Power Dissipation in Nanoscale CMOS and Carbon Nanotubes Eric Pop Dept. of Electrical & Computer Engineering http://poplab.ece.uiuc.edu E. Pop 1 Power and Heat: The Big Picture 2 (W/cm Density Power (W/cm 2)) Density Power 1000 100 AMD Intel Power PC Trend Rocket Nozzle Nuclear Reactor Hot Plate 10 1 1990 1994 1998 2002 2006 2010 Sun surface? 6000 W/cm2 http://phys.ncku.edu.tw/~htsu/humor/fry_egg.html E. Pop 2 Thermal Management Challenges • • IBM S/390 refrigeration Grid computing: power plants co-located near computer farms E. Pop 3 Power and Heat: The Tiny Picture Suspended On substrate Carbon nanotubes burn at high enough applied voltage (they also emit light when they get this hot) E. Pop 4 Power, Thermal Management Methods System Level Active Microchannel Cooling (Cooligy) Is there a bottom-up IBM approach? Circuit + Software Level active power management (turn parts of circuit on/off) From the device and materials level? E. Pop 5 Chip-Level Thermal Network Intel Itanium Cinterconnect Top view Hottest spots > 300 W/cm2 Tinterconnect Ctransistor Rdielectric Ttransistors Cchip Cross-section 8 metal levels + ILD Rspreading Intel 65 nm Tchip Cheat sink Rchip Theat sink chip carrier Si chip heat spreader fin array heat sink Rconvection fan Tcoolant Transistor < 100 nm E. Pop 6 Thermal and Electrical Resistance P = I2 × R ∆T = P × RTH ∆V=I×R R = f(∆T) Fourier’s Law (1822) Ohm’s Law (1827) E. Pop 7 Device-Level Thermal Challenges • Small geometry Device Level: Confined Geometries, Novel Materials – High power density (device-level hot spot) – Higher surface-to-volume ratio, i.e. higher role of thermal interfaces between materials • Lower thermal conductivity • Lowering power (but can it ever be low enough?!) • Device-level thermal design (phonon engineering) Material k (W/m/K) Si 148 Ge 60 Silicides 40 Si (10 nm) 13 SiO2 1.4 Source: E. Pop (Proc. IEEE 2006) E. Pop 8 Thermal Resistance of a Single Device Single-wall nanotube SWNT 100000 High thermal resistances: • SWNT due to small thermal conductance (very small d ~ 2 nm) 10000 RTH (K/mW) 1000 100 • Others due to low thermal conductivity, decreasing dimensions, increased role of interfaces GST Phase-change Memory (PCM) Silicon-onInsulator FET SiO2 10 Cu Cu Via Power input also matters: L ~ channel length • SWNT ~ diameter 0.01-0.1 mW or via 1 Si 0.1 0.01 0.1 Bulk FET L (mm) • Others ~ 0.1-1 mW 1 10 Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006). E. Pop 9 Modeling Device Thermal Resistance 100000 • Steady-state models RTH (K/mW) 10000 – Lumped: Mautry (1990), Goodson-Su (1994-5), Pop (2004), Darwish (2005) 1000 100 SOI FET 10 1 – Finite-Element models 0.1 0.01 Bulk FET 0.1 L (mm) 1 10 D L tSi W tBOX Bulk Si FET RTH E. Pop 1 1 2kSi D 4kSi LW SOI FET RTH 1 2W 1/ 2 tBOX k BOX kSi tSi 10 A More Detailed Look 1. Monte Carlo heat generation in bulk and strained silicon Gate Buried oxide 2. Self-heating in thin-body SOI and GOI devices Silicon substrate 3. Self-heating and lessons from carbon nanotubes nanotube on substrate 2 μm suspended over trench E. Pop 11 Quick Recap of Phonons Graphene Phonons [100] 200 meV CO2 molecule vibrations transverse small k transverse max k=2p/a Frequency ω (cm-1) 160 meV 100 meV silicon 