature Gauge
Pt
g
SiO2
E. Pop
32
Nanotube Temperature Gauge
• Doesn’t exist
• But… oxidation (burning) temperature is known
O2
TBD ~ 600 oC
Suspended
On substrate
Pt
g
SiO2
E. Pop
33
Breakdown of SWNTs in Air (Oxygen)
A(kT )  p' g (T  T0 )  0
At breakdown:
p' I BDVBD / L
VBD  gLTBD  T0  / I BD
E. Pop, Proc. IEDM (2005)
A. Javey, PRL 92, 106804 (2004)
•
Data shows SWNTs exposed to air break down by oxidation at
500 < TBD < 700 oC (800–1000 K)
•
Joule breakdown voltage data shows VBD scales with L in air
•
Supports cooling mechanism along the length, into the substrate
E. Pop
34
Electrical Breakdown of SWNTs
E. Pop et al., J. Appl. Phys. 101, 093710 (2007)
d
L
Pt
g
tOX
SiO2
VBD
(a)
•
•
•
•
tSI
Si
(b)
SWNT exposed to air from the top
Sweep voltage low to high
Temperature peaks in the middle
When Tmax = TBD  V = VBD and PBD = IBDVBD
E. Pop
35
Electrical Breakdown of SWNTs
E. Pop et al., J. Appl. Phys. 101, 093710 (2007)
900
Tmax
T (K)
700
VBD
500
300
•
•
•
•
E. Pop
ΔTC
-1
0
X (m m)
1
2
SWNT exposed to air from the top
Sweep voltage low to high
Temperature peaks in the middle
When Tmax = TBD  V = VBD and PBD = IBDVBD
36
Breakdown Data from Literature
E. Pop, DRC (2007)
PBD  gLTBD  T0 
1
PBD (mW)
0.2
Stanford
Caltech
Infineon
1.2
0.8
Zoom into L < 2 mm
"short"
0.15
PBD = 88.8L
R2 = 0.87
0.6
cosh( L / 2 LH )  gLH R T sinh( L / 2 LH )
cosh( L / 2 LH )  gLH R T sinh( L / 2 LH )  1
"long"
0.1
0.4
0.05
0.2
0
0
0
2
4
L (µm)
6
0
8
0.5
1
L (µm)
1.5
2
• “Short” vs. “long” breakdown: Compared to thermal “healing” length ~ 0.2 µm
• Note: There is a minimum breakdown power ~ 0.05 mW
• We can learn a lot more about electrical and thermal properties
E. Pop
37
SWNT Compact Model Up to Breakdown
E. Pop et al., J. Appl. Phys. 101, 093710 (2007)
Data
Model
Understanding transport
in a 3 mm metallic SWNT
up to breakdown:
Tmax ~ 600 oC = 873 K
Vmax ~ 15 V
• Thermal “healing length” along SWNT ~ 0.2 mm
• Current saturation ~ 20 mA in long tubes (> 1 mm) due to self-heating
• Self-heating not significant when p’ < 5 mW/mm (design goal?)
• More current in short nanotubes = less heating?
E. Pop
38
Summary
•
Small device dimensions, high local
power densities
SWNT
•
Increased device thermal resistance with
decreasing dimensions
SOI FET
•
Physics-based models to capture:
100000
RTH (K/mW)
10000
1000
100
PCM
10
1
0.1
0.01
– Size effects
Bulk FET
0.1
L (mm)
– Phonon non-equilibrium
1
– Transient temperature effects
10
•
Opportunity for “bottom-up” thermal
device and materials design
http://poplab.ece.uiuc.edu
E. Pop
39