Example using spherical harmonics— Sp 2017 Magnetic field due to a current loop . A circular loop of radius a carries current I. We place the origin at the center of the loop, with polar axis perpendicular to the plane of the loop. Then the current density is δ (r − a) δ (µ) φ̂ j=I a (You can get this most easily by starting with the expression in cylindrical coordinates j = Iδ (z) δ (r − a) φ̂ and using z = r cos θ. See also Lea pg 315 Example 6.7.) Then the magnetic vector potential is (Notes 1 eqn 16) ] j (x ) 3 µ0 d x (1) A (x) = 4π |x − x | ] δ (r − a) δ (µ ) φ̂ φ 3 µ0 I d x = 4πa |x − x | We must take care here, because the unit vector φ̂ is not a constant. We must re-express it in terms of the constant Cartesian unit vectors, and thus: A (x) = µ0 I 4πa ] φ̂ φ = − sin φ x̂ + cos φ ŷ δ (r − a) δ (µ ) − sin φ x̂ + cos φ ŷ d3 x |x − x | Now we use our most useful result (J eqn 3.70) to expand the 1/R in the integrand. With r< = min (r, r ) and similarly for r>, 1 A (x) = µ0 I 4πa ] δ (r − a) δ (µ ) ∞ l l [ [ r< 4π ∗ Ylm (θ, φ) Ylm × θ , φ − sin φ x̂ + cos φ ŷ d3 x l+1 2l + 1 r l=0 > m=−l ∞ l µ0 I [ [ 4π Ylm (θ, φ) × = 4πa 2l + 1 l=0 m=−l ] 2π ] +1 ] ∞ l r< 2 ∗ θ , φ − sin φ x̂ + cos φ ŷ (r ) dr dµ dφ δ (r − a) δ (µ ) l+1 Ylm r> 0 −1 0 ∞ [ l π l ] 2π [ Ylm (θ, φ) r< ∗ , φ − sin φ x̂ + cos φ ŷ dφ = µ0 aI Y lm l+1 2l + 1 r> 2 0 l=0 m=−l where we used the sifting property to evaluate the integrals over r and µ . We now interpret r< as the lesser of r and a, and similarly for r> . To do the integral over φ , we rewrite the sines and cosines in terms of exponentials: ] 2π π ∗ , φ − sin φ x̂ + cos φ ŷ dφ Ylm Ilm = 2 0 ] 2π v 3 3 3 2l + 1 (l − m)! m ŷ + ix̂ ŷ − ix̂ Pl (0) e−imφ eiφ = + e−iφ dφ 4π (l + m)! 2 2 0 The integral is zero unless m = ±1. (Be alert here— if you use the mantra "axisymmetry so m = 0" you will get into big trouble!) With m = +1 we get: v ŷ + ix̂ 2l + 1 (l − 1)! 1 P (0) Il1 = 2π 4π (l + 1)! l 2 and with m = −1 v ŷ − ix̂ 2l + 1 (l + 1)! −1 P (0) Il,−1 = 2π 4π (l − 1)! l 2 v (l − 1)! 1 2l + 1 (l + 1)! (−1) P (0) (ŷ − ix̂) = π 4π (l − 1)! (l + 1)! l v 2l + 1 (l − 1)! 1 P (0) (ŷ − ix̂) = −π 4π (l + 1)! l So A (x) = µ0 aI ∞ [ l=1 l r< π l+1 2l + 1 r> v (Lea 8.54) 2l + 1 (l − 1)! 1 P (0) [(ŷ + ix̂) Yl1 (θ, φ) − (ŷ − ix̂) Yl,−1 ] 4π (l + 1)! l 2 The sum over l starts at 1 now because with l = 0 there is no m = ±1 term. m ∗ , we get Then, using Yl,−m = (−1) Ylm A (x) = µ0 aI µ0 aI 4 = ∞ [ l=1 ∞ [ l=1 l r< π 2l + 1 (l − 1)! 1 Pl (0) Pl1 (µ) (ŷ + ix̂) eiφ + (ŷ − ix̂) e−iφ l+1 2l + 1 r> 4π (l + 1)! l r< 1 P 1 (0) Pl1 (µ) (2ŷ cos φ − 2x̂ sin φ) l+1 l (l + 1) l r> ∞ l µ0 aI [ r< Pl1 (0) Pl1 (µ) φ̂ 2 rl+1 l (l + 1) l=1 > = (2) We might have expected to find that A is in the φ direction, parallel to j. Check dimensions: A is current times µ0 , which is consistent with (1). We can simplify a bit by inserting the value of Pl1 (0) . First note that Pl is even if l is even, and odd if l is odd. Since Plm is proportional to the mth derivative of Pl , Plm will be odd if l + m is odd and even if l + m is even. (Lea pg 385) So Plm (0) = 0 unless l + m is even, or, in this case, l is odd. Now we can use the recursion relation (J3.29 or Lea 8.37) lPl (µ) = µPl (µ) − Pl−1 (µ) 1 (0) lPl (0) = −Pl−1 (0) = Pl−1 (Lea 8.53) Thus, using Lea 8.47, with l = 2n + 1, Pl1 (0) = (l + 1) Pl+1 (0) = (l + 1) (−1)(l+1)/2 1 P2n+1 (0) = (−1)n+1 = (−1)n+1 l!! (l + 1)!! (2n + 1)!! (2n)!! (2n + 1)!! 