Graphene Thermal Physics Eric Pop Dept. of Electrical & Computer Engineering Micro & Nanotechnology Lab, Beckman Institute http://poplab.ece.illinois.edu E. Pop / DRC 2009 1 Table of Contents • Heat capacity of graphene + Background • Thermal conductivity of graphene • Graphene devices • “Other” physics (thermoelectrics, asymmetry, quantum thermal conductance…) E. Pop / DRC 2009 2 Structure of Graphite c-axis (abab) or Bernal stacking ~ 0.335 nm ab plane (2 atoms / unit cell) • Graphite is highly asymmetric • Strong in-plane covalent sp2 sigma bonds (524 kJ/mol) • Weak out-of-plane van der Waals pi bonds (7 kJ/mol) E. Pop / DRC 2009 3 Heat Capacity: Energy Stored ΔU=CΔT • Heat capacity of a solid: C = Celectrons + Clattice CL du df ( ) g d dT dT ω(k) phonon dispersion density of states phonon distribution (e.g. Bose-Einstein) • High temperature: classically recall C = 3NAkB Dulong-Petit Law (1819) most solids 25 J/mol/K at high T • Low temperature: experimentally C 0 E. Pop / DRC 2009 4 Phonons: Atomic Lattice Vibrations Graphene Phonons [100] 2 atoms per unit cell Lattice Constant, a 200 meV 60 xn+1 yn transverse small k transverse max k u(r, t ) A exp[i(k r it )] vS 50 Freq (Hz) ω (cm-1) Frequency xn Energy (meV) optical yn-1 160 meV 40 100 meV 30 Si optical 20 60 meV d dk 300 10 K = 26 meV k Wave vector qa/2p • Transverse (u ^ k) vs. longitudinal modes (u || k) • Acoustic (transport sound & heat) vs. optical (scatter light & electrons) • “Hot phonons” = highly occupied modes above room temperature E. Pop / DRC 2009 5 Fermi-Dirac vs. Bose-Einstein Statistics 1 T=0 K fBE fFD T=300 K 0.6 0.4 T=0 K 1.5 0.8 T=1000 K 0.2 0 -0.2 ∞ 2 1.2 1 T=300 K T=1000 K 0.5 0 -0.4 -0.2 0 0.2 0.4 0.6 0 E-EF (eV) f FD ( E ) 1 E EF exp 1 k BT Fermions = half-integer spin (e.g. electrons, protons) f BE ( E ) 0.2 E (eV) 0.4 0.6 1 E exp 1 k BT Bosons = integer spin (e.g. phonons, photons) • In the limit of high energy, both reduce to the classical Maxwell-Boltzmann statistics: f MB ( E ) exp E / kBT E. Pop / DRC 2009 6 Heat Capacity: Dielectrics vs. Metals Dielectrics Metals C = bT • Very high T: C = 3nkB (constant) both dielectrics & metals • Intermediate T: C ~ aTD both dielectrics & metals in D dimensions* • Very low T: C ~ bT metals (electron contribution only) * assuming linear ω=vk phonon dispersion E. Pop / DRC 2009 7 Heat Capacity: Einstein Model (1907) • Key assumption: all oscillators have same frequency • High-T (correct, recover Dulong-Petit Law): E Frequency ω CE (T ) 3NkB • Low-T (incorrect, drops too fast) CE (T ) 3NkB E k BT 2 e 0 k 2p/a E / k BT But… Einstein model OK for optical phonon heat capacity E. Pop / DRC 2009 8 Annalen der Physik 39(4) p. 789 (1912) Peter Debye (1884-1966) E. Pop / DRC 2009 9 Heat Capacity: Debye Model (1912) • Key assumption: oscillators have linear ω-k with cutoff ωD D 1/3 vs 6p 2 N kB • … roughly corresponds to max acoustic phonon frequency cutoff T 12p CD (T ) Nk B 5 D • High-T: (> 0.8 θD) CD (T ) 3NkB E. Pop / DRC 2009 vs k kB D D • Low-T (< θD/10): 4 Frequency, • Often in terms of Debye temperature 3 0 Wave vector, k In D-dimensions when T << θD: 2p/a CD T D 10 Debye Model at Low- and High-T 10 7 3 3-K) (J/m Heat Specific ) -K C (J/m Specific Heat, • In practice: θD ~ fitting parameter to heat capacity data • θD is related to “stiffness” of solid and melting temperature C 3kB 4.7 10 6 10 6 J 3NkBT m3 K Diamond Each atom has Diamond a thermal energy of 3KBT 10 5 10 4 TT3 CC 3 10 3 Classical Regime 10 2 D 1860 K 10 1 1 10 2 10 