Approximation of epidemic models by diffusion processes and their statistical inferences Catherine Larédo 2 1,2 1 UR 341, MaIAGE, INRA, Jouy-en-Josas UMR 7599, LPMA, Université Paris Diderot 21/11/2015 CIMPA 2015 TALK 3-Part 3, CIMPA 2015 Recap on MLE asymptotics Catherine Larédo () Inference for epidemic models 21/11/2015 CIMPA 2015 1/2 MLE asymptotics θ0 : True value of the parameter. Θ: Parameter set included in Rq ; θ0 ∈ Int(Θ) `n (θ): log-likelihood of the parameter θ given the first n observations ∂g • Rely on tree basic results ∇θ g (θ) = ∂θ i a law of large numbers for the log-likelihood `n (θ), a central limit theorem for the score function a law of large numbers for the observed information. More precisely, (i) For all θ ∈ Θ, n−1 `n (θ) → J(θ0 , θ) Pθ0 − a.s. uniformly w.r. t. Θ, θ → J(θ0 , θ) continuous function with a global unique maximum at θ0 . (ii) n−1/2 ∇θ `n (θ0 ) → N (0, I(θ0 )) in distribution under Pθ0 , where I(θ)): Fisher information matrix at θ. (iii) limn→∞ sup|θ−θ0 |≤δ k − n1 ∇2θ `n (θ) − I(θ0 ) k→ 0 as δ → 0 Pθ0 − a.s. Catherine Larédo () Inference for epidemic models 21/11/2015 CIMPA 2015 2/2
© Copyright 2026 Paperzz