Electro-Thermal Transport in Metallic Single-Wall Carbon Nanotubes Eric Pop, David Mann, John Reifenberg Profs. Kenneth Goodson and Hongjie Dai Stanford University E. Pop IEDM 2005 1 Carbon Nanotubes for Electronics • Great electrical & thermal conductors – Semiconducting transistors – Metallic interconnects • (Some) open questions: – Thermal conductivity of singlewalled carbon nanotubes (SWNTs) – Great thermal conductivity, poor thermal conductance (small d) Carbon nanotube transistor HfO2 E. Pop 2000 CNT S (Pd) D (Pd) SiO2 back gate (p++ Si) – Transport issues 1995 top gate (Al) 2005 IEDM 2005 2010 2015 ? 2 Properties of Metallic SWNTs (what we know so far) • Electrical properties (on insulating substrates) – Current saturation near 20 µA for tubes longer than 1 µm I (mA) – Yao (PRL’00), Javey (PRL’04), Park (NL’04) Park (NL’05) – Larger currents (up to 100 µA) for short ~10 nm tubes V (V) • Thermal properties – Yu (NL’05), Mingo (NL’05), Pop (PRL ’05) – Thermal conductivity dominated by phonon transport – 3500 Wm-1K-1 around 300 K, decreases as 1/T above Thermal Cond. (W/cm/K) Grujicic (JMS’05) Temperature (K) E. Pop IEDM 2005 3 Summary of This Talk • Metallic single-wall nanotubes – On insulating substrate (silicon nitride or oxide) • Coupled electrical and thermal transport – Essential for predicting breakdown voltage of SWNTs on substrates exposed to air (oxygen) – Use breakdown voltage scaling to find heat loss coefficient • Unified electro-thermal model – Must include optical phonon absorption (usually neglected) to explain “upkick” in low-bias resistance vs. T E. Pop IEDM 2005 4 Back-of-Envelope Estimate (Suspended) E. Pop et al., Phys. Rev. Lett. 95, 155505 (2005) • Thermal conductivity k ~ 3000 W/m/K • Typical L ~ 1 µm, d ~ 1 nm suspended nanotube: – Thermal conductance ~ 25 nW/K – Thermal resistance ~ 40 K/µW • Moderate power ~ 10 µW (10 µA @ 1 V) ∆T = 400 K! ∆T k Pt SiO2 E. Pop IEDM 2005 5 Back-of-Envelope Estimate (On-Substrate) • SWNT on insulating solid substrate • Heat dissipated into substrate rather than along tube length • What is the heat loss coefficient g? • [A: need some gauge of the tube temperature] ∆T Pt g SiO2 E. Pop IEDM 2005 6 Nanotube Temperature Gauge Pt g SiO2 E. Pop IEDM 2005 7 Nanotube Temperature Gauge • Doesn’t exist • But… oxidation (burning) temperature is known O2 Pt g SiO2 E. Pop IEDM 2005 8 Breakdown of SWNTs in Air (Oxygen) 25 Model Data VBD (V) Weight (%) 20 15 10 5 0 T 0 1 2 3 4 5 L (µm) (oC) K. Hata, Science 306, 1362 (2004) I. Chiang, JPCB 105, 8297 (2001) E. Pop, Proc. IEDM (2005) A. Javey, PRL 92, 106804 (2004) • Thermogravimetric (TGA) data shows SWNTs exposed to air break down by oxidation at 500 < TBD < 700 oC (800–1000 K) • Joule breakdown voltage data shows VBD scales with L in air • Supports cooling mechanism along the length, into the substrate E. Pop IEDM 2005 9 Breakdown of SWNTs: Analysis 25 A∇(k∇T ) + p '− g (T − T0 ) = 0 p' = I BDVBD / L VBD = gL(TBD − T0 ) / I BD 20 VBD (V) At breakdown: Model Data 15 10 5 0 0 1 2 3 4 5 L (µm) • Empirically note that: – VBD vs. L in air scales approx. 