10 Temperature, T (K) 3 10 4 Temperature (K) Pb, θD = 102 K Ag, θD = 226 K Al, θD = 428 K Diamond θD = 1860 K Graphite 2480 180 in-plane (sp2) out-of-plane (vdW) to resolve low-temperature heat capacity “quandary” since graphene data was neither 2-D (T2) nor 3-D (T3) E. Pop / DRC 2009 11 Phonon Dispersion of Diamond & Graphite LO TO ZO LA TA 300 K = 26 meV ZA • Diamond “like” silicon: – Longitudinal & transverse (x2) acoustic (LA, TA) – Longitudinal & transverse (x2) optical (LO, TO) • Graphite is unusual: – Layer-shearing, -breathing, and -bending modes (ZA, ZO) – Higher optical freq. than diamond, strong sp2 bond stretching modes – Graphite has more low-frequency modes Tohei, Phys. Rev. B (2006) E. Pop / DRC 2009 12 Heat Capacity of Diamond & Graphite Dulong-Petit 3NAkB high-temperature limit θD 300 K Silicon SiO2 0.80 0.71 • Graphite has higher phonon DOS at low frequency higher heat capacity than diamond at room T • Both increase up to Debye temperature range, then reach “classical” 3NAkB limit Pierson (1993) Tohei, Phys. Rev. B (2006) E. Pop / DRC 2009 13 Phonon Dispersion in Graphene LO meV TO ZO LA vLA ~ 23 km/s (silicon ~ 9 km/s) Si optical phonons TA ZA vTA ~ 16 km/s (silicon ~ 5 km/s) ω ~ k2 vZA ~ 0 out-of-plane bending or flexing mode important for heat capacity at very low T may be affected (suppressed) by substrate Yanagisawa et al., Surf. Interf. Analysis 37, 133 (2005) E. Pop / DRC 2009 14 Table of Contents • Heat capacity of graphene + Background • Thermal conductivity of graphene • Graphene devices • “Other” physics (thermoelectrics, asymmetry, quantum thermal conductance…) E. Pop / DRC 2009 15 Thermal Conductivity of Solids Unlike electrical conductivity, thermal spans “only” 4 orders of magnitude E. Pop / DRC 2009 16 Thermal Conductivity: Kinetic Theory u(z+z) qz compare to… J diff qDn z + z λ Integrate energy flux over all angles: 1 du dT dT J q v k 3 dT dz dz z u(z-z) dn dz z - z heat capacity heat gen. per unit volume (W/m3) Thermal conductivity: Heat diffusion eq: 1 k Cv 3 phonon velocity dω/dk in 3-D ·(kT ) q ''' 0 mean free path (MFP) 1 2 1 v 3 v v LA TA Poisson eq: compare to… ·( V ) 0 1 E. Pop / DRC 2009 17 Thermal Conductivity and Phonon MFP • Heat capacity depends on ω(k) and T • Phonon group velocity depends only ω(k) • Mean free path λ phonon scattering mechanisms: – Boundary & edge scattering – Defect & impurity scattering – Phonon-phonon scattering ~ 1/T C λ k low T Td λ L (size) Td high T 3NkB 1/T 1/T kkl Increasing Defect Concentration Boundary Defect 1 1 k Cv Cv 2 3 3 E. Pop / DRC 2009 k ~ 1/T kkl ~TTd d 0.01 Phonon Scattering 0.1 Temperature, T/D 1.0 18 Thermal Conductivity of Graphite* * typical commercial pyrolitic graphite Thermal Conductivity (Wm-1K-1) 400 comparable to copper Copper 300 comparable to plastics, SiO2 Pyrolytic Graphite, Any ab- Direction 200 100 500 1000 1500 2000 2500 Silicon SiO2 2.0 1.0 Pyrolytic Graphite, Any c- Direction 500 1000 1500 2000 2500 140 1.4 High (100-1000x) thermal anisotropy in all graphite Temperature (oC) Pierson (1993) E. Pop / DRC 2009 19 Graphene Thermal Conductivity (Theoretical) k (Wm-1K-1) CNT and graphene “ballistic upper limit” T (K) • Graphite ab- thermal conductivity generally lower because of interlayer interactions (could be same for graphene on substrate) • Graphite ~T2.5 at very low T due to bending modes (ω ~ k2) • Graphene ~T1.5 at very low T due to -------””-------””------- (ω ~ k2) Berber et al, Phys. Rev. Lett. (2000); Mingo et al, Phys. Rev. Lett. (2005) E. Pop / DRC 2009 20 The Imprint of Dimensionality bulk Si at room T (~140 Wm-1K-1) Si nanowires CNT and graphene “ballistic upper limit” Li et al, Appl. Phys. Lett. (2003) Li et al, Appl. Phys. Lett. (2003) • Phonon dispersion phonon DOS heat capacity k ~ Cvλ • Information about dimensionality of system can be obtained from low-temperature k-T (or C-T) measurements Thermometer E. Pop / DRC 2009 Heater • Ex: Si nanowires ~ from 1-D to 3-D features! 