AB Calc and IBSL and BC Calc

Richard Montgomery High School
Department of Mathematics
Summer Math Packet
for students entering
AB Calculus, IB SL Math or BC Calculus
Name: _________________________
Date: ____________
The problems in the packet are designed to help you review topics from Algebra 2 and Pre-Calculus
that are important to your success in AP Calculus.
If you are going into AB Calculus or IBSL Math, complete problems #1 οƒ  15.
If you are going into BC Calculus, complete problems #1 οƒ  23.
Please attempt the problems on your own without any notes and SHOW ALL WORK! In addition, do
not use your calculator for these problems. When you come across topics that require a little
review, feel free to look at your old notes, search a website or ask a friend for help. If you want to
check your work with a calculator, that is fine also.
Bring the finished packet with you to your Calculus class on the first day of school. You will be
assessed on these skills during the first week of school as part of your 1st quarter grade.
Enjoy your summer! We are looking forward to seeing you in August. If you have any questions,
please contact the math Resource Teacher: [email protected]
Review problems for AB/BC
1.
Simplify.
(a)
π‘₯βˆ’4
π‘₯ 2 βˆ’3π‘₯βˆ’4
(b)
π‘₯ 2βˆ’4π‘₯βˆ’32
(c)
π‘₯ 2βˆ’16
( 5βˆ’π‘₯ )
π‘₯ 2βˆ’25
2. Simplify the expression, writing answers with positive exponents where applicable.
(a)
(c)
1
π‘₯+β„Ž
1
βˆ’π‘₯
12π‘₯βˆ’3 𝑦2
18π‘₯π‘¦βˆ’1
(e) (5π‘Ž 3 )(4π‘Ž 2 )
(g)
1 5
βˆ’
2 4
3
8
(b)
(d)
(f)
2
π‘₯
10
οΏ½ 5οΏ½
π‘₯
οΏ½ 2οΏ½
15π‘₯2
5√π‘₯
οΏ½4π‘Ž 5/3 οΏ½
3/2
Review problems for AB/BC
3. Simplify.
(a) log 2 8
(b) log οΏ½
(d) 272/3
(e)
4. Solve for 𝑧.
(a) 4π‘₯ + 10𝑦𝑧 βˆ’ 3 = 0
5. Given 𝑓 (π‘₯) =
(a) β„Ž �𝑔(π‘₯)οΏ½
(c) 𝑓 �𝑓(3)οΏ½
1
οΏ½
100
π‘₯
π‘₯+3
ln 1
(c)
ln 𝑒 7
(f)
𝑒0
(b) 𝑦 2 + 3𝑦𝑧 βˆ’ 8𝑧 βˆ’ 4π‘₯ = 0
, 𝑔 (π‘₯) = √π‘₯ βˆ’ 3, and β„Ž(π‘₯) = π‘₯ 2 + 5, find
(b)
(𝑓 ∘ β„Ž)(βˆ’2)
(d)
π‘”βˆ’1 (π‘₯)
Review problems for AB/BC
6. Use either the slope-intercept or point-slope form of a line to write the equation for the
line given the constraints.
(a) with slope βˆ’2 containing the point (3,4)
(b) containing the points (1, βˆ’3) and (βˆ’5,2)
(c) with slope 0 containing the point (4,2)
(d) parallel to the line 2π‘₯ βˆ’ 3𝑦 = 7 containing the point (5,1)
(e) perpendicular to the line βˆ’3𝑦 + 6π‘₯ = 2 containing the point (4,3)
7. Let 𝑓 be a linear function with 𝑓(2) = βˆ’5 and 𝑓( βˆ’3) = 1. State the function 𝑓(π‘₯) .
8. Find the distance between the points (8, βˆ’1) and (βˆ’4, βˆ’6).
9. Without a calculator, determine the exact value of the expression.
(a) sin
πœ‹
(b) sin
3πœ‹
(c) cos πœ‹
(e) cos
πœ‹
(f)
7πœ‹
(g) tan
2
3
tan
4
4
2πœ‹
3
(d) cos
7πœ‹
(h) tan
πœ‹
6
2
Review problems for AB/BC
10. For each function, make a neat sketch, including a scale or numbering of the axes. Name
the domain and range for each as well. (Remember, no calculator!)