26 meV = 300 K u(r, t ) A exp[i(k r it )] k • • • E. Pop Phonons = lattice vibration waves Phonons are responsible for heat transport in semiconductors “Hot phonons” = highly occupied modes above room temperature 12 Details Picture of Joule Heating High Electric Field Hot Electrons (Energy E) E > 50 meV t ~ 0.1ps 60 optical (vop ~ 1000 m/s) Optical Phonons t ~ 1 ms – 1 s (vac ~ 9000 m/s) 40 30 Freq (Hz) t ~ 5 ps Acoustic Phonons 50 20 acoustic Heat Conduction to Package Energy (meV) E < 50 meV t ~ 0.1ps Note: optical phonon energy in CNTs (180 meV) about 3x higher than in Si (60 meV) 10 Wave vector qa/2p E. Pop 13 2D Thin-Body SOI Simulation E. Pop et al., Proc. IEEE, 2006 Mesh Study of device matching LG = 18 nm ITRS specs E-field if W/L = 4 then Nelec ~ 2500 total! Current Monte Carlo (MONET) Notice heat is dissipated in device drain E. Pop 14 Heat Generation in Quasi-Ballistic Devices E. Pop et al., SISPAD 2005 L=500 nm 100 nm 20 nm Heat Gen. (eV/cm3/s) Monte Carlo Medici source channel Error: DL/L = 0.10 DL drain source channel Medici drain source DL/L = 0.38 Monte Carlo channel drain DL/L = 0.80 • Monte Carlo vs. Medici (drift-diffusion commercial code): – “Long” (500 nm) device: same current, potential, nearly identical – Importance of non-local transport in short devices – Heat dissipation in DRAIN (optical, acoustic) of shortest devices E. Pop 15 Phonon Generation Spectrum in Silicon E. Pop et al., Appl. Phys. Lett. 86, 082101 (2005) • Complete spectral information on phonon generation rates • Note: effect of scattering selection rules (less f-scat in strained Si) • Note: same heat generation at high-field in Si and strained Si E. Pop 16 What About Device Design? Monte Carlo Analysis Thermal Conductivity Design and Scaling E. Pop 17 Thin Film Thermal Conductivity E. Pop et al., Proc. IEDM 2003-2004 80 Bulk Si ~ 150, Ge ~ 60 W/m/K 70 Intel DST/SOI Transistor k (W/m/K) 60 Thin Si 50 Thin Ge 40 30 20 Si NW 10 SiGe NW 0 0 50 d (nm) 100 150 • Phonon boundary scattering and confinement • Strong decrease in thin film or nanowire thermal conductivity (k), up to 10-100x lower than bulk • How does this affect nanometer scale devices? E. Pop 18 Boundary Thermal Resistance E. Pop et al., Proc. IEEE (2006) Lyeo, Cahill (2006) Intel DST/SOI Transistor Al/SiO2/Si GST/ZnS/SiO2 • Thermal interface resistance at solid-solid material interfaces • Caused by phonon dispersion mismatch b/w materials (~Cv/4), electronphonon energy conversion at boundary, roughness at boundary • Approximately equivalent to ~10-100 nm additional SiO2 E. Pop 19 Self-Consistent Electro-Thermal Model E. Pop et al., Proc. IEDM 2004 P=VI Cex 2sw ln 1 Lex / tox / p Rxd Rex RQ Rsd Rco (RQ due to heat source position) R P=VI Geometry C E. Pop T=PR t=CV/I T 1.4 I I ~ m Vdd Vt n 0.7 mV/K 20 SOI/GOI Device Design Optimization E. Pop et al., Proc. IEDM 2004 Intrinsic Delay (ps) CV/I tSD tfilm tSD = ntfilm n = 1... 