21 Graphene Thermal Conductivity (Experimental) • Graphene flakes suspended over SiO2 trenches (~3 um wide) • Thermometry using Raman G-band (1583 cm-1) shift • Room temperature results in-line with existing CNT data ~3080-5150 Balandin et al. Balandin et al, Nano Lett. (2008); Ghosh et al, Appl. Phys. Lett. (2008) E. Pop / DRC 2009 22 Wiedemann-Franz Law • Q: what is the electronic contribution to thermal transport? • Wiedemann & Franz (1853) empirically saw ke/σ = const(T) • Lorenz (1872) noted ke/σ proportional to T 1p2 2 T 2 kB n vF 3 2 EF q 2 q n n m e p 2 kB2 taking the ratio: L 0 T 3q 2 Experimentally e Remarkable: independent of n, m, and even ! • Graphene electronic contribution appears <10% throughout T range L = /T 10-8 WΩ/K2 Metal 0°C 100 °C Cu 2.23 2.33 Ag 2.31 2.37 Au 2.35 2.40 Zn 2.31 2.33 Cd 2.42 2.43 Mo 2.61 2.79 Pb 2.47 2.56 8 L0 2.45 10 WΩ/K 2 E. Pop / DRC 2009 23 Table of Contents • Heat capacity of graphene + Background • Thermal conductivity of graphene • Graphene devices • “Other” physics (thermoelectrics, asymmetry, quantum thermal conductance…) E. Pop / DRC 2009 24 Background on Thermal Resistance P = I2 × R ∆T = P × Rth Rth L kA ∆ V = I × Rel R = f(∆T) Fourier’s Law (1822) Rel L A Ohm’s Law (1827) E. Pop / DRC 2009 25 Thermal-Electrical Cheat Sheet J q kT ·(kT ) q ''' 0 Rth L kA E. Pop / DRC 2009 J diff qDn ·( V ) 0 Rel L A 26 Thermal Resistance of Devices Single-wall nanotube SWNT 100000 High thermal resistances: • SWNT due to small thermal conductance (very small d ~ 2 nm) RTH (K/mW) 10000 1000 100 • Others due to low thermal conductivity, decreasing dimensions, increased role of interfaces GST Phase-change Memory (PCM) Silicon-onInsulator FET 10 Cu SiO2 Power input also matters: Cu Via • SWNT ~ 0.01-0.1 mW 1 • Others ~ 0.1-1 mW Bulk FET Si 0.1 0.01 0.1 L (m) 1 10 ∆T = P × Rth Data: Mautry (1990), Bunyan (1992), Su (1994), Lee (1995), Jenkins (1995), Tenbroek (1996), Jin (2001), Reyboz (2004), Javey (2004), Seidel (2004), Pop (2004-6), Maune (2006). E. Pop / DRC 2009 27 Modeling Device Thermal Response • Steady-state models 100000 – Finite-Element models 10000 RTH (K/mW) – Lumped: Mautry (1990), Goodson-Su (1994-5), Pop (2004), Darwish (2005) 1000 100 SOI FET 10 1 • Transient models 0.1 0.01 Bulk FET 0.1 L (m) 1 10 D L tSi W tBOX Bulk Si FET RTH 1 1 2kSi D 2kSi LW E. Pop / DRC 2009 SOI FET RTH 1 2W 1/ 2 t BOX k BOX kSi tSi 28 Graphene FET SiO2 Assumptions: tox = 300 nm L = 25 um W = 6 um kox = 1.3 Wm-1K-1 ksi = 80 Wm-1K-1 Si TSi 0.29 TG 60 L W 20 RSi 1 510 K 2kSi 0-5LW-4 -3 -2W Y (m) TSi RSi 0.25 TG Rox RSi 0.2 mW/μm2 40 0.1 mW/μm2 20 -1 0 0 -5 -4 -5 x 10 -3 -2 Y (m) -1 0 x 10 -5 60 T (K) T (K) tOX T (K) 60 t Rox ox40 1538 K W kox LW 40 20 Bae, Ong, Estrada, Pop (2009) 0 -3 -2 -1 Y (m) E. Pop / DRC 2009 0 x 10 1 -6 29 Raman Thermal Imaging of Graphene FET 2D peak thermal conductivity • Spatially resolved (~0.5 um) Raman (2D ~ 2700 cm-1) thermal imaging • Suggests power dissipation directly with SO phonons (60 meV) in SiO2 • Suggests thermal boundary RB (graphene-SiO2) ~ 4x10-8 