3
(a) 𝑦 = √π‘₯
(b) 𝑦 = √
π‘₯
(c) 𝑦 = 𝑒 π‘₯
y
y
y
x
D:
(d) 𝑦 = ln π‘₯
R:
x
D:
(e)
y
𝑦 = 2π‘₯
R:
D:
R:
R:
(h) 𝑦 = π‘₯ 2 + 4π‘₯ + 3
y
R:
𝑦=
1
π‘₯
R:
y
x
(i)
y
x
D:
D:
x
D:
(g) 𝑦 = π‘₯ 2 βˆ’ 4
(f)
y
x
x
D:
𝑦 = sin π‘₯
R:
y
x
D:
R:
x
D:
R:
Review problems for AB/BC
(j)
(k) 𝑦 = √4 βˆ’ π‘₯ 2
𝑦 = √π‘₯ βˆ’ 2
y
x
D:
R:
𝑦 = |π‘₯ + 3| βˆ’ 2
(l)
y
y
x
D:
R:
x
D:
11. Identify the vertical and horizontal asymptotes in the graph of 𝑦 =
R:
3π‘₯ 2+5
π‘₯ 2βˆ’4
.
y
12. Sketch the graph of the piecewise-defined function.
π‘₯ 2 βˆ’ 5, π‘₯ < βˆ’1
𝑓(π‘₯) = οΏ½0,
π‘₯ = βˆ’1
3 βˆ’ 2π‘₯, π‘₯ > βˆ’1
13. Determine all points of intersection (Remember, no calculator!).
(a) 𝑦 = π‘₯ 2 + 3π‘₯ βˆ’ 4 and 𝑦 = 5π‘₯ + 11
(b) 𝑦 = cos π‘₯ and 𝑦 = sin π‘₯ on the interval [0, πœ‹].
x
Review problems for AB/BC
14. Solve for all π‘₯, where π‘₯ is a real number (remember, no calculator!).
(a) π‘₯ 2 + 3π‘₯ βˆ’ 4 = 14
(b) 2π‘₯ 2 + 5π‘₯ = 3
(c) (π‘₯ βˆ’ 5) 2 = 9
(d) (π‘₯ + 3)(π‘₯ βˆ’ 3) > 0
(e) log π‘₯ + log(π‘₯ βˆ’ 3) = 1
(f)
(g) 3 √π‘₯ βˆ’ 2 βˆ’ 8 = 8
(h) 12π‘₯ 2 = 3π‘₯
(i)
272π‘₯ = 9π‘₯βˆ’3
(j)
|π‘₯ βˆ’ 3| < 7
4𝑒 2π‘₯ = 12
15. Use trigonometric identities to simplify the expression.
(a) sin2 π‘₯ + cos 2 π‘₯
(b) 1 + tan2 π‘₯
(d) sin 2π‘₯
(e)
Review for AB Calculus is complete
cos 2π‘₯
(c)
cot 2 π‘₯ + 1
Review problems for BC only
16. Eliminate the parameter.
π‘₯ = 𝑑2 βˆ’ 3
οΏ½
𝑦 = 2𝑑
17. Expand and simplify.
(a) βˆ‘5𝑛=2 3𝑛 βˆ’ 6
(b) βˆ‘4𝑛=0
( 𝑛+1) 2
𝑛!
18. Write the series in summation notation (notice that (a) is infinite and (b) is finite).
1
(a) +
4
3
42
+
5
43
+β‹―
(b)
1
23 βˆ’1
βˆ’
1
33 βˆ’2
+
1
43 βˆ’3
βˆ’ β‹―+
1
103 βˆ’9
19. Say if the series converges or diverges. Explain why, and give the sum if possible.
3 𝑛
(a) βˆ‘βˆž
𝑛=0 οΏ½ οΏ½
2
(c) βˆ‘βˆž
𝑛=1
( π‘›βˆ’1)�𝑛2+7οΏ½
𝑛3+2
(b) βˆ‘βˆž
𝑛=0
1
(d) βˆ’
7
3
1
𝑛4 +1
72
+
32
73
βˆ’
33
74
+β‹―
20. Given the vectors 𝑣⃗ = βˆ’2πš€βƒ— + 5πš₯βƒ— and 𝑀
οΏ½οΏ½βƒ— = 3πš€βƒ— + 4πš₯βƒ—, compute
(a)
1
2
𝑣⃗
(b) 𝑀
οΏ½οΏ½βƒ— βˆ’ 𝑣⃗
(d) magnitude of 𝑣⃗.
(e)
(c) |𝑀
οΏ½οΏ½βƒ—|
𝑀
οΏ½οΏ½βƒ— β‹… 𝑣⃗
21. Perform the following polar conversions.
(a) Convert (4,4) to polar coordinates.
πœ‹
(b) Convert οΏ½2, οΏ½ to rectangular coordinates.
6
22. Graph the polar functions.
(a) π‘Ÿ = 1 βˆ’ 3 cos πœƒ
(b) π‘Ÿ = 4 sin3πœƒ
23. Graph the parametric equations for 0 ≀ 𝑑 ≀ 3.
y
π‘₯ = 2𝑑 βˆ’ 1
οΏ½
𝑦 = 3𝑑 βˆ’ 5
x