5 Lex Gate Length Lg (nm) • Larger Source/Drain (S/D) volume will help heat spreading in drain • BUT… no improvement for S/D thickness tSD > 3-4 x tfilm = Effect of parasitic side-wall capacitance on Intrinsic Delay • Optimized, “well-behaved” GOI devices 30% faster than optimized SOI E. Pop 21 Transient Device Thermal Modeling 100 nm Silicon 72 nm Silicon Dioxide Heat Generation 315 nm 1633 nm 0 20 40 60 80 70 Temperature Swings 60 TTM (ton=2.52ps) 50 Fourier (ton=5.04ps) TTM (ton=5.04ps) 40 30 20 0 Fourier (ton=2.52ps) 50 100 150 Time elapsed (ps) 100 ITRS 2014 device specs 9 200 8 (TL) Relative Leakage 900 nm TL in center of hotspot (K) Z.-Y. Ong and E. Pop, submitted (2008) 7 5 Fourier (Pulsed) Fourier (Steady) 4 3 2 0 • TTM (Steady) TTM (Pulsed) 6 Compact thermal device model including: 50 100 150 Time elapsed (ps) 200 – Non-equilibrium heat generation from Monte Carlo – Phonon relaxation parameter-matched to Boltzmann Transport Eq. • • E. Pop Capture spatial and temporal temperature excursions What is the effect on leakage & reliability? 22 Onto Carbon Nanotubes… Single-wall nanotube SWNT 100000 RTH (K/mW) 10000 1000 100 Silicon-onInsulator FET SiO2 10 1 0.1 0.01 0.1 L (mm) 1 10 Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006). E. Pop 23 Where Carbon Nanotubes Fit In Allotropes of Carbon: Graphite (pencil lead) Diamond Buckyball (C60) Amorphous (soot) Single-Walled Nanotube E. Pop 24 Carbon Nanotubes for Electronics • Carbon nanotube = rolled up graphene sheet • Great electrical properties – Semiconducting Transistors – Metallic Interconnects d ~ 1-3 nm – Electrical Conductivity σ ≈ 100 x σCu – Thermal Conductivity k ≈ kdiamond ≈ 5 x kCu HfO2 • Nanotube challenges: top gate (Al) S (Pd) – Reproducible growth – Control of electrical and thermal properties – Going “from one to a billion” CNT D (Pd) SiO2 back gate (p++ Si) E. Pop 25 Nanotube Back-of-the-Envelope Estimates DT • Typical L ~ 2 mm, d ~ 2 nm • On insulating solid substrate Pt • Heat dissipated into substrate – Moderate power ~ 10 mW/mm – Peak DT ~ 60 K g SiO2 DT • Thermal conductivity k ~ 3000 W/m/K • Freely suspended nanotube k Pt • Heat dissipated along tube length – Moderate power ~ 10 mW (10 mA @ 1 V) – Peak DT ~ 400 K! E. Pop SiO2 26 Transport in Suspended Nanotubes E. Pop et al., Phys. Rev. Lett. 95, 155505 (2005) nanotube on substrate 2 μm nanotube Pt suspended over trench Pt gate Si3N4 SiO2 • Observation: significant current degradation and negative differential conductance at high bias in suspended tubes • Question: Why? Answer: Tube gets HOT (how?) E. Pop 27 Transport Model Including Hot Phonons E. Pop et al., Phys. Rev. Lett. 95, 155505 (2005) I2(R-Rc) Non-equilibrium OP: TOP TOP TAC (TAC T0 ) ROP TAC = TL Heat transfer via AC: RTH A(kT ) I 2 ( R RC ) / L 0 T0 Phonon Temperature (K) 1000 I2(R-RC) 900 800 Landauer electrical resistance 700 TAC = TL 600 R(V , T ) RC Optical TOP 500 h L eff (V , T ) 4q 2 eff (V , T ) Include OP absorption: 400 Acoustic TAC 300 0 E. Pop oxidation T TOP 0.2 0.4 0.6 V (V) 0.8 1 1.2 1 1 1 1 eff AC OP ,ems OP ,abs 28 Extracting SWNT Thermal Conductivity E. Pop et al., Nano Letters 6, 96 (2006) Yu et al. (NL’05) This work • “Inverse” numerical extraction of k from the high bias (V > 0.3 V) tail • Comparison to data from 100-300 K of UT Austin group (C. Yu, NL Sep’05) • Result: first “complete” picture of SWNT thermal conductivity from 100 – 800 K E. Pop 29 Light Emission from Metallic SWNTs Wavelength (nm) 900 750 600 3 S Vds = 1.4 V suspended 2 D 1 Vds = 7 V on