m2K/W Freitag et al, Nano Lett. (2009) E. Pop / DRC 2009 30 Table of Contents • Heat capacity of graphene + Background • Thermal conductivity of graphene • Graphene devices • “Other” physics (thermoelectrics, asymmetry, quantum thermal conductance…) E. Pop / DRC 2009 31 Thermal Expansion of Graphite c- direction (van der Waals) • Thermal expansion coefficient (TEC) is – Positive and large in c- direction Linear Thermal Expansion (x 10-6 1/K) ab- direction (covalent sp2) Graphite 4 – Negative (at room temperature) in ab- plane 2 • Graphite thermal expansion anisotropy can result in large internal stresses -2 Pierson (1993) E. Pop / DRC 2009 Graphite 0 Temperature (oC) 32 Graphene • Recent estimate of thermal contraction in single-layer suspended graphene* • TEC ~ -7x10-6 K-1, 5-6x greater than in graphite ab- plane Linear Thermal Expansion (x 10-6 1/K) Thermal Expansion of Graphene Graphite 4 Graphite 2 0 -2 Temperature (oC) *Bao et al, arxiv/cond-mat (2009) E. Pop / DRC 2009 33 Thermoelectric Properties of Graphene Wei (2009) Zuev (2009) Checkelski (2009) • Measured graphene thermopower S ≤ 100 μV/K – note: |Sgraphene| >> |SPd, SAu| at T > 300 K • Peltier coefficient at metal junction: Π = (S1-S2)T • Peltier heating/cooling Q = ΠI ≈ ΠgrapheneI E. Pop / DRC 2009 34 Thermal Anisotropy in Graphene Graphene Dimerite • Thermal conductivity variation with angle: – ~1% variation in graphene (p/3 angle period) – ~10% variation in dimerite ballistic simulation** – ~25% variation in nanoribbon by Molecular Dynamics* • Triangular graphene nanoribbon with 30o vertex up to 2x thermal anisotropy (rectification)* *Hu, arxiv/cond-mat (2009) **Jiang, Phys. Rev. B (2009) E. Pop / DRC 2009 35 Wiedemann-Franz Law in Nanoribbons • Graphene nanoribbons: does the WFL hold in 1D? YES • 1D ballistic electrons carry energy too, what is their equivalent thermal conductance? p 2 k 2 e2 p 2 kB2T Gth L eT 2B T 3h 3e h (x2 if electron spin included) Gth 0.28 nW/K at 300 K Greiner, Phys. Rev. Lett. (1997) E. Pop / DRC 2009 36 Phonon Quantum Thermal Conductance • Same thermal conductance quantum, irrespective of the carrier statistics (Fermi-Dirac vs. Bose-Einstein) Phonon Gth measurement in GaAs bridge at T < 1 K Schwab, Nature (2000) Gth p 2 kB2T 3h 0.28 nW/K at 300 K Pt 1 μm Single nanotube Gth=2.4 nW/K at T=300K SWNT Pop, Nano Lett. (2006) suspended over trench Pt E. Pop / DRC 2009 37 Graphene Thermal Properties Summary What we think we know… • Thermal conductivity 3000-5000 Wm-1K-1 at 300 K (k↓↑T) – Phonon-dominated, electron contribution < 10% – Phonon mean free path ~0.7 μm • Heat capacity (graphite) ~0.7 kJ/kg at room temperature (C↑↑T) • Thermal boundary resistance with SiO2 ~4x10-8 m2K/W (SO phonon) • Role of dimensionality: – Neither “2-D” nor “3-D” – Flexing mode (ω~k2) dominates heat capacity at T<50 K Much we don’t know… • Temperature dependence of k, C, TBR • Role of substrate interaction on all of the above • Role of edges, defects, doping, isotopes… E. Pop / DRC 2009 38 Acknowledgements • Post-doc: – Dr. Myung-Ho Bae • Grads: – V. Dorgan, D. Estrada, A. Liao, Z.-Y. Ong – B. Ramasubramanian, T. Tsafack, F. Xiong • Undergrads: – Aidee, Gautam, Ryan, Shreya, Sumit, Tim, Yang • Collaborators: – D. Jena (Notre Dame), M. Hersam (NWU), W. King (MechSE), J.-P. Leburton (ECE), J. Lyding (ECE), N. Mason (Physics), U. Ravaioli (ECE), M. Shim (MatSE) • Funding: – NASA, NRI, UIUC (Beckman Award) – ONR, NSF, DARPA Young Faculty Award E. Pop / DRC 2009 39
© Copyright 2026 Paperzz