2n n! Thus (2) becomes A (x) = = ∞ 2n+1 1 µ0 aI [ r< n+1 (2n + 1)!! 1 P2n+1 (µ) φ̂ 2n+2 (2n + 1) (2n + 2) (−1) 2 n=0 r> 2n n! 2n+1 ∞ µ0 aI [ r< (2n + 1)!! (−1)n+1 1 P2n+1 (µ) φ̂ 2r> n=0 r> 2 (n + 1) (2n + 1) 2n n! Separating out the n = 0 term, we have & % 2n+1 ∞ [ µ0 aI r< 1 (2n − 1)!! 1 n r< P P (µ) + (−1) (µ) Aφ = − 4r> r> 1 r> 2n (n + 1)! 2n+1 n=1 (3) Outside the loop, r > a, and & % ∞ 2n+1 (2n − 1)!! [ µ0 aI a 1 n a 1 P (µ) + P (−1) (µ) φ̂ (4) A (x) = − 4r r 1 r 2n (n + 1)! 2n+1 n=1 3 For r a, n = 0 ( = 1) is the dominant term: A (x) − µ0 I a2 1 P (µ) φ̂ 4 r2 1 and (Lea 8.53) P11 = − sin θ d (µ) = − sin θ dµ so µ0 a2 I µ m µ m×r sin θ φ̂ = 0 2 sin θ φ̂ = 0 (5) 2 4r 4π r 4π r3 where m = πa2 I ẑ is the magnetic moment of the loop. Compare with Jackson equation 5.55. Then, in this limit A (x) B θ̂ ∂ µ m r̂ ∂ µ0 m 0 2 sin θ sin θ − r sin θ ∂θ 4π r2 r ∂r 4π r r̂ µ0 m θ̂ µ0 m 2 sin θ cos θ + sin θ r sin θ 4π r2 r 4π r2 µ0 m r̂ 2 cos θ + θ̂ sin θ 4π r3 = ∇×A = = = This is a dipole field, as expected. Inside the loop, r < a and we have: & % ∞ 2n+1 (2n − 1)!! [ µ0 aI r 1 n r P (µ) + P1 (−1) (µ) φ̂ A (x) = − n (n + 1)! 2n+1 4a a 1 a 2 n=1 Near the center, r (6) a, the n = 0 term dominates again, and we have: A µ0 I r 1 P (µ) φ̂ 4 a 1 µ0 I r sin θ φ̂ 4 a − = and B (x) = = % & θ̂ ∂ 2 µ0 r̂ ∂ 2 I r sin θ − r sin θ 4a r sin θ ∂θ r ∂r µ0 I r̂ cos θ − θ̂ sin θ 2a µ0 I ẑ 2a a uniform field, as expected. Compare with Lea and Burke equation 28.7 with z = 0. 4 Field on axis: From LB 28.7, the field on the polar (z−) axis is B (z) = µ0 Ia2 2 (z 2 + a2 )3/2 ẑ So for z > a we can do a binomial expansion to get −3 µ0 Ia2 3 a2 −5 1 a4 + + · · · ẑ B (z) = 1− 2z 3 2 z2 2 2 2 z4 µ0 Ia2 3 a2 15 a4 = + + · · · ẑ 1 − 2z 3 2 z2 8 z4 (7) We can also find B from the solution (4) for r > a: B = ∇×A &$ + # % ∞ 2n+1 [ µ0 aI (2n − 1)!! 1 r̂ ∂ a 1 n+1 a P = (−1) (µ) sin θ − 2 P1 (µ) + 4 r sin θ ∂θ r r2n+2 2n (n + 1)! 2n+1 n=1 $&, % # ∞ 2n+1 (2n − 1)!! [ θ̂ ∂ a 1 n+1 a 1 − P (−1) (µ) − P1 (µ) + r ∂r r r 2n (n + 1)! 2n+1 n=1 0 aI For µ = 1 (θ = 0) , the theta component is µ4r times $ # ∞ 2n+1 (2n − 1)!! [ a 1 n+1 (2n + 1) a 1 P (−1) (1) − 2 P1 (1) + r r r 2n (n + 1)! 2n+1 n=1 But 1 P2n+1 (1) = − s d 1 − µ2 P2n+1 (µ) =0 dµ µ=1 So the theta component on axis is zero, as we would expect from the symmetry (azimuthal symmetry about the axis and reflection anti-symmetry about the plane of the loop). The r−component is &$ # % ∞ 2n+1 [ µ0 aI r̂ (2n − 1)!! 1 ∂ a 1 n a P (−1) 2n+2 n (µ) Br = − sin θ 2 P1 (µ) + 4 r sin θ ∂θ r r 2 (n + 1)! 2n+1 n=1 &$ % # ∞ 2n [ µ0 a2 I ∂ s a (2n − 1)!! n 1 = P2n+1 r̂ 1 − µ2 P11 (µ) + (−1) 2n n (µ) 4r3 ∂µ r 2 (n + 1)! n=1 From the definition of Pl1 (Lea 8.53) and the differential equation for P2n+1 (Lea 8.19), we find l d d d ks 1 1 − µ2 P2n+1 (µ) 1 − µ2 P2n+1 (µ) = − dµ dµ dµ = (2n + 1) (2n + 2) P2n+1 (µ) 5 Then we evaluate at µ = 1 where P2n+1 (1) = 1 &$ #% ∞ 2n [ µ0 a2 I r̂ (2n − 1)!! n a (2n + 1) (2n + 2) Br (r, 0) = (−1) 2n n 2+ 4 r3 r 2 (n + 1)! n=1 Changing to the z−coordinate, we get # $ ∞ 2n µ0 a2 I 1[ (2n + 1)!! n a Bz (z) = ẑ 1 + (−1) 2n n−1 2z 3 2 n=1 z 2 n! 2 2 4 3a a 5×3 µ0 a I +··· ẑ 1 − + 4 = 3 2 2z 2z 2z 2 × 2 3 a 2 15 a 4 µ0 a2 I ẑ 1 − + + · · · = 2z 3 2 z 8 z which agrees with (7). 6
© Copyright 2026 Paperzz