substrate 0 E. Pop 1.4 1.6 1.8 2.0 Energy (eV) 0 -5 ~ σT4 drain 0 1 2 γ (a.u.) Polarization 1 γ (a.u.) γ (a.u.) – Comes from center, highly polarized – Quasi-metallic = small band gaps – Emitted photons at higher energy than applied bias (high energy tail) source 5 trench • Joule-heated tubes emit light: Distance (mm) D. Mann et al., Nature Nano 2, 33 (2007) S 2.2 0 0 90 angle 30 Return to SWNTs On Substrates E. Pop et al., Proc IEDM 2005; Proc IEEE 2006 • SWNT on insulating solid substrate • Heat dissipated into substrate rather than along tube length • Q: How do I model heat loss into substrate? • [A: need some gauge of the tube temperature] DT Pt g SiO2 E. Pop 31 Nanotube Temperature Gauge Pt g SiO2 E. Pop 32 Nanotube Temperature Gauge • Doesn’t exist • But… oxidation (burning) temperature is known O2 TBD ~ 600 oC Suspended On substrate Pt g SiO2 E. Pop 33 Breakdown of SWNTs in Air (Oxygen) A(kT ) p' g (T T0 ) 0 At breakdown: p' I BDVBD / L VBD gLTBD T0 / I BD E. Pop, Proc. IEDM (2005) A. Javey, PRL 92, 106804 (2004) • Data shows SWNTs exposed to air break down by oxidation at 500 < TBD < 700 oC (800–1000 K) • Joule breakdown voltage data shows VBD scales with L in air • Supports cooling mechanism along the length, into the substrate E. Pop 34 Electrical Breakdown of SWNTs E. Pop et al., J. Appl. Phys. 101, 093710 (2007) d L Pt g tOX SiO2 VBD (a) • • • • tSI Si (b) SWNT exposed to air from the top Sweep voltage low to high Temperature peaks in the middle When Tmax = TBD V = VBD and PBD = IBDVBD E. Pop 35 Electrical Breakdown of SWNTs E. Pop et al., J. Appl. Phys. 101, 093710 (2007) 900 Tmax T (K) 700 VBD 500 300 • • • • E. Pop ΔTC -1 0 X (m m) 1 2 SWNT exposed to air from the top Sweep voltage low to high Temperature peaks in the middle When Tmax = TBD V = VBD and PBD = IBDVBD 36 Breakdown Data from Literature E. Pop, DRC (2007) PBD gLTBD T0 1 PBD (mW) 0.2 Stanford Caltech Infineon 1.2 0.8 Zoom into L < 2 mm "short" 0.15 PBD = 88.8L R2 = 0.87 0.6 cosh( L / 2 LH ) gLH R T sinh( L / 2 LH ) cosh( L / 2 LH ) gLH R T sinh( L / 2 LH ) 1 "long" 0.1 0.4 0.05 0.2 0 0 0 2 4 L (µm) 6 0 8 0.5 1 L (µm) 1.5 2 • “Short” vs. “long” breakdown: Compared to thermal “healing” length ~ 0.2 µm • Note: There is a minimum breakdown power ~ 0.05 mW • We can learn a lot more about electrical and thermal properties E. Pop 37 SWNT Compact Model Up to Breakdown E. Pop et al., J. Appl. Phys. 101, 093710 (2007) Data Model Understanding transport in a 3 mm metallic SWNT up to breakdown: Tmax ~ 600 oC = 873 K Vmax ~ 15 V • Thermal “healing length” along SWNT ~ 0.2 mm • Current saturation ~ 20 mA in long tubes (> 1 mm) due to self-heating • Self-heating not significant when p’ < 5 mW/mm (design goal?) • More current in short nanotubes = less heating? E. Pop 38 Summary • Small device dimensions, high local power densities SWNT • Increased device thermal resistance with decreasing dimensions SOI FET • Physics-based models to capture: 100000 RTH (K/mW) 10000 1000 100 PCM 10 1 0.1 0.01 – Size effects Bulk FET 0.1 L (mm) – Phonon non-equilibrium 1 – Transient temperature effects 10 • Opportunity for “bottom-up” thermal device and materials design http://poplab.ece.uiuc.edu E. Pop 39
© Copyright 2026 Paperzz