5 V/µm – Breakdown currents for L > 1 µm always about IBD ≈ 20 µA • Analytic solution of heat conduction equation – Heat loss per unit length: g ≈ 0.14 – 0.2 WK-1m-1 given range of TBD • E. Pop No assumption was made about electrical transport model IEDM 2005 10 Back-of-Envelope Estimate (Revisit) • Using g ≈ 0.15 WK-1m-1 1/g ≈ 6 Kµm/µW • Consistent with typical solid-solid thermal interface resistance values, given the SWNT-substrate contact area (~Lxd) • At moderate power per length p’ ≈ 10 µW/µm ∆T ≈ 60 K ∆T Pt g SiO2 E. Pop IEDM 2005 11 Combined Electro-Thermal Model Rcontact Rtube Pt h R (V , T ) = RC + 2 4q d A∇ (k∇T ) + p '− g (T − T0 ) = 0 g ~ 0.15 Wm-1K-1 Lcontact Ltube L + λeff (V , T ) ( , ) λ V T eff where SiO2 p ' = I 2 ( R − RC ) / L k (T ) = 3500(300 / T ) • Landauer-type electrical resistance • Include Joule heating, couple with heat conduction equation • Self-consistent solution • Need temperature-dependent mean free paths (MFPs) E. Pop IEDM 2005 12 Combined Electro-Thermal Model L = 3 µm Rcontact Rtube Pt 20 d T = 100, 200, 293 K g ~ 0.15 Wm-1K-1 Lcontact Ltube I (µA) 15 10 Data 5 Isothermal model SiO2 T−dependent model 0 0 0.5 1 V (V) 1.5 2 • Landauer-type electrical resistance • Include Joule heating, couple with heat conduction equation • Self-consistent solution • Need temperature-dependent mean free paths (MFPs) E. Pop IEDM 2005 13 Temperature Dependence of MFPs MFPs at low bias (~ 50 mV) −1 −1 λ eff = (λ −AC1 + λOP , ems + λ OP , abs ) OP−abs OP−ems AC Total MFP −1 λOP ,abs (T ) = λOP ,300 … N OP (300) + 1 N OP (T ) MFPs (µm) λ AC = λ AC ,300 (300 / T ) 100 10 1 100 150 200 250 300 T (K) 350 400 450 • Include scattering by optical phonon (OP) absorption • Note OP emission may occur after: – (1) A carrier gains enough energy (ħωOP ~ 0.18 eV) from E-field – (2) An OP absorption event • OP absorption is a strong function of T via N OP = [exp(hωOP / k BT ) − 1] −1 E. Pop IEDM 2005 14 Role of Optical Phonon Absorption 55 120 Predictions L~3 µm 100 Including OP abs. L=15 µm 50 45 R (kΩ) R (kΩ) 80 Data L=10 µm 60 L=5 µm 40 40 L=3 µm Excluding OP abs. 20 L=1 µm 35 100 150 200 250 T (K) 300 0 100 350 150 200 250 300 T (K) 350 400 450 • Low-bias resistance of metallic SWNTs • Subtle effect in the “up-kick” of SWNT low-bias resistance near room T • Important for temperature coefficient of resistivity (TCR) of SWNT interconnects: ~0.0026 K-1, comparable to 40 nm Cu vias E. Pop IEDM 2005 15 Electro-Thermal Modeling of SWNTs 600 25 L=2 µm V=1,2,3,4,5 V 550 L=5 µm 15 450 10 L=15 µm 400 5 Isothermal 350 With self−heating 0 0 1 L=2 µm 500 T (K) I (µA) 20 2 3 4 5 300 −8 V (V) L=5 µm L=15 µm −6 −4 −2 0 2 X (µm) 4 6 8 • Long tubes heat up less: better heat-sinking, lower power density • Model suggests current saturates near 20 µA due to self-heating • Self-heating may be neglected when p’ < 5 µW/µm (design goal?) • Current enhancement (> 20 µA) in shortest (< 1 µm) SWNTs very likely aided by Joule heating shifting towards the contacts E. Pop IEDM 2005 16 Metallic SWNT Resistance Components k ≈ 3500 Wm-1K-1 Ltube ≈ 2 µm, d ≈ 2 nm Lcontact ≈ 2 µm Contacts 3x 108 Pt d SiO2 Ltube Lcontact Thermal Res. Phonons Tube Rtube Rcontact K/W 6 x 106 K/W Thermal Res. Electrons 2x 109 K/W 2 x 109 K/W Electrical Res. Electrons WFL ~ 15 kΩ Ω ~ 15 kΩ Ω • Relec. ~ 10 x Rphon. phonons dominate heat conduction • Rcontact < 0.1 x Rtube as long as Lcontact > 0.8/Ltube (µm) E. Pop IEDM 2005 17 Conclusions • High-bias breakdown in air (oxidation) – Extract thermal conductance to substrate along SWNT length – g ≈ 0.15 Wm-1K-1, limited by nanotube-substrate interface • Electro-thermal model for transport in metallic SWNTs – Estimate MFPs(T) and include optical phonon absorption – Relevant in long (> 1 µm) SWNTs even at low bias (T > 300 K) – Can we break the 20 µA current saturation “limit” for long metallic SWNTs by engineering (increasing) g ? • Contact: – Email: [email protected] – Web: http://www.stanford.edu/~epop/research.html E. Pop IEDM 2005 18
© Copyright 